config.yaml 1.37 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# @package _global_

# specify here default training configuration
defaults:
  - _self_
  - trainer: default
  - optimizer: adamw
  - scheduler: null
  - task: sequence-model
  - model: null
  - datamodule: null
  - callbacks: default # set this to null if you don't want to use callbacks
  - metrics: null
  - logger: null # set logger here or use command line (e.g. `python run.py logger=wandb`)

  - mode: default

  - experiment: null
  - hparams_search: null

  # enable color logging
  - override hydra/hydra_logging: colorlog
  - override hydra/job_logging: colorlog

# path to original working directory
# hydra hijacks working directory by changing it to the current log directory,
# so it's useful to have this path as a special variable
# https://hydra.cc/docs/next/tutorials/basic/running_your_app/working_directory
work_dir: ${hydra:runtime.cwd}

# path to folder with data
data_dir: ${work_dir}/data/

# pretty print config at the start of the run using Rich library
print_config: True

# disable python warnings if they annoy you
ignore_warnings: True

# check performance on test set, using the best model achieved during training
# lightning chooses best model based on metric specified in checkpoint callback
test_after_training: True

resume: False

# seed for random number generators in pytorch, numpy and python.random
seed: null

# name of the run, accessed by loggers
name: null