benchmark_flash_attention.py 2.74 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
from functools import partial
import math
import torch
import torch.nn as nn
import torch.nn.functional as F

from einops import rearrange, repeat

Tri Dao's avatar
Tri Dao committed
9
from flash_attn.utils.benchmark import benchmark_all, benchmark_forward, benchmark_backward, benchmark_combined
Tri Dao's avatar
Tri Dao committed
10
from flash_attn.bert_padding import unpad_input, pad_input
Tri Dao's avatar
Tri Dao committed
11
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func
Tri Dao's avatar
Tri Dao committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64


def attention_ref(qkv, attn_mask, dropout_p, upcast=False, causal=False):
    """
    Arguments:
        qkv: (batch_size, seqlen, 3, nheads, head_dim)
        attn_mask: (batch_size, seqlen)
        dropout_p: float
    Output:
        output: (batch_size, seqlen, nheads, head_dim)
        attention: softmax after dropout
    """
    q, k, v = (qkv.float() if upcast else qkv).unbind(dim=2)
    seqlen = qkv.shape[1]
    d = qkv.shape[-1]
    scores = torch.einsum('bthd,bshd->bhts', q, k / math.sqrt(d))
    scores.masked_fill_(rearrange(~attn_mask, 'b s -> b 1 1 s'), float('-inf'))
    if causal:
        causal_mask = torch.triu(torch.ones(seqlen, seqlen, dtype=torch.bool, device=qkv.device), 1)
        scores.masked_fill_(causal_mask, float('-inf'))
    attention = torch.softmax(scores, dim=-1)
    attention_drop = F.dropout(attention, dropout_p)
    output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
    # return output.to(dtype=qkv.dtype), attention.to(dtype=qkv.dtype)
    return output.to(dtype=qkv.dtype)


torch.manual_seed(0)
repeats = 30
batch_size = 64
nheads = 16
seqlen = 1024
n = 1024
d = n // nheads
dropout_p = 0.1
causal = False
dtype = torch.float16
device = 'cuda'

x = torch.randn(batch_size, seqlen, n, device='cuda', dtype=dtype, requires_grad=True)
Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype)

lengths = torch.randint(seqlen - 20, seqlen, (batch_size, 1), device='cuda')
attention_mask_bool = repeat(torch.arange(seqlen, device='cuda'), 's -> b s', b=batch_size) < lengths
attention_mask = torch.zeros(batch_size, seqlen, device='cuda', dtype=dtype)
attention_mask[~attention_mask_bool] = -10000.0
attention_mask = rearrange(attention_mask, 'b s -> b 1 1 s')

x_unpad, indices, cu_seqlens, max_seqlen_in_batch = unpad_input(x, attention_mask_bool)
qkv_unpad = rearrange(Wqkv(x_unpad), 'nnz (t h d) -> nnz t h d', t=3,
                      h=nheads).detach().requires_grad_()
qkv = rearrange(Wqkv(x), 'b s (t h d) -> b s t h d', t=3, h=nheads).detach().requires_grad_()

Tri Dao's avatar
Tri Dao committed
65
fn = lambda qkv_unpad: flash_attn_varlen_qkvpacked_func(
Tri Dao's avatar
Tri Dao committed
66
67
    qkv_unpad, cu_seqlens, max_seqlen_in_batch, dropout_p, causal=causal
)
Tri Dao's avatar
Tri Dao committed
68
69
70
benchmark_all(fn, qkv_unpad, repeats=repeats, desc='FlashAttention')
fn = lambda qkv: attention_ref(qkv, attention_mask_bool, dropout_p, causal=causal)
benchmark_all(fn, qkv, repeats=repeats, desc='PyTorch Standard Attention')