benchmark_causal.py 9.95 KB
Newer Older
1
2
3
4
5
6
7
8
from functools import partial
import math
import torch
import torch.nn as nn
import torch.nn.functional as F

from einops import rearrange, repeat

Tri Dao's avatar
Tri Dao committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# from flash_attn.utils.benchmark import benchmark_forward, benchmark_backward, benchmark_combined, benchmark_all, benchmark_fwd_bwd, pytorch_profiler
from src.utils.benchmark import benchmark_forward, benchmark_backward, benchmark_combined, benchmark_all, benchmark_fwd_bwd, pytorch_profiler
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func
# # from flash_attn.triton.fused_attention import attention as attention
# from flash_attn.flash_attn_triton import flash_attn_qkvpacked_func
# from flash_attn.flash_attn_triton_og import attention as attention_og

# from triton.ops.flash_attention import attention as attention_triton

try:
    from fav2 import flash_attn_qkvpacked_func as fav2_qkvpacked_func
    from fav2 import flash_attn_kvpacked_func as fav2_kvpacked_func
except ImportError:
    fav2_qkvpacked_func = None
    fav2_kvpacked_func = None
24

25
26
27
28
try:
    from flash_attn.fused_softmax import scaled_upper_triang_masked_softmax
except ImportError:
    scaled_upper_triang_masked_softmax = None
29

30
31

def attention_pytorch(qkv, dropout_p=0.0, causal=True):
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    """
    Arguments:
        qkv: (batch_size, seqlen, 3, nheads, head_dim)
        dropout_p: float
    Output:
        output: (batch_size, seqlen, nheads, head_dim)
    """
    batch_size, seqlen, _, nheads, d = qkv.shape
    q, k, v = qkv.unbind(dim=2)
    q = rearrange(q, 'b t h d -> (b h) t d')
    k = rearrange(k, 'b s h d -> (b h) d s')
    softmax_scale = 1.0 / math.sqrt(d)
    # Preallocate attn_weights for `baddbmm`
    scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device)
    scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale),
                       '(b h) t s -> b h t s', h=nheads)
    if causal:
        # "triu_tril_cuda_template" not implemented for 'BFloat16'
        # So we have to construct the mask in float
        causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
        # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
        scores = scores + causal_mask.to(dtype=scores.dtype)
    attention = torch.softmax(scores, dim=-1)
    attention_drop = F.dropout(attention, dropout_p)
    output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
    return output.to(dtype=qkv.dtype)


60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
def attention_megatron(qkv):
    """
    Arguments:
        qkv: (batch_size, seqlen, 3, nheads, head_dim)
    Output:
        output: (batch_size, seqlen, nheads, head_dim)
    """
    batch_size, seqlen, _, nheads, d = qkv.shape
    q, k, v = qkv.unbind(dim=2)
    q = rearrange(q, 'b t h d -> (b h) t d')
    k = rearrange(k, 'b s h d -> (b h) d s')
    softmax_scale = 1.0 / math.sqrt(d)
    # Preallocate attn_weights for `baddbmm`
    scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device)
    scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale),
                       '(b h) t s -> b h t s', h=nheads)
    attention = scaled_upper_triang_masked_softmax(scores, None, scale=1.0)
    output = torch.einsum('bhts,bshd->bthd', attention, v)
    return output.to(dtype=qkv.dtype)


81
82
83
torch.manual_seed(0)
repeats = 30
batch_size = 2
Tri Dao's avatar
Tri Dao committed
84
seqlen = 8192
85
86
nheads = 12
headdim = 128
Tri Dao's avatar
Tri Dao committed
87
88
# nheads = 24
# headdim = 64
Tri Dao's avatar
Tri Dao committed
89
90
91
92
# batch_size = 64
# seqlen = 512
# nheads = 8
# headdim = 128
Tri Dao's avatar
Tri Dao committed
93
94
95
dropout_p = 0.1
causal = False
dtype = torch.float16
96
97
98
99
100
101
102
device = 'cuda'

qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype,
                  requires_grad=True)
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
                          device=qkv.device)

Tri Dao's avatar
Tri Dao committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# qkv_unpad = rearrange(qkv, 'b s ... -> (b s) ...').detach().requires_grad_(True)
# benchmark_all(flash_attn_varlen_qkvpacked_func, qkv_unpad,
#               cu_seqlens, seqlen, dropout_p, causal=causal, repeats=repeats, desc='FlashAttention')
# pytorch_profiler(flash_attn_varlen_qkvpacked_func, qkv_unpad,
#                  cu_seqlens, seqlen, dropout_p, causal=causal, backward=True)
# if fav2_qkvpacked_func is not None:
    # benchmark_all(fav2_qkvpacked_func, qkv, dropout_p, causal=causal, repeats=repeats, desc='Fav2')
    # pytorch_profiler(fav2_qkvpacked_func, qkv, dropout_p, causal=causal, backward=True)

# for dropout_p in [0.1, 0.0]:
#     for causal in [False, True]:
#         print(f"### {dropout_p = }, {causal = } ###")
#         pytorch_profiler(fav2_qkvpacked_func, qkv, dropout_p, causal=causal, backward=True)

# nheads_k = 2
# q = torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype, requires_grad=True)
# kv = torch.randn(batch_size, seqlen, 2, nheads_k, headdim, device=device, dtype=dtype,
#                  requires_grad=True)
# if fav2_kvpacked_func is not None:
#     benchmark_all(fav2_kvpacked_func, q, kv, dropout_p, causal=causal, repeats=repeats, desc='Fav2')
#     pytorch_profiler(fav2_kvpacked_func, q, kv, dropout_p, causal=causal, backward=True)

# dropout_p = 0.0
# causal = False
# benchmark_all(attention_pytorch, qkv, dropout_p, causal=causal,
#               repeats=repeats, desc='PyTorch Attention')

# benchmark_all(flash_attn_qkvpacked_func, qkv, None, causal, repeats=repeats, desc='FlashAttention Triton')
# pytorch_profiler(flash_attn_qkvpacked_func, qkv, None, causal, backward=True)

# q, k, v = [torch.randn(batch_size, nheads, seqlen, headdim, device=device, dtype=dtype,
#                        requires_grad=True) for _ in range(3)]
# benchmark_all(attention_og, q, k, v, 1.0, repeats=repeats, desc='FlashAttention Triton OG')
# # pytorch_profiler(attention, q, k, v, 1.0, backward=True)

# if scaled_upper_triang_masked_softmax is not None:
#     benchmark_all(attention_megatron, qkv, repeats=repeats, desc='Megatron Attention')

# from src.ops.fftconv import fftconv_func

# dim = nheads * headdim
# u = torch.randn(batch_size, dim, seqlen, device=device, dtype=dtype, requires_grad=True)
# k = torch.randn(dim, seqlen, device=device, requires_grad=True)
# D = torch.randn(dim, device=device, requires_grad=True)
# benchmark_all(fftconv_func, u, k, D, repeats=repeats, desc='FFTConv')
# pytorch_profiler(fftconv_func, u, k, D, backward=True)
# pytorch_profiler(torch.fft.rfft, u.float())

flops = 4 * batch_size * seqlen ** 2 * nheads * headdim
ideal_a100_time = flops / 312 / 1e9
print(f"Ideal A100 fwd time: {ideal_a100_time:.3f}ms, bwd time: {ideal_a100_time * 2.5:.3f}ms")


def time_fwd_bwd(func, *args, **kwargs):
    time_f, time_b = benchmark_fwd_bwd(func, *args, **kwargs)
    return time_f[1].mean, time_b[1].mean

bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4096), (2, 8192), (1, 16384)]
causal_vals = [False, True]
headdim_vals = [64, 128]
dim = 2048
dropout_p = 0.0

time_f = {}
time_b = {}
for causal in causal_vals:
    for headdim in headdim_vals:
        for batch_size, seqlen in bs_seqlen_vals:
            nheads = dim // headdim
            qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype,
                              requires_grad=True)
            cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
                                    device=qkv.device)
            qkv_unpad = rearrange(qkv, 'b s ... -> (b s) ...').detach().requires_grad_(True)
            f, b = time_fwd_bwd(
                flash_attn_varlen_qkvpacked_func, qkv_unpad, cu_seqlens, seqlen, dropout_p,
                causal=causal, repeats=repeats, verbose=False
            )
            time_f[(causal, headdim, batch_size, seqlen), "Flash"] = f
            time_b[(causal, headdim, batch_size, seqlen), "Flash"] = b

            qkv = qkv.detach().requires_grad_(True)
            f, b = time_fwd_bwd(
                fav2_qkvpacked_func, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False
            )
            time_f[(causal, headdim, batch_size, seqlen), "Flash2"] = f
            time_b[(causal, headdim, batch_size, seqlen), "Flash2"] = b

            # q, k, v = [torch.randn(batch_size, nheads, seqlen, headdim, device=device, dtype=dtype,
            #                        requires_grad=True) for _ in range(3)]
            # # Try both values of sequence_parallel and pick the faster one
            # f, b = time_fwd_bwd(
            #     attention_triton, q, k, v, causal, headdim**(-0.5),
            #     False, repeats=repeats, verbose=False
            # )
            # _, b0 = time_fwd_bwd(
            #     attention_triton, q, k, v, causal, headdim**(-0.5),
            #     True, repeats=repeats, verbose=False
            # )
            # time_f[(causal, headdim, batch_size, seqlen), "Triton"] = f
            # time_b[(causal, headdim, batch_size, seqlen), "Triton"] = min(b, b0)

            if seqlen <= 8 * 1024:
                qkv = qkv.detach().requires_grad_(True)
                f, b = time_fwd_bwd(
                    attention_pytorch, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False
                )
            else:
                f, b = float('nan'), float('nan')
            time_f[(causal, headdim, batch_size, seqlen), "Pytorch"] = f
            time_b[(causal, headdim, batch_size, seqlen), "Pytorch"] = b
214

Tri Dao's avatar
Tri Dao committed
215
216
217
218
219
220
221
222
223
224
            # q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype,
            #                        requires_grad=True) for _ in range(3)]
            # import xformers.ops as xops
            # f, b = time_fwd_bwd(
            #     xops.memory_efficient_attention, q, k, v,
            #     attn_bias=xops.LowerTriangularMask() if causal else None,
            #     op=(xops.fmha.cutlass.FwOp, xops.fmha.cutlass.BwOp)
            # )
            # time_f[(causal, headdim, batch_size, seqlen), "xformers"] = f
            # time_b[(causal, headdim, batch_size, seqlen), "xformers"] = b
Tri Dao's avatar
Tri Dao committed
225

226

Tri Dao's avatar
Tri Dao committed
227
228
229
import pickle
with open('flash2_attn_time_h100.plk', 'wb') as fp:
    pickle.dump((time_f, time_b), fp, protocol=pickle.HIGHEST_PROTOCOL)