test_cross_entropy_parallel.py 3.4 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
# Run test with:
2
# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/losses/test_cross_entropy_parallel.py
Tri Dao's avatar
Tri Dao committed
3
4
5

import math

Tri Dao's avatar
Tri Dao committed
6
import pytest
Tri Dao's avatar
Tri Dao committed
7
import torch
Tri Dao's avatar
Tri Dao committed
8
from apex.transformer import parallel_state, tensor_parallel
9
from flash_attn.losses.cross_entropy import CrossEntropyLoss
Tri Dao's avatar
Tri Dao committed
10

Tri Dao's avatar
Tri Dao committed
11
is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8
Tri Dao's avatar
Tri Dao committed
12
13


Tri Dao's avatar
Tri Dao committed
14
15
16
@pytest.mark.parametrize(
    "dtype", [torch.float16, torch.float32] + ([torch.bfloat16] if is_sm8x else [])
)
17
# @pytest.mark.parametrize("dtype", [torch.float16])
Tri Dao's avatar
Tri Dao committed
18
@pytest.mark.parametrize("inplace_backward", [False, True])
19
20
# @pytest.mark.parametrize("inplace_backward", [False])
@pytest.mark.parametrize("lse_square_scale", [0.0, 1e-2])
21
# @pytest.mark.parametrize("lse_square_scale", [0.0])
22
23
@pytest.mark.parametrize("logit_scale", [0.7])
# @pytest.mark.parametrize("logit_scale", [1.0])
Tri Dao's avatar
Tri Dao committed
24
@pytest.mark.parametrize("smoothing", [0.0, 0.9])
25
# @pytest.mark.parametrize("smoothing", [0.0])
26
@pytest.mark.parametrize("vocab_size", [50264, 256 * 1024])  # test vocab larger than 64k for split
27
# @pytest.mark.parametrize("vocab_size", [50264])  # test vocab larger than 64k for split
28
29
# @pytest.mark.parametrize("world_size", [1, 2])
@pytest.mark.parametrize("world_size", [2])
30
def test_cross_entropy_loss_parallel(
31
    vocab_size, world_size, smoothing, logit_scale, lse_square_scale, inplace_backward, dtype
32
):
Tri Dao's avatar
Tri Dao committed
33
    assert vocab_size % world_size == 0
Tri Dao's avatar
Tri Dao committed
34
    rtol, atol = (
35
        (1e-5, 2e-5)
Tri Dao's avatar
Tri Dao committed
36
37
38
        if dtype == torch.float32
        else ((1e-3, 1e-4) if dtype == torch.float16 else (1e-2, 3e-3))
    )
Tri Dao's avatar
Tri Dao committed
39
    if not torch.distributed.is_initialized():
Tri Dao's avatar
Tri Dao committed
40
        torch.distributed.init_process_group(backend="nccl", init_method="env://")
Tri Dao's avatar
Tri Dao committed
41
    partition_vocab_size = vocab_size // world_size
Tri Dao's avatar
Tri Dao committed
42
    device = f"cuda:{torch.distributed.get_rank()}"
Tri Dao's avatar
Tri Dao committed
43
44
45
46
47
48
49
    assert world_size <= torch.distributed.get_world_size()
    parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
    rank = parallel_state.get_tensor_model_parallel_rank()
    # set seed
    torch.random.manual_seed(0)
    batch_size = 8
    seqlen = 128
Tri Dao's avatar
Tri Dao committed
50
51
52
53
54
55
56
57
58
    x_pt = (
        torch.randn(batch_size * seqlen, vocab_size, device=device, dtype=dtype) * 10
    ).requires_grad_()
    x = (
        tensor_parallel.scatter_to_tensor_model_parallel_region(x_pt)
        .detach()
        .clone()
        .requires_grad_()
    )
Tri Dao's avatar
Tri Dao committed
59
60
    y = torch.randint(0, vocab_size, (batch_size * seqlen,), dtype=torch.long, device=device)
    y[torch.randperm(batch_size * seqlen)[:10]] = -100
Tri Dao's avatar
Tri Dao committed
61
62
63
    model_pt = torch.nn.CrossEntropyLoss(label_smoothing=smoothing, reduction="none")
    model = CrossEntropyLoss(
        label_smoothing=smoothing,
64
        logit_scale=logit_scale,
Tri Dao's avatar
Tri Dao committed
65
        reduction="none",
66
        lse_square_scale=lse_square_scale,
Tri Dao's avatar
Tri Dao committed
67
68
69
        inplace_backward=inplace_backward,
        process_group=parallel_state.get_tensor_model_parallel_group(),
    )
70
    out = model(x, y)
71
    out_pt = model_pt(x_pt.float() * logit_scale, y)
72
    if lse_square_scale > 0.0:
73
        lse_pt = torch.logsumexp(x_pt.float() * logit_scale, dim=-1)
74
75
        out_pt += lse_square_scale * lse_pt.square()
        out_pt.masked_fill_(y == -100, 0.0)
Tri Dao's avatar
Tri Dao committed
76
77
78
79
80
    assert torch.allclose(out, out_pt, rtol=1e-5, atol=1e-6)

    g = torch.randn_like(out)
    out_pt.backward(g)
    out.backward(g)
Tri Dao's avatar
Tri Dao committed
81
82
83
84
85
86
    assert torch.allclose(
        x.grad,
        x_pt.grad[:, (rank * partition_vocab_size) : (rank + 1) * partition_vocab_size],
        rtol=rtol,
        atol=atol,
    )
Tri Dao's avatar
Tri Dao committed
87
88

    parallel_state.destroy_model_parallel()