"lightx2v/models/vscode:/vscode.git/clone" did not exist on "b20ec0924d50cb732db6d94d596c2c68c0c17845"
test_opt.py 3.57 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
import re

import torch
import pytest

from transformers import OPTConfig
from transformers.models.opt.modeling_opt import OPTForCausalLM

from flash_attn.models.gpt import GPTLMHeadModel
Tri Dao's avatar
Tri Dao committed
10
from flash_attn.models.opt import remap_state_dict_hf_opt, opt_config_to_gpt2_config
Tri Dao's avatar
Tri Dao committed
11
12
13
14
15
16
17
from flash_attn.utils.pretrained import state_dict_from_pretrained


@pytest.mark.parametrize('model_name', ["facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b"])
# @pytest.mark.parametrize('model_name', ["facebook/opt-350m"])
def test_opt_state_dict(model_name):
    config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name))
Tri Dao's avatar
Tri Dao committed
18
    pretrained_state_dict = remap_state_dict_hf_opt(state_dict_from_pretrained(model_name), config)
Tri Dao's avatar
Tri Dao committed
19
20
21
22
23
24
25
26
27
28
    model = GPTLMHeadModel(config)
    state_dict = model.state_dict()
    assert state_dict.keys() == pretrained_state_dict.keys()
    for k in state_dict.keys():
        assert state_dict[k].shape == pretrained_state_dict[k].shape


@pytest.mark.parametrize('model_name', ["facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b"])
# @pytest.mark.parametrize('model_name', ["facebook/opt-350m"])
def test_opt_optimized(model_name):
29
    """Check that our implementation of OPT (without all optimizations enabled) matches the
Tri Dao's avatar
Tri Dao committed
30
31
32
33
34
35
36
37
    HF implementation: the output of our forward pass in fp16 should be around the same as the HF
    forward pass in fp16, when compared to the HF forward pass in fp32.
    """
    dtype = torch.float16
    device = 'cuda'
    config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name))
    config.use_flash_attn = True
    config.fused_bias_fc = True
Tri Dao's avatar
Tri Dao committed
38
    config.fused_mlp = True
Tri Dao's avatar
Tri Dao committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    config.fused_dropout_add_ln = True
    # Only prenorm supports residual_in_fp32
    config.residual_in_fp32 = getattr(config, 'prenorm', True)
    config.pad_vocab_size_multiple = 8

    model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)

    model_ref = OPTForCausalLM.from_pretrained(model_name).to(device=device)
    model_hf = OPTForCausalLM.from_pretrained(model_name, torch_dtype=dtype).to(device=device)

    model.eval()
    model_ref.eval()
    model_hf.eval()

    torch.manual_seed(0)
    batch_size = 2
    max_seqlen = 256
    seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device='cuda')
    input_ids = torch.randint(0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long,
                              device='cuda')
    if model_name != 'facebook/opt-350m':  # The OPT-350m projects the embeddings to dimension 512
        out = model.transformer(input_ids)
        out_hf = model_hf.model(input_ids).last_hidden_state
        out_ref = model_ref.model(input_ids).last_hidden_state

        print(f'Output max diff: {(out - out_ref).abs().max().item()}')
        print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
        print(f'HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}')
        print(f'HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}')
        assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()

    logits = model(input_ids).logits
    logits_hf = model_hf(input_ids).logits
    logits_ref = model_ref(input_ids).logits

    print(f'Logits max diff: {(logits - logits_ref).abs().max().item()}')
    print(f'Logits mean diff: {(logits - logits_ref).abs().mean().item()}')
    print(f'HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}')
    print(f'HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}')
    assert (logits - logits_ref).abs().max().item() < 3 * (logits_hf - logits_ref).abs().max().item()