vit.py 10.8 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# Copyright (c) 2022, Tri Dao.
# Inspired by / adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
import math
from functools import partial
from copy import deepcopy

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.init import trunc_normal_

from einops import rearrange

from timm.models.helpers import named_apply
from flash_attn.layers.patch_embed import PatchEmbed

from flash_attn.modules.mha import MHA
from flash_attn.modules.mlp import Mlp, FusedDenseGeluDense
from flash_attn.modules.block import Block


def create_mixer_cls(num_heads, qkv_bias, attn_drop, use_flash_attn, fused_bias_fc,
                     cross_attn=False):
    mixer_cls = partial(MHA, num_heads=num_heads, cross_attn=cross_attn, bias=qkv_bias,
                        dropout=attn_drop, fused_bias_fc=fused_bias_fc,
                        use_flash_attn=use_flash_attn)
    return mixer_cls


def create_mlp_cls(embed_dim, mlp_ratio, act_layer, fused_dense_gelu_dense):
    inner_dim = int(embed_dim * mlp_ratio)
    if not fused_dense_gelu_dense:
        mlp_cls = partial(Mlp, hidden_features=inner_dim, activation=act_layer())
    else:
        mlp_cls = partial(FusedDenseGeluDense, hidden_features=inner_dim)
    return mlp_cls


def create_block(embed_dim, num_heads, mlp_ratio, qkv_bias, drop_rate, attn_drop_rate, drop_path,
                 norm_layer, act_layer, use_flash_attn, fused_bias_fc, fused_dense_gelu_dense,
                 fused_dropout_add_ln, layer_idx=None, n_layer=None, last_layer_subset=False):
    mixer_cls = create_mixer_cls(num_heads, qkv_bias, attn_drop_rate, use_flash_attn, fused_bias_fc,
                                 cross_attn=(last_layer_subset and layer_idx == n_layer - 1))
    mlp_cls = create_mlp_cls(embed_dim, mlp_ratio, act_layer, fused_dense_gelu_dense)
    block = Block(embed_dim, mixer_cls, mlp_cls, norm_cls=norm_layer,
                  prenorm=True, resid_dropout=drop_rate, drop_path=drop_path,
                  fused_dropout_add_ln=fused_dropout_add_ln)
    return block


class VisionTransformer(nn.Module):
    """ Vision Transformer
    A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
        - https://arxiv.org/abs/2010.11929
    """
    def __init__(
            self,
            img_size=224,
            patch_size=16,
            in_chans=3,
            num_classes=1000,
            global_pool='token',
            embed_dim=768,
            depth=12,
            num_heads=12,
            mlp_ratio=4.,
            qkv_bias=True,
            init_values=None,
            class_token=True,
            no_embed_class=False,
            pre_norm=False,
            fc_norm=None,
            drop_rate=0.,
            attn_drop_rate=0.,
            drop_path_rate=0.,
            weight_init='',
            embed_layer=PatchEmbed,
            norm_layer=None,
            act_layer=None,
            use_flash_attn=False,
            fused_bias_fc=False,
            fused_dense_gelu_dense=False,
            fused_dropout_add_ln=False,
    ):
        """
        Args:
            img_size (int, tuple): input image size
            patch_size (int, tuple): patch size
            in_chans (int): number of input channels
            num_classes (int): number of classes for classification head
            global_pool (str): type of global pooling for final sequence (default: 'token')
            embed_dim (int): embedding dimension
            depth (int): depth of transformer
            num_heads (int): number of attention heads
            mlp_ratio (int): ratio of mlp hidden dim to embedding dim
            qkv_bias (bool): enable bias for qkv if True
            init_values: (float): layer-scale init values
            class_token (bool): use class token
            fc_norm (Optional[bool]): pre-fc norm after pool, set if global_pool == 'avg' if None (default: None)
            drop_rate (float): dropout rate
            attn_drop_rate (float): attention dropout rate
            drop_path_rate (float): stochastic depth rate
            weight_init (str): weight init scheme
            embed_layer (nn.Module): patch embedding layer
            norm_layer: (nn.Module): normalization layer
            act_layer: (nn.Module): MLP activation layer
        """
        super().__init__()
        assert global_pool == 'token', 'Only support pooling with CLS token'
        assert class_token
        assert init_values is None, 'LayerScale is not supported yet'
        assert weight_init == ''
        assert fc_norm is None
        # pre_norm seems redundant, as there's a LayerNorm right at the start of each block, idk
        assert not pre_norm
        use_fc_norm = global_pool == 'avg' if fc_norm is None else fc_norm
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        act_layer = act_layer or nn.GELU

        self.num_classes = num_classes
        self.global_pool = global_pool
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.num_prefix_tokens = 1 if class_token else 0
        self.no_embed_class = no_embed_class

        patch_embed_extra_kwargs = ({'fused_bias_fc': fused_bias_fc} if embed_layer is PatchEmbed
                                    else {})
        self.patch_embed = embed_layer(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            bias=not pre_norm,  # disable bias if pre-norm is used (e.g. CLIP)
            **patch_embed_extra_kwargs
        )
        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None
        embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens
        self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * .02)
        self.pos_drop = nn.Dropout(p=drop_rate)

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule

        # We change the order of residual and layer norm:
        # Instead of LN -> Attn / MLP -> Dropout -> Add, we do:
        # Attn / MLP -> Dropout -> Add -> LN, returning both the residual branch (output of Add) and
        # the main branch (output of LN). The model definition is unchanged, but the mapping of the
        # nn.LayerNorm weights are changed.
        # This is for performance reason: we can fuse dropout + add + layer_norm.
        # self.norm_0 is the first layer norm in the model, while self.norm
        # (in the pretrained weight) is the final layer norm.
        self.norm_0 = norm_layer(embed_dim)

        self.blocks = nn.ModuleList([create_block(
            embed_dim, num_heads, mlp_ratio, qkv_bias, drop_rate, attn_drop_rate, drop_path=dpr[i],
            norm_layer=norm_layer, act_layer=act_layer, use_flash_attn=use_flash_attn,
            fused_bias_fc=fused_bias_fc, fused_dense_gelu_dense=fused_dense_gelu_dense,
            fused_dropout_add_ln=fused_dropout_add_ln, layer_idx=i, n_layer=depth,
            last_layer_subset=(global_pool == 'token')
        ) for i in range(depth)])

        # Classifier Head
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

        self.init_weights(weight_init)

    def init_weights(self, mode=''):
        assert mode == ''
        trunc_normal_(self.pos_embed, std=.02)
        if self.cls_token is not None:
            nn.init.normal_(self.cls_token, std=1e-6)
        named_apply(init_weights_vit_timm, self)

    def _init_weights(self, m):
        # this fn left here for compat with downstream users
        init_weights_vit_timm(m)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    def _pos_embed(self, x):
        if self.no_embed_class:
            # deit-3, updated JAX (big vision)
            # position embedding does not overlap with class token, add then concat
            x = x + self.pos_embed
            if self.cls_token is not None:
                x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
        else:
            # original timm, JAX, and deit vit impl
            # pos_embed has entry for class token, concat then add
            if self.cls_token is not None:
                x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
            x = x + self.pos_embed
        return self.pos_drop(x)

    def forward_features(self, x, all_tokens=True):
        """
        If all_tokens==False and self.global_pool == 'token', we only return the features for the
        cls token.
        """
        x = self.patch_embed(x)
        # TD [2022-10-15]: Force residual in fp32 in case of DeepSpeed
        residual = self._pos_embed(x).float()
        hidden_states = self.norm_0(residual.to(dtype=self.norm_0.weight.dtype))
        if self.global_pool != 'token' or all_tokens:
            for block in self.blocks:
                hidden_states, residual = block(hidden_states, residual)
        else:
            for block in self.blocks[:-1]:
                hidden_states, residual = block(hidden_states, residual)
            # For the last layer, we only want the 1st token of the output. So we do cross-attention
            # where the query is the 1st token and the key/value is the whole sequence.
            hidden_states_1st = rearrange(hidden_states[:, 0], 'b d -> b 1 d')
            residual_1st = rearrange(residual[:, 0], 'b d -> b 1 d')
            hidden_states, _ = self.blocks[-1](hidden_states_1st, residual_1st,
                                               mixer_kwargs={'x_kv': hidden_states})
        return hidden_states

    def forward_head(self, x, pre_logits: bool = False):
        if self.global_pool:
            x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
        return x if pre_logits else self.head(x)

    def forward(self, x):
        x = self.forward_features(x, all_tokens=False)
        x = self.forward_head(x)
        return x


def init_weights_vit_timm(module: nn.Module, name: str = ''):
    """ ViT weight initialization, original timm impl (for reproducibility) """
    if isinstance(module, nn.Linear):
        trunc_normal_(module.weight, std=.02)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif hasattr(module, 'init_weights'):
        module.init_weights()


def vit_base_patch16_224(pretrained=False, **kwargs):
    """ ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
    """
    assert not pretrained
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
    model = VisionTransformer(**model_kwargs)
    return model