test_rotary.py 9.05 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
import math
Tri Dao's avatar
Tri Dao committed
2
import random
Tri Dao's avatar
Tri Dao committed
3

Tri Dao's avatar
Tri Dao committed
4
import pytest
Tri Dao's avatar
Tri Dao committed
5
6
7
import torch
import torch.nn.functional as F
from einops import rearrange
Tri Dao's avatar
Tri Dao committed
8
9
from flash_attn.layers.rotary import apply_rotary_emb, apply_rotary_emb_torch
from flash_attn.layers.rotary import apply_rotary_emb_qkv_, apply_rotary_emb_kv_
Tri Dao's avatar
Tri Dao committed
10

Tri Dao's avatar
Tri Dao committed
11
is_sm8x = torch.cuda.get_device_capability("cuda") >= (8, 0)
Tri Dao's avatar
Tri Dao committed
12
13


Tri Dao's avatar
Tri Dao committed
14
15
16
@pytest.mark.parametrize(
    "dtype", ([torch.float16] if not is_sm8x else [torch.float16, torch.bfloat16])
)
Tri Dao's avatar
Tri Dao committed
17
# @pytest.mark.parametrize('dtype', ([torch.float16]))
Tri Dao's avatar
Tri Dao committed
18
19
@pytest.mark.parametrize("seqlen_offsets_type", [0, int, torch.Tensor])
# @pytest.mark.parametrize("seqlen_offsets_type", [0])
Tri Dao's avatar
Tri Dao committed
20
@pytest.mark.parametrize("rotary_fraction", [1.0, 0.5])
Tri Dao's avatar
Tri Dao committed
21
22
23
# @pytest.mark.parametrize('rotary_fraction', [1.0])
@pytest.mark.parametrize("interleaved", [False, True])
# @pytest.mark.parametrize('interleaved', [False])
Tri Dao's avatar
Tri Dao committed
24
@pytest.mark.parametrize("inplace", [False, True])
Tri Dao's avatar
Tri Dao committed
25
# @pytest.mark.parametrize('inplace', [False])
Tri Dao's avatar
Tri Dao committed
26
def test_rotary_emb_func(inplace, interleaved, rotary_fraction, seqlen_offsets_type, dtype):
Tri Dao's avatar
Tri Dao committed
27
28
29
30
31
    rtol = 1e-3
    batch_size = 32
    nheads = 4
    seqlen = 217
    headdim = 128
Tri Dao's avatar
Tri Dao committed
32
33
    device = "cuda"
    torch.manual_seed(42)
Tri Dao's avatar
Tri Dao committed
34
    x = torch.randn(
Tri Dao's avatar
Tri Dao committed
35
        batch_size, seqlen, nheads, headdim, dtype=dtype, device=device, requires_grad=True
Tri Dao's avatar
Tri Dao committed
36
    )
Tri Dao's avatar
Tri Dao committed
37
38
39
    x_pt = x.detach().clone().requires_grad_()
    rotary_dim = int(rotary_fraction * headdim)
    assert rotary_dim % 2 == 0
Tri Dao's avatar
Tri Dao committed
40
    angle = torch.rand(seqlen * 2, rotary_dim // 2, device=device) * 2 * math.pi
Tri Dao's avatar
Tri Dao committed
41
42
    cos = torch.cos(angle).to(dtype=dtype)
    sin = torch.sin(angle).to(dtype=dtype)
Tri Dao's avatar
Tri Dao committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    if seqlen_offsets_type == 0:
        seqlen_offsets = 0
    elif seqlen_offsets_type is int:
        seqlen_offsets = torch.randint(0, seqlen + 1, (1, )).item()
    elif seqlen_offsets_type is torch.Tensor:
        seqlen_offsets = torch.randint(
            0, seqlen + 1, (batch_size,), dtype=torch.int32, device=device
        )
    out = apply_rotary_emb(
        x, cos, sin, seqlen_offsets=seqlen_offsets, interleaved=interleaved, inplace=inplace
    )
    if seqlen_offsets_type is torch.Tensor:
        arange = rearrange(torch.arange(seqlen, device=device), "s -> 1 s")
        idx = rearrange(seqlen_offsets, "b -> b 1") + arange
        cos_pt = rearrange(cos[idx.flatten()], "(b s) d -> b s d", b=batch_size)
        sin_pt = rearrange(sin[idx.flatten()], "(b s) d -> b s d", b=batch_size)
    else:
        cos_pt = cos[seqlen_offsets : seqlen_offsets + seqlen]
        sin_pt = sin[seqlen_offsets : seqlen_offsets + seqlen]
    out_pt = apply_rotary_emb_torch(
        x_pt.float(), cos_pt.float(), sin_pt.float(), interleaved=interleaved
    ).to(dtype=dtype)
    print(f"Output max diff: {(out - out_pt).abs().max().item()}")

Tri Dao's avatar
Tri Dao committed
67
68
69
70
    g = torch.randn_like(out)
    g_pt = g.clone()  # If inplace=True, we might modify the gradient inplace
    out.backward(g)
    out_pt.backward(g_pt)
Tri Dao's avatar
Tri Dao committed
71
72
73
74
75
76
77
    print(f"Grad max diff: {(x.grad - x_pt.grad).abs().max().item()}")

    if not inplace:
        assert torch.equal(x, x_pt)
    # Numerical error if we just do any arithmetic
    atol = ((out_pt + 0.3 - 0.3) - out_pt).abs().max().item()
    assert torch.allclose(out, out_pt, rtol=rtol, atol=2 * atol)
Tri Dao's avatar
Tri Dao committed
78
79
    atol = ((x_pt.grad + 0.3 - 0.3) - x_pt.grad).abs().max().item()
    assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=2 * atol)
Tri Dao's avatar
Tri Dao committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212


@pytest.mark.parametrize(
    "dtype", ([torch.float16] if not is_sm8x else [torch.float16, torch.bfloat16])
)
# @pytest.mark.parametrize('dtype', ([torch.float16]))
@pytest.mark.parametrize("seqlen_offsets_type", [0, int, torch.Tensor])
# @pytest.mark.parametrize("seqlen_offsets_type", [0])
@pytest.mark.parametrize("rotary_fraction", [1.0, 0.5])
# @pytest.mark.parametrize('rotary_fraction', [1.0])
@pytest.mark.parametrize("interleaved", [False, True])
# @pytest.mark.parametrize('interleaved', [False])
def test_rotary_emb_qkv(interleaved, rotary_fraction, seqlen_offsets_type, dtype):
    rtol = 1e-3
    batch_size = 32
    nheads = 4
    seqlen = 512
    headdim = 128
    device = "cuda"
    torch.manual_seed(42)
    qkv = torch.randn(
        batch_size, seqlen, 3, nheads, headdim, dtype=dtype, device=device, requires_grad=True
    )
    qkv_pt = qkv.detach().clone().requires_grad_()
    rotary_dim = int(rotary_fraction * headdim)
    assert rotary_dim % 2 == 0
    angle = torch.rand(seqlen * 2, rotary_dim // 2, device=device) * 2 * math.pi
    cos = torch.cos(angle).to(dtype=dtype)
    sin = torch.sin(angle).to(dtype=dtype)
    if seqlen_offsets_type == 0:
        seqlen_offsets = 0
    elif seqlen_offsets_type is int:
        seqlen_offsets = torch.randint(0, seqlen + 1, (1, )).item()
    elif seqlen_offsets_type is torch.Tensor:
        seqlen_offsets = torch.randint(
            0, seqlen + 1, (batch_size,), dtype=torch.int32, device=device
        )
    out = apply_rotary_emb_qkv_(
        qkv, cos, sin, seqlen_offsets=seqlen_offsets, interleaved=interleaved
    )
    if seqlen_offsets_type is torch.Tensor:
        arange = rearrange(torch.arange(seqlen, device=device), "s -> 1 s")
        idx = rearrange(seqlen_offsets, "b -> b 1") + arange
        cos_pt = rearrange(cos[idx.flatten()], "(b s) d -> b s d", b=batch_size)
        sin_pt = rearrange(sin[idx.flatten()], "(b s) d -> b s d", b=batch_size)
    else:
        cos_pt = cos[seqlen_offsets : seqlen_offsets + seqlen]
        sin_pt = sin[seqlen_offsets : seqlen_offsets + seqlen]
    q_pt = apply_rotary_emb_torch(
        qkv_pt[:, :, 0].float(), cos_pt.float(), sin_pt.float(), interleaved=interleaved
    ).to(dtype=dtype)
    k_pt = apply_rotary_emb_torch(
        qkv_pt[:, :, 1].float(), cos_pt.float(), sin_pt.float(), interleaved=interleaved
    ).to(dtype=dtype)
    out_pt = torch.stack([q_pt, k_pt, qkv_pt[:, :, 2]], dim=2)
    print(f"Output max diff: {(out - out_pt).abs().max().item()}")

    g = torch.randn_like(out)
    g_pt = g.clone()  # Since inplace=True, we modify the gradient inplace
    out.backward(g)
    out_pt.backward(g_pt)
    print(f"Grad max diff: {(qkv.grad - qkv_pt.grad).abs().max().item()}")

    # Numerical error if we just do any arithmetic
    atol = ((out_pt + 0.3 - 0.3) - out_pt).abs().max().item()
    assert torch.allclose(out, out_pt, rtol=rtol, atol=2 * atol)
    atol = ((qkv_pt.grad + 0.3 - 0.3) - qkv_pt.grad).abs().max().item()
    assert torch.allclose(qkv.grad, qkv_pt.grad, rtol=rtol, atol=2 * atol)


@pytest.mark.parametrize(
    "dtype", ([torch.float16] if not is_sm8x else [torch.float16, torch.bfloat16])
)
# @pytest.mark.parametrize('dtype', ([torch.float16]))
@pytest.mark.parametrize("seqlen_offsets_type", [0, int, torch.Tensor])
# @pytest.mark.parametrize("seqlen_offsets_type", [0])
@pytest.mark.parametrize("rotary_fraction", [1.0, 0.5])
# @pytest.mark.parametrize('rotary_fraction', [1.0])
@pytest.mark.parametrize("interleaved", [False, True])
# @pytest.mark.parametrize('interleaved', [False])
def test_rotary_emb_kv(interleaved, rotary_fraction, seqlen_offsets_type, dtype):
    rtol = 1e-3
    batch_size = 32
    nheads = 4
    seqlen = 781
    headdim = 64
    device = "cuda"
    torch.manual_seed(42)
    kv = torch.randn(
        batch_size, seqlen, 2, nheads, headdim, dtype=dtype, device=device, requires_grad=True
    )
    kv_pt = kv.detach().clone().requires_grad_()
    rotary_dim = int(rotary_fraction * headdim)
    assert rotary_dim % 2 == 0
    angle = torch.rand(seqlen * 2, rotary_dim // 2, device=device) * 2 * math.pi
    cos = torch.cos(angle).to(dtype=dtype)
    sin = torch.sin(angle).to(dtype=dtype)
    if seqlen_offsets_type == 0:
        seqlen_offsets = 0
    elif seqlen_offsets_type is int:
        seqlen_offsets = torch.randint(0, seqlen + 1, (1, )).item()
    elif seqlen_offsets_type is torch.Tensor:
        seqlen_offsets = torch.randint(
            0, seqlen + 1, (batch_size,), dtype=torch.int32, device=device
        )
    out = apply_rotary_emb_kv_(
        kv, cos, sin, seqlen_offsets=seqlen_offsets, interleaved=interleaved
    )
    if seqlen_offsets_type is torch.Tensor:
        arange = rearrange(torch.arange(seqlen, device=device), "s -> 1 s")
        idx = rearrange(seqlen_offsets, "b -> b 1") + arange
        cos_pt = rearrange(cos[idx.flatten()], "(b s) d -> b s d", b=batch_size)
        sin_pt = rearrange(sin[idx.flatten()], "(b s) d -> b s d", b=batch_size)
    else:
        cos_pt = cos[seqlen_offsets : seqlen_offsets + seqlen]
        sin_pt = sin[seqlen_offsets : seqlen_offsets + seqlen]
    k_pt = apply_rotary_emb_torch(
        kv_pt[:, :, 0].float(), cos_pt.float(), sin_pt.float(), interleaved=interleaved
    ).to(dtype=dtype)
    out_pt = torch.stack([k_pt, kv_pt[:, :, 1]], dim=2)
    print(f"Output max diff: {(out - out_pt).abs().max().item()}")

    g = torch.randn_like(out)
    g_pt = g.clone()  # Since inplace=True, we modify the gradient inplace
    out.backward(g)
    out_pt.backward(g_pt)
    print(f"Grad max diff: {(kv.grad - kv_pt.grad).abs().max().item()}")

    # Numerical error if we just do any arithmetic
    atol = ((out_pt + 0.3 - 0.3) - out_pt).abs().max().item()
    assert torch.allclose(out, out_pt, rtol=rtol, atol=2 * atol)
    atol = ((kv_pt.grad + 0.3 - 0.3) - kv_pt.grad).abs().max().item()
    assert torch.allclose(kv.grad, kv_pt.grad, rtol=rtol, atol=2 * atol)