test_llama.py 18.4 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
# Copyright (c) 2023, Tri Dao.

# To run the huggingface implementation, we first need to convert the weights:
# https://github.com/huggingface/transformers/pull/21955
5
# python -m transformers.models.llama.convert_llama_weights_to_hf --input_dir $CHECKPOINT_DIR/llama --model_size 7B --output_dir $CHECKPOINT_DIR/llama/7B-hf
Tri Dao's avatar
Tri Dao committed
6
7
8
9
10
11
12
13
14
15
# and repeat for 13B, 30B, 65B

import os
import time
from pathlib import Path
current_dir = Path(__file__).parent.absolute()

import torch
import pytest

Tri Dao's avatar
Tri Dao committed
16
17
from einops import rearrange

Tri Dao's avatar
Tri Dao committed
18
19
20
from transformers import LlamaConfig, LlamaTokenizer
from transformers.models.llama.modeling_llama import LlamaForCausalLM

Tri Dao's avatar
Tri Dao committed
21
from flash_attn.models.gpt import GPTLMHeadModel, combine_state_dicts_tp, shard_state_dict_tp
Tri Dao's avatar
Tri Dao committed
22
23
from flash_attn.models.llama import remap_state_dict_meta_llama, llama_config_to_gpt2_config
from flash_attn.models.llama import config_from_checkpoint, state_dicts_from_checkpoint
Tri Dao's avatar
Tri Dao committed
24
from flash_attn.utils.distributed import all_gather_raw
Tri Dao's avatar
Tri Dao committed
25
26
27
28
29
30
31
32
33
34
35
36
37
from flash_attn.utils.pretrained import state_dict_from_pretrained
from flash_attn.utils.generation import update_graph_cache


@pytest.mark.parametrize('model_name', ["7B"])
def test_llama_state_dict(model_name):
    checkpoint_path = Path(os.environ.get('CHECKPOINT_DIR',
                                          current_dir.parent.parent / 'checkpoints')) / 'llama'
    config = llama_config_to_gpt2_config(config_from_checkpoint(checkpoint_path, model_name))
    ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name)
    pretrained_state_dict = remap_state_dict_meta_llama(ckpt_state_dicts[0], config)
    model = GPTLMHeadModel(config, device='meta')  # Without device='meta' init is very slow
    state_dict = model.state_dict()
38
39
    assert state_dict.keys() == pretrained_state_dict.keys()
    for k in state_dict.keys():
Tri Dao's avatar
Tri Dao committed
40
41
42
43
        assert state_dict[k].shape == pretrained_state_dict[k].shape


@pytest.mark.parametrize('model_name', ["7B", "13B"])
Tri Dao's avatar
Tri Dao committed
44
# @pytest.mark.parametrize('model_name', ["7B"])
Tri Dao's avatar
Tri Dao committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
def test_llama_optimized(model_name):
    """Check that our implementation of LLaMa (with all optimizations enabled) matches the
    HF implementation: the output of our forward pass in fp16 should be around the same as the HF
    forward pass in fp16, when compared to the HF forward pass in fp32.
    """
    checkpoint_path = Path(os.environ.get('CHECKPOINT_DIR',
                                          current_dir.parent.parent / 'checkpoints')) / 'llama'

    dtype = torch.float16
    device = 'cuda'
    config = llama_config_to_gpt2_config(config_from_checkpoint(checkpoint_path, model_name))
    config.use_flash_attn = True
    config.fused_bias_fc = True
    config.fused_mlp = False  # We don't have fused GatedMLP yet
    config.fused_dropout_add_ln = True
    config.residual_in_fp32 = True

    ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name)
    pretrained_state_dicts = [remap_state_dict_meta_llama(s, config) for s in ckpt_state_dicts]
    pretrained_state_dict = combine_state_dicts_tp(pretrained_state_dicts, config)
    model = GPTLMHeadModel(config, device=device, dtype=dtype)
Tri Dao's avatar
Tri Dao committed
66
    model.load_state_dict(pretrained_state_dict)
Tri Dao's avatar
Tri Dao committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    model.eval()

    torch.manual_seed(0)
    batch_size = 2
    max_seqlen = 256
    seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
    input_ids = torch.randint(0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long,
                              device=device)
    with torch.no_grad():
        out = model.transformer(input_ids)
        logits = model(input_ids).logits
    del model

    # Without device_map, the model is loaded on the CPU, which is very slow
    # Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB
    model_ref = LlamaForCausalLM.from_pretrained(Path(checkpoint_path) / f'{model_name}-hf',
                                                 device_map='auto')
    model_ref.eval()
    with torch.no_grad():
        out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device)
        logits_ref = model_ref(input_ids).logits.to(device=device)
    del model_ref

    model_hf = LlamaForCausalLM.from_pretrained(Path(checkpoint_path) / f'{model_name}-hf',
                                                torch_dtype=dtype, device_map={"": device})
    model_hf.eval()
Tri Dao's avatar
Tri Dao committed
93
94
95
    with torch.no_grad():
        out_hf = model_hf.model(input_ids).last_hidden_state
        logits_hf = model_hf(input_ids).logits
Tri Dao's avatar
Tri Dao committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    del model_hf

    print(f'Output max diff: {(out - out_ref).abs().max().item()}')
    print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
    print(f'HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}')
    print(f'HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}')
    assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()

    print(f'Logits max diff: {(logits - logits_ref).abs().max().item()}')
    print(f'Logits mean diff: {(logits - logits_ref).abs().mean().item()}')
    print(f'HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}')
    print(f'HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}')
    assert (logits - logits_ref).abs().max().item() < 3 * (logits_hf - logits_ref).abs().max().item()


# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_llama.py -k "parallel"
@pytest.mark.parametrize('world_size', [2])
@pytest.mark.parametrize('model_name', ["13B"])
def test_llama_parallel(model_name, world_size):
    """Check that our implementation of LLaMa (with all optimizations enabled) matches the
    HF implementation: the output of our forward pass in fp16 should be around the same as the HF
    forward pass in fp16, when compared to the HF forward pass in fp32.
    """
    from apex.transformer import parallel_state

    checkpoint_path = Path(os.environ.get('CHECKPOINT_DIR',
                                          current_dir.parent.parent / 'checkpoints')) / 'llama'

    dtype = torch.float16
    config = llama_config_to_gpt2_config(config_from_checkpoint(checkpoint_path, model_name))
    config.use_flash_attn = True
    config.fused_bias_fc = True
    config.fused_mlp = False  # We don't have fused GatedMLP yet
    config.fused_dropout_add_ln = True
    config.residual_in_fp32 = True

    if not torch.distributed.is_initialized():
        torch.distributed.init_process_group(backend='nccl', init_method='env://')
    device = f'cuda:{torch.distributed.get_rank()}'
    assert world_size <= torch.distributed.get_world_size()
    parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
    rank = parallel_state.get_tensor_model_parallel_rank()
    process_group = parallel_state.get_tensor_model_parallel_group()

    ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name)
    pretrained_state_dicts = [remap_state_dict_meta_llama(s, config) for s in ckpt_state_dicts]
    pretrained_state_dict = combine_state_dicts_tp(pretrained_state_dicts, config)

    model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
Tri Dao's avatar
Tri Dao committed
145
    model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
Tri Dao's avatar
Tri Dao committed
146
147
148
149
150
151
152
153
154
155
    model.eval()

    torch.manual_seed(0)
    batch_size = 2
    max_seqlen = 256
    seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
    input_ids = torch.randint(0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long,
                              device=device)
    with torch.no_grad():
        out = model.transformer(input_ids)
Tri Dao's avatar
Tri Dao committed
156
157
        out, _ = all_gather_raw(out, process_group=process_group)
        out = rearrange(out, "(b s) d -> b s d", b=batch_size)
Tri Dao's avatar
Tri Dao committed
158
        logits = model(input_ids).logits
Tri Dao's avatar
Tri Dao committed
159
160
161
        logits = rearrange(logits, "(b s) d -> b s d", b=batch_size)
        logits, _ = all_gather_raw(logits, process_group)
        logits = rearrange(logits, '(n b) ... d -> b ... (n d)', b=batch_size)
Tri Dao's avatar
Tri Dao committed
162
163
    del model

Tri Dao's avatar
Tri Dao committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    if rank == 0:
        # Without device_map, the model is loaded on the CPU, which is very slow
        model_ref = LlamaForCausalLM.from_pretrained(
            Path(checkpoint_path) / f'{model_name}-hf', device_map="auto"
        )
        model_ref.eval()
        with torch.no_grad():
            out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device)
            logits_ref = model_ref(input_ids).logits.to(device=device)
        del model_ref

        model_hf = LlamaForCausalLM.from_pretrained(
            Path(checkpoint_path) / f'{model_name}-hf', torch_dtype=dtype, device_map="auto"
        )
        model_hf.eval()
        with torch.no_grad():
            out_hf = model_hf.model(input_ids).last_hidden_state.to(device=device)
            logits_hf = model_hf(input_ids).logits.to(device=device)
        del model_hf

        print(f'Output max diff: {(out - out_ref).abs().max().item()}')
        print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
        print(f'HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}')
        print(f'HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}')
        assert (out - out_ref).abs().max().item() < 2 * (out_hf - out_ref).abs().max().item()

        print(f'Logits max diff: {(logits - logits_ref).abs().max().item()}')
        print(f'Logits mean diff: {(logits - logits_ref).abs().mean().item()}')
        print(f'HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}')
        print(f'HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}')
        assert (logits - logits_ref).abs().max().item() < 2 * (logits_hf - logits_ref).abs().max().item()


# @pytest.mark.parametrize('model_name', ["7B", "13B"])
@pytest.mark.parametrize('model_name', ["7B"])
Tri Dao's avatar
Tri Dao committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
def test_llama_generation(model_name):
    checkpoint_path = Path(os.environ.get('CHECKPOINT_DIR',
                                          current_dir.parent.parent / 'checkpoints')) / 'llama'

    dtype = torch.float16
    device = 'cuda'
    config = llama_config_to_gpt2_config(config_from_checkpoint(checkpoint_path, model_name))
    config.use_flash_attn = True
    config.fused_bias_fc = True
    config.fused_mlp = False  # We don't have fused GatedMLP yet
    config.fused_dropout_add_ln = True
    config.residual_in_fp32 = True

    tokenizer = LlamaTokenizer.from_pretrained(Path(checkpoint_path) / f'{model_name}-hf')
    eos_token_id = tokenizer.eos_token_id

    torch.manual_seed(0)
    batch_size = 1
    seqlen = 100
    max_length = 150
    input_ids = torch.randint(0, config.vocab_size, (batch_size, seqlen), dtype=torch.long,
                              device=device)

    model_hf = LlamaForCausalLM.from_pretrained(Path(checkpoint_path) / f'{model_name}-hf',
                                                torch_dtype=dtype, device_map={"": device})
    model_hf.eval()
    print("HF fp16")
    torch.cuda.synchronize()
    start = time.time()
    out_hf = model_hf.generate(input_ids=input_ids, max_length=max_length,
                               return_dict_in_generate=True, output_scores=True)
    torch.cuda.synchronize()
    print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')
    del model_hf

Tri Dao's avatar
Tri Dao committed
234
    # Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB
Tri Dao's avatar
Tri Dao committed
235
    model_ref = LlamaForCausalLM.from_pretrained(Path(checkpoint_path) / f'{model_name}-hf',
Tri Dao's avatar
Tri Dao committed
236
                                                 device_map='auto')
Tri Dao's avatar
Tri Dao committed
237
238
    model_ref.eval()
    with torch.no_grad():
Tri Dao's avatar
Tri Dao committed
239
        logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1):-1].to(device=device)
Tri Dao's avatar
Tri Dao committed
240
241
242
243
244
245
    del model_ref

    ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name)
    pretrained_state_dicts = [remap_state_dict_meta_llama(s, config) for s in ckpt_state_dicts]
    pretrained_state_dict = combine_state_dicts_tp(pretrained_state_dicts, config)
    model = GPTLMHeadModel(config, device=device, dtype=dtype)
Tri Dao's avatar
Tri Dao committed
246
    model.load_state_dict(pretrained_state_dict)
Tri Dao's avatar
Tri Dao committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    model.eval()

    print('Without CUDA graph')
    torch.cuda.synchronize()
    start = time.time()
    out = model.generate(input_ids=input_ids, max_length=max_length,
                         eos_token_id=eos_token_id, fused_ft_kernel=True,
                         return_dict_in_generate=True, output_scores=True, timing=True,
                         teacher_outputs=out_hf.sequences)
    torch.cuda.synchronize()
    print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')

    # Capture graph outside the timing loop
    batch_size, seqlen_og = input_ids.shape
    model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
    print('With CUDA graph')
    torch.cuda.synchronize()
    start = time.time()
    out_cg = model.generate(input_ids=input_ids, max_length=max_length,
                            fused_ft_kernel=True, cg=True,
                            return_dict_in_generate=True, output_scores=True, timing=True,
                            teacher_outputs=out_hf.sequences)
    torch.cuda.synchronize()
    print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')

    with torch.no_grad():
        logits_parallel = model(out_hf.sequences).logits[:, (seqlen - 1):-1]
    logits_hf = torch.stack(out_hf.scores, dim=1)
    logits = torch.stack(out.scores, dim=1)
    logits_cg = torch.stack(out_cg.scores, dim=1)

    del model

    hf_error = (logits_hf - logits_ref).abs().max().item()

    print(f'HF fp16 logits max diff: {hf_error}')
283
284
    print(f'Logits max diff: {(logits - logits_ref).abs().max().item() }')
    print(f'Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }')
285
286
287

    assert (logits_parallel - logits_ref).abs().max().item() < 2 * hf_error
    assert (logits - logits_ref).abs().max().item() < 2 * hf_error
Tri Dao's avatar
Tri Dao committed
288
    assert torch.equal(logits_cg, logits)
Tri Dao's avatar
Tri Dao committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398


# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_llama.py -k "llama_parallel_generation"
@pytest.mark.parametrize('world_size', [2])
@pytest.mark.parametrize('model_name', ["13B"])
def test_llama_parallel_generation(model_name, world_size):
    """Check that our implementation matches the HF implementation:
    the scores in fp16 should be around the same as the HF scores in fp16, when compared to
    the HF scores in fp32.
    """
    from apex.transformer import parallel_state

    checkpoint_path = Path(os.environ.get('CHECKPOINT_DIR',
                                          current_dir.parent.parent / 'checkpoints')) / 'llama'

    dtype = torch.float16
    config = llama_config_to_gpt2_config(config_from_checkpoint(checkpoint_path, model_name))
    config.use_flash_attn = False
    config.fused_bias_fc = True
    config.fused_mlp = False  # We don't have fused GatedMLP yet
    config.fused_dropout_add_ln = False
    config.residual_in_fp32 = True
    config.pad_vocab_size_multiple = 8 * world_size
    config.sequence_parallel = False  # Need to set this to False for generation

    os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "0"
    if not torch.distributed.is_initialized():
        torch.distributed.init_process_group(backend='nccl', init_method='env://')
    device = f'cuda:{torch.distributed.get_rank()}'
    assert world_size <= torch.distributed.get_world_size()
    parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
    rank = parallel_state.get_tensor_model_parallel_rank()
    process_group = parallel_state.get_tensor_model_parallel_group()

    torch.manual_seed(0)
    batch_size = 1
    seqlen = 100
    max_length = 150
    input_ids = torch.randint(0, config.vocab_size, (batch_size, seqlen), dtype=torch.long,
                              device=device)

    # Need this, otherwise when we capture the graph the process for GPU 1 would run on both
    # GPU0 and GPU1 and things would hang
    torch.cuda.set_device(device)

    ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name)
    pretrained_state_dicts = [remap_state_dict_meta_llama(s, config) for s in ckpt_state_dicts]
    pretrained_state_dict = combine_state_dicts_tp(pretrained_state_dicts, config)

    model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
    model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
    model.eval()

    print('Without CUDA graph')
    out = model.generate(
        input_ids=input_ids, max_length=max_length, tensor_parallel=world_size,
        vocab_size=config.vocab_size, fused_ft_kernel=True,
        # teacher_outputs=out_hf.sequences,
        return_dict_in_generate=True, output_scores=True, timing=True
    )

    # Capture graph outside the timing loop
    batch_size, seqlen_og = input_ids.shape
    model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
    print('With CUDA graph')
    out_cg = model.generate(
        input_ids=input_ids, max_length=max_length, tensor_parallel=world_size,
        vocab_size=config.vocab_size, fused_ft_kernel=True, cg=True,
        # teacher_outputs=out_hf.sequences,
        return_dict_in_generate=True, output_scores=True, timing=True
    )
    del model
    parallel_state.destroy_model_parallel()

    if rank == 0:
        # Without device_map, the model is loaded on the CPU, which is very slow
        model_hf = LlamaForCausalLM.from_pretrained(
            Path(checkpoint_path) / f'{model_name}-hf', torch_dtype=dtype, device_map="auto"
        )
        model_hf.eval()
        print("HF fp16")
        torch.cuda.synchronize()
        start = time.time()
        with torch.inference_mode():
            out_hf = model_hf.generate(
                input_ids=input_ids, max_length=max_length, return_dict_in_generate=True,
                output_scores=True
            )
        torch.cuda.synchronize()
        print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')
        del model_hf

        model_ref = LlamaForCausalLM.from_pretrained(
            Path(checkpoint_path) / f'{model_name}-hf', device_map="auto"
        )
        model_ref.eval()
        with torch.inference_mode():
            logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1):-1]
        del model_ref
        logits_hf = torch.stack(out_hf.scores, dim=1)

        logits = torch.stack(out.scores, dim=1)
        logits_cg = torch.stack(out_cg.scores, dim=1)

        hf_error = (logits_hf - logits_ref).abs().max().item()
        print(f'HF fp16 logits max diff: {hf_error}')
        print(f'Logits max diff: {(logits - logits_ref).abs().max().item() }')
        assert (logits - logits_ref).abs().max().item() < 2 * hf_error
        print(f'Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }')
        assert torch.equal(logits_cg, logits)