test_vllm_flash_attn.py 9.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#
# This file is copied verbatim from vLLM:
# https://github.com/vllm-project/vllm/blob/main/tests/kernels/test_flash_attn.py
#

from typing import List, Optional, Tuple

import pytest
import torch

import flash_attn_wrapper  # noqa: F401

NUM_HEADS = [(4, 4), (8, 2), (16, 2)]
HEAD_SIZES = [128, 256]
BLOCK_SIZES = [16, 32]
DTYPES = [torch.float16, torch.bfloat16]
# one value large enough to test overflow in index calculation.
# one value small enough to test the schema op check
NUM_BLOCKS = [32768, 2048]


def ref_paged_attn(
        query: torch.Tensor,
        key_cache: torch.Tensor,
        value_cache: torch.Tensor,
        query_lens: List[int],
        kv_lens: List[int],
        block_tables: torch.Tensor,
        scale: float,
        sliding_window: Optional[int] = None,
        soft_cap: Optional[float] = None,
) -> torch.Tensor:
    num_seqs = len(query_lens)
    block_tables = block_tables.cpu().numpy()
    _, block_size, num_kv_heads, head_size = key_cache.shape

    outputs: List[torch.Tensor] = []
    start_idx = 0
    for i in range(num_seqs):
        query_len = query_lens[i]
        kv_len = kv_lens[i]
        q = query[start_idx:start_idx + query_len]
        q *= scale

        num_kv_blocks = (kv_len + block_size - 1) // block_size
        block_indices = block_tables[i, :num_kv_blocks]

        k = key_cache[block_indices].view(-1, num_kv_heads, head_size)
        k = k[:kv_len]
        v = value_cache[block_indices].view(-1, num_kv_heads, head_size)
        v = v[:kv_len]

        if q.shape[1] != k.shape[1]:
            k = torch.repeat_interleave(k, q.shape[1] // k.shape[1], dim=1)
            v = torch.repeat_interleave(v, q.shape[1] // v.shape[1], dim=1)
        attn = torch.einsum("qhd,khd->hqk", q, k).float()
        empty_mask = torch.ones(query_len, kv_len)
        mask = torch.triu(empty_mask, diagonal=kv_len - query_len + 1).bool()
        if sliding_window is not None:
            sliding_window_mask = torch.triu(empty_mask,
                                             diagonal=kv_len -
                                                      (query_len + sliding_window) +
                                                      1).bool().logical_not()
            mask |= sliding_window_mask
        if soft_cap is not None:
            attn = soft_cap * torch.tanh(attn / soft_cap)
        attn.masked_fill_(mask, float("-inf"))
        attn = torch.softmax(attn, dim=-1).to(v.dtype)
        out = torch.einsum("hqk,khd->qhd", attn, v)

        outputs.append(out)
        start_idx += query_len

    return torch.cat(outputs, dim=0)


@pytest.mark.parametrize("kv_lens", [[1328, 18, 463], [1, 54, 293, 70]])
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("soft_cap", [None, 10.0, 50.0])
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
@torch.inference_mode()
def test_flash_attn_with_paged_kv(
        kv_lens: List[int],
        num_heads: Tuple[int, int],
        head_size: int,
        dtype: torch.dtype,
        block_size: int,
        soft_cap: Optional[float],
        num_blocks: int,
) -> None:
    torch.set_default_device("cuda")
    torch.cuda.manual_seed_all(0)
    num_seqs = len(kv_lens)
    num_query_heads = num_heads[0]
    num_kv_heads = num_heads[1]
    assert num_query_heads % num_kv_heads == 0
    max_kv_len = max(kv_lens)
    scale = head_size**-0.5

    query = torch.randn(num_seqs, num_query_heads, head_size, dtype=dtype)
    key_cache = torch.randn(num_blocks,
                            block_size,
                            num_kv_heads,
                            head_size,
                            dtype=dtype)
    value_cache = torch.randn_like(key_cache)
    kv_lens_tensor = torch.tensor(kv_lens, dtype=torch.int32)

    max_num_blocks_per_seq = (max_kv_len + block_size - 1) // block_size
    block_tables = torch.randint(0,
                                 num_blocks,
                                 (num_seqs, max_num_blocks_per_seq),
                                 dtype=torch.int32)

    output = torch.ops.vllm.flash_attn_with_kvcache(
        decode_query=query.unsqueeze(1),
        key_cache=key_cache,
        value_cache=value_cache,
        softmax_scale=scale,
        causal=True,
        block_table=block_tables,
        cache_seqlens=kv_lens_tensor,
        softcap=soft_cap if soft_cap is not None else 0,
    ).squeeze(1)

    if num_blocks <= 2048:
        test_utils = ["test_faketensor", "test_schema"]
    else:
        test_utils = ["test_faketensor"]

    torch.library.opcheck(torch.ops.vllm.flash_attn_with_kvcache,
                          args=tuple(),
                          kwargs=dict(
                              decode_query=query.unsqueeze(1),
                              key_cache=key_cache,
                              value_cache=value_cache,
                              softmax_scale=scale,
                              causal=True,
                              block_table=block_tables,
                              cache_seqlens=kv_lens_tensor,
                              softcap=soft_cap if soft_cap is not None else 0,
                          ),
                          test_utils=test_utils)

    ref_output = ref_paged_attn(
        query=query,
        key_cache=key_cache,
        value_cache=value_cache,
        query_lens=[1] * num_seqs,
        kv_lens=kv_lens,
        block_tables=block_tables,
        scale=scale,
        soft_cap=soft_cap,
    )
    torch.testing.assert_close(output, ref_output, atol=2e-2, rtol=1e-2), \
        f"{torch.max(torch.abs(output - ref_output))}"


@pytest.mark.parametrize("seq_lens", [[(1, 1328), (5, 18), (129, 463)]])
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("sliding_window", [None])
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("soft_cap", [None, 10.0, 50.0])
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
@torch.inference_mode()
def test_varlen_with_paged_kv(
        seq_lens: List[Tuple[int, int]],
        num_heads: Tuple[int, int],
        head_size: int,
        sliding_window: Optional[int],
        dtype: torch.dtype,
        block_size: int,
        soft_cap: Optional[float],
        num_blocks: int,
) -> None:
    torch.set_default_device("cuda")
    torch.cuda.manual_seed_all(0)
    num_seqs = len(seq_lens)
    query_lens = [x[0] for x in seq_lens]
    kv_lens = [x[1] for x in seq_lens]
    num_query_heads = num_heads[0]
    num_kv_heads = num_heads[1]
    assert num_query_heads % num_kv_heads == 0
    max_query_len = max(query_lens)
    max_kv_len = max(kv_lens)
    window_size = ((sliding_window,
                    sliding_window) if sliding_window is not None else
                   (-1, -1))
    scale = head_size**-0.5

    query = torch.randn(sum(query_lens),
                        num_query_heads,
                        head_size,
                        dtype=dtype)
    key_cache = torch.randn(num_blocks,
                            block_size,
                            num_kv_heads,
                            head_size,
                            dtype=dtype)
    value_cache = torch.randn_like(key_cache)
    cu_query_lens = torch.tensor([0] + query_lens,
                                 dtype=torch.int32).cumsum(dim=0,
                                                           dtype=torch.int32)
    cu_kv_lens = torch.tensor([0] + kv_lens,
                              dtype=torch.int32).cumsum(dim=0,
                                                        dtype=torch.int32)

    max_num_blocks_per_seq = (max_kv_len + block_size - 1) // block_size
    block_tables = torch.randint(0,
                                 num_blocks,
                                 (num_seqs, max_num_blocks_per_seq),
                                 dtype=torch.int32)

    output = torch.ops.vllm.flash_attn_varlen_func(
        q=query,
        k=key_cache,
        v=value_cache,
        cu_seqlens_q=cu_query_lens,
        cu_seqlens_k=cu_kv_lens,
        max_seqlen_q=max_query_len,
        max_seqlen_k=max_kv_len,
        softmax_scale=scale,
        causal=True,
        window_size=window_size,
        block_table=block_tables,
        softcap=soft_cap if soft_cap is not None else 0,
    )

    if num_blocks <= 2048:
        test_utils = ["test_faketensor", "test_schema"]
    else:
        test_utils = ["test_faketensor"]

    torch.library.opcheck(torch.ops.vllm.flash_attn_varlen_func,
                          args=tuple(),
                          kwargs=dict(
                              q=query,
                              k=key_cache,
                              v=value_cache,
                              cu_seqlens_q=cu_query_lens,
                              cu_seqlens_k=cu_kv_lens,
                              max_seqlen_q=max_query_len,
                              max_seqlen_k=max_kv_len,
                              softmax_scale=scale,
                              causal=True,
                              window_size=window_size,
                              block_table=block_tables,
                              softcap=soft_cap if soft_cap is not None else 0,
                          ),
                          test_utils=test_utils)

    ref_output = ref_paged_attn(
        query=query,
        key_cache=key_cache,
        value_cache=value_cache,
        query_lens=query_lens,
        kv_lens=kv_lens,
        block_tables=block_tables,
        scale=scale,
        sliding_window=sliding_window,
        soft_cap=soft_cap,
    )
    torch.testing.assert_close(output, ref_output, atol=2e-2, rtol=1e-2), \
        f"{torch.max(torch.abs(output - ref_output))}"