Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
fe488bf2
Unverified
Commit
fe488bf2
authored
Oct 22, 2024
by
rocking
Committed by
GitHub
Oct 22, 2024
Browse files
Merge branch 'develop' into layernorm/instance_support
parents
8bed8529
0394f8a7
Changes
80
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
663 additions
and
132 deletions
+663
-132
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_bf16_n512_instance.cpp
...ernorm2d/instances/layernorm2d_fwd_bf16_n512_instance.cpp
+13
-0
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_bf16_n64_n128_instance.cpp
...rm2d/instances/layernorm2d_fwd_bf16_n64_n128_instance.cpp
+12
-0
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_bf16_n768_instance.cpp
...ernorm2d/instances/layernorm2d_fwd_bf16_n768_instance.cpp
+12
-0
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_fp16_n1024_instance.cpp
...rnorm2d/instances/layernorm2d_fwd_fp16_n1024_instance.cpp
+22
-0
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_fp16_n1536_instance.cpp
...rnorm2d/instances/layernorm2d_fwd_fp16_n1536_instance.cpp
+13
-0
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_fp16_n2048_instance.cpp
...rnorm2d/instances/layernorm2d_fwd_fp16_n2048_instance.cpp
+14
-0
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_fp16_n256_instance.cpp
...ernorm2d/instances/layernorm2d_fwd_fp16_n256_instance.cpp
+12
-0
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_fp16_n3072_instance.cpp
...rnorm2d/instances/layernorm2d_fwd_fp16_n3072_instance.cpp
+14
-0
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_fp16_n4096_instance.cpp
...rnorm2d/instances/layernorm2d_fwd_fp16_n4096_instance.cpp
+14
-0
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_fp16_n4096_tp_instance.cpp
...rm2d/instances/layernorm2d_fwd_fp16_n4096_tp_instance.cpp
+14
-0
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_fp16_n512_instance.cpp
...ernorm2d/instances/layernorm2d_fwd_fp16_n512_instance.cpp
+13
-0
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_fp16_n64_n128_instance.cpp
...rm2d/instances/layernorm2d_fwd_fp16_n64_n128_instance.cpp
+12
-0
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_fp16_n768_instance.cpp
...ernorm2d/instances/layernorm2d_fwd_fp16_n768_instance.cpp
+12
-0
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_instance_common.hpp
...layernorm2d/instances/layernorm2d_fwd_instance_common.hpp
+67
-0
example/ck_tile/02_layernorm2d/layernorm2d_fwd.cpp
example/ck_tile/02_layernorm2d/layernorm2d_fwd.cpp
+117
-119
example/ck_tile/02_layernorm2d/layernorm2d_fwd.hpp
example/ck_tile/02_layernorm2d/layernorm2d_fwd.hpp
+104
-13
example/ck_tile/02_layernorm2d/script/perf_test.sh
example/ck_tile/02_layernorm2d/script/perf_test.sh
+38
-0
example/ck_tile/02_layernorm2d/script/smoke_test.sh
example/ck_tile/02_layernorm2d/script/smoke_test.sh
+31
-0
example/ck_tile/05_reduce/CMakeLists.txt
example/ck_tile/05_reduce/CMakeLists.txt
+19
-0
example/ck_tile/05_reduce/reduce.cpp
example/ck_tile/05_reduce/reduce.cpp
+110
-0
No files found.
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_bf16_n512_instance.cpp
0 → 100644
View file @
fe488bf2
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
bf16_t
,
1
,
1
,
4
,
64
,
8
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
bf16_t
,
1
,
2
,
4
,
64
,
4
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
bf16_t
,
1
,
4
,
4
,
64
,
2
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
bf16_t
,
1
,
8
,
4
,
64
,
1
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
// clang-format on
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_bf16_n64_n128_instance.cpp
0 → 100644
View file @
fe488bf2
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
bf16_t
,
1
,
1
,
4
,
64
,
1
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
bf16_t
,
1
,
1
,
4
,
64
,
2
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
bf16_t
,
1
,
2
,
4
,
64
,
1
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
// clang-format on
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_bf16_n768_instance.cpp
0 → 100644
View file @
fe488bf2
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
bf16_t
,
1
,
3
,
4
,
64
,
4
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
bf16_t
,
1
,
6
,
4
,
64
,
2
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
bf16_t
,
1
,
12
,
4
,
64
,
1
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
// clang-format on
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_fp16_n1024_instance.cpp
0 → 100644
View file @
fe488bf2
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
#if 0
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 2, 4, 64, 8, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 4, 64, 4, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 8, 4, 64, 2, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 16, 4, 64, 1, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 1, 1, 256, 4, true , false, false>>(const S&, A);
#endif
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
1
,
2
,
128
,
8
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
2
,
2
,
128
,
4
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
4
,
2
,
128
,
2
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
4
,
1
,
256
,
1
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
// clang-format on
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_fp16_n1536_instance.cpp
0 → 100644
View file @
fe488bf2
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
3
,
4
,
64
,
8
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
3
,
2
,
128
,
4
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
3
,
1
,
256
,
2
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
6
,
1
,
256
,
1
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
// clang-format on
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_fp16_n2048_instance.cpp
0 → 100644
View file @
fe488bf2
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
1
,
1
,
256
,
8
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
2
,
1
,
256
,
4
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
4
,
1
,
256
,
2
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
8
,
1
,
256
,
1
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
// clang-format on
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_fp16_n256_instance.cpp
0 → 100644
View file @
fe488bf2
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
1
,
4
,
64
,
4
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
2
,
4
,
64
,
2
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
4
,
4
,
64
,
1
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
// clang-format on
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_fp16_n3072_instance.cpp
0 → 100644
View file @
fe488bf2
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
3
,
1
,
128
,
8
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
3
,
1
,
256
,
4
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
6
,
1
,
256
,
2
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
3
,
1
,
1024
,
1
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
// clang-format on
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_fp16_n4096_instance.cpp
0 → 100644
View file @
fe488bf2
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
2
,
1
,
256
,
8
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
4
,
1
,
256
,
4
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
2
,
1
,
1024
,
2
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
4
,
1
,
1024
,
1
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
// clang-format on
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_fp16_n4096_tp_instance.cpp
0 → 100644
View file @
fe488bf2
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
2
,
1
,
256
,
8
,
true
,
false
,
true
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
4
,
1
,
256
,
4
,
true
,
false
,
true
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
2
,
1
,
1024
,
2
,
true
,
false
,
true
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
4
,
1
,
1024
,
1
,
true
,
false
,
true
>
>
(
const
S
&
,
A
);
// clang-format on
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_fp16_n512_instance.cpp
0 → 100644
View file @
fe488bf2
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
1
,
4
,
64
,
8
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
2
,
4
,
64
,
4
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
4
,
4
,
64
,
2
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
8
,
4
,
64
,
1
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
// clang-format on
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_fp16_n64_n128_instance.cpp
0 → 100644
View file @
fe488bf2
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
1
,
4
,
64
,
1
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
1
,
4
,
64
,
2
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
2
,
4
,
64
,
1
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
// clang-format on
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_fp16_n768_instance.cpp
0 → 100644
View file @
fe488bf2
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
3
,
4
,
64
,
4
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
6
,
4
,
64
,
2
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
template
float
layernorm2d_fwd_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
12
,
4
,
64
,
1
,
true
,
false
,
false
>
>
(
const
S
&
,
A
);
// clang-format on
example/ck_tile/02_layernorm2d/instances/layernorm2d_fwd_instance_common.hpp
0 → 100644
View file @
fe488bf2
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <ck_tile/core.hpp>
#include "layernorm2d_fwd.hpp"
#include <iostream>
#pragma once
using
S
=
ck_tile
::
stream_config
;
using
A
=
layernorm2d_fwd_args
;
template
<
typename
DataType_
,
ck_tile
::
index_t
Repeat_M_
,
// each thread repeat along M
ck_tile
::
index_t
Repeat_N_
,
// each thread repeat along N
ck_tile
::
index_t
ThreadPerBlock_M_
,
// num threads along M
ck_tile
::
index_t
ThreadPerBlock_N_
,
// num threads along N
ck_tile
::
index_t
Vector_N_
,
// vector size along N
bool
kPadN_
,
bool
kSaveMeanInvStd_
,
bool
kTwoPass_
>
using
trait_
=
layernorm2d_fwd_traits_
<
DataType_
,
Repeat_M_
,
Repeat_N_
,
ThreadPerBlock_M_
,
ThreadPerBlock_N_
,
Vector_N_
,
kPadN_
,
kSaveMeanInvStd_
,
kTwoPass_
>
;
template
<
typename
Traits_
>
float
layernorm2d_fwd_
(
const
S
&
s
,
A
a
)
{
using
DataType
=
typename
Traits_
::
DataType
;
using
PipelineProblem
=
ck_tile
::
Layernorm2dFwdPipelineProblem
<
typename
LayerNormTypeConfig
<
DataType
>::
XDataType
,
typename
LayerNormTypeConfig
<
DataType
>::
GammaDataType
,
typename
LayerNormTypeConfig
<
DataType
>::
BetaDataType
,
typename
LayerNormTypeConfig
<
DataType
>::
ComputeDataType
,
typename
LayerNormTypeConfig
<
DataType
>::
YDataType
,
typename
LayerNormTypeConfig
<
DataType
>::
MeanDataType
,
typename
LayerNormTypeConfig
<
DataType
>::
InvStdDataType
,
typename
Traits_
::
Shape
,
Traits_
::
kPadN
,
Traits_
::
kSaveMeanInvStd
,
Traits_
::
kTwoPass
>
;
using
OnePassPipeline
=
ck_tile
::
Layernorm2dFwdPipelineOnePass
<
PipelineProblem
>
;
using
TwoPassPipeline
=
ck_tile
::
Layernorm2dFwdPipelineTwoPass
<
PipelineProblem
>
;
using
Pipeline
=
std
::
conditional_t
<
Traits_
::
kTwoPass
,
TwoPassPipeline
,
OnePassPipeline
>
;
using
Kernel
=
ck_tile
::
Layernorm2dFwd
<
Pipeline
>
;
const
dim3
grids
=
Kernel
::
GridSize
(
a
);
constexpr
dim3
blocks
=
Kernel
::
BlockSize
();
constexpr
ck_tile
::
index_t
kBlockPerCu
=
1
;
auto
kargs
=
Kernel
::
MakeKargs
(
a
);
if
(
s
.
log_level_
>
0
)
std
::
cout
<<
", "
<<
Kernel
::
GetName
()
<<
std
::
flush
;
return
ck_tile
::
launch_kernel
(
s
,
ck_tile
::
make_kernel
<
blocks
.
x
,
kBlockPerCu
>
(
Kernel
{},
grids
,
blocks
,
0
,
kargs
));
}
example/ck_tile/02_layernorm2d/layernorm2d_fwd.cpp
View file @
fe488bf2
...
@@ -2,161 +2,120 @@
...
@@ -2,161 +2,120 @@
#include "layernorm2d_fwd.hpp"
#include "layernorm2d_fwd.hpp"
#include <cstring>
#include <cstring>
// Host API implementation
// different threshold for different dtype
float
layernorm2d_fwd
(
layernorm2d_fwd_traits
t
,
template
<
typename
DataType
>
layernorm2d_fwd_args
a
,
auto
get_elimit
()
const
ck_tile
::
stream_config
&
s
)
{
{
if
(
t
.
data_type
.
compare
(
"fp16"
)
==
0
)
double
rtol
=
1e-2
;
{
double
atol
=
1e-2
;
using
XDataType
=
ck_tile
::
half_t
;
return
ck_tile
::
make_tuple
(
rtol
,
atol
);
using
YDataType
=
ck_tile
::
half_t
;
}
using
GammaDataType
=
ck_tile
::
half_t
;
using
BetaDataType
=
ck_tile
::
half_t
;
#ifdef SAVE_MEAN_INV_STD
using
MeanDataType
=
ck_tile
::
half_t
;
using
InvStdDataType
=
ck_tile
::
half_t
;
#else
using
MeanDataType
=
ck_tile
::
null_type
;
using
InvStdDataType
=
ck_tile
::
null_type
;
#endif
using
ComputeDataType
=
float
;
using
thread_tile
=
ck_tile
::
sequence
<
4
,
4
>
;
using
warp_tile
=
ck_tile
::
sequence
<
8
,
128
>
;
using
block_tile
=
ck_tile
::
sequence
<
32
,
128
>
;
using
Shape
=
ck_tile
::
TileLayernorm2dShape
<
thread_tile
,
warp_tile
,
block_tile
>
;
using
PipelineProblem
=
ck_tile
::
BlockLayernorm2dFwdProblem
<
XDataType
,
GammaDataType
,
BetaDataType
,
ComputeDataType
,
YDataType
,
MeanDataType
,
InvStdDataType
,
Shape
,
true
,
true
>
;
using
Kernel
=
ck_tile
::
Layernorm2dFwd
<
PipelineProblem
>
;
auto
kargs
=
Kernel
::
MakeKargs
(
a
.
p_x
,
a
.
p_gamma
,
a
.
p_beta
,
a
.
p_y
,
a
.
p_mean
,
a
.
p_invStd
,
a
.
epsilon
,
a
.
M
,
a
.
N
);
const
dim3
grids
=
Kernel
::
GridSize
(
a
.
M
);
constexpr
dim3
blocks
=
Kernel
::
BlockSize
();
constexpr
ck_tile
::
index_t
kBlockPerCu
=
Shape
::
kMWarpPerBlock
*
Shape
::
kNWarpPerBlock
;
float
ave_time
=
ck_tile
::
launch_kernel
(
s
,
ck_tile
::
make_kernel
<
blocks
.
x
,
kBlockPerCu
>
(
Kernel
{},
grids
,
blocks
,
0
,
kargs
));
return
ave_time
;
}
return
0
;
template
<
>
auto
get_elimit
<
ck_tile
::
bf16_t
>
()
{
double
rtol
=
1e-2
;
double
atol
=
1e-2
;
return
ck_tile
::
make_tuple
(
rtol
,
atol
);
}
}
auto
create_args
(
int
argc
,
char
*
argv
[])
auto
create_args
(
int
argc
,
char
*
argv
[])
{
{
ck_tile
::
ArgParser
arg_parser
;
ck_tile
::
ArgParser
arg_parser
;
arg_parser
.
insert
(
"m"
,
"3328"
,
"m dimension"
)
arg_parser
.
insert
(
"m"
,
"3328"
,
"m dimension"
)
.
insert
(
"n"
,
"4096"
,
"m dimension"
)
.
insert
(
"n"
,
"4096"
,
"n dimension"
)
.
insert
(
"stride"
,
"-1"
,
"stride per row, if -1 then equal to n"
)
.
insert
(
"e"
,
"1e-5"
,
"epsilon"
)
.
insert
(
"e"
,
"1e-5"
,
"epsilon"
)
.
insert
(
"save_mv"
,
"0"
,
"save mean/variance(invstd) or not. set to 1 in training case"
)
.
insert
(
"v"
,
"1"
,
"cpu validation or not"
)
.
insert
(
"v"
,
"1"
,
"cpu validation or not"
)
.
insert
(
"prec"
,
"fp16"
,
"precision"
);
.
insert
(
"kname"
,
"1"
,
"print kernel name or not"
)
.
insert
(
"prec"
,
"fp16"
,
"precision"
)
.
insert
(
"warmup"
,
"5"
,
"cold iter"
)
.
insert
(
"repeat"
,
"20"
,
"hot iter"
);
bool
result
=
arg_parser
.
parse
(
argc
,
argv
);
bool
result
=
arg_parser
.
parse
(
argc
,
argv
);
return
std
::
make_tuple
(
result
,
arg_parser
);
return
std
::
make_tuple
(
result
,
arg_parser
);
}
}
int
main
(
int
argc
,
char
*
argv
[])
template
<
typename
DataType
,
bool
SaveMeanVar
>
bool
run
(
const
ck_tile
::
ArgParser
&
arg_parser
)
{
{
ck_tile
::
index_t
m
=
arg_parser
.
get_int
(
"m"
);
auto
[
result
,
arg_parser
]
=
create_args
(
argc
,
argv
);
ck_tile
::
index_t
n
=
arg_parser
.
get_int
(
"n"
);
if
(
!
result
)
ck_tile
::
index_t
stride
=
arg_parser
.
get_int
(
"stride"
);
return
-
1
;
if
(
stride
<
0
)
stride
=
n
;
float
epsilon
=
arg_parser
.
get_float
(
"e"
);
float
epsilon
=
arg_parser
.
get_float
(
"e"
);
ck_tile
::
index_t
M
=
arg_parser
.
get_int
(
"m"
);
ck_tile
::
index_t
N
=
arg_parser
.
get_int
(
"n"
);
std
::
string
data_type
=
arg_parser
.
get_str
(
"prec"
);
std
::
string
data_type
=
arg_parser
.
get_str
(
"prec"
);
int
kname
=
arg_parser
.
get_int
(
"kname"
);
int
do_validation
=
arg_parser
.
get_int
(
"v"
);
int
do_validation
=
arg_parser
.
get_int
(
"v"
);
int
warmup
=
arg_parser
.
get_int
(
"warmup"
);
int
repeat
=
arg_parser
.
get_int
(
"repeat"
);
using
XDataType
=
ck_tile
::
half_t
;
assert
(
stride
>=
n
);
using
YDataType
=
ck_tile
::
half_t
;
using
GammaDataType
=
ck_tile
::
half_t
;
using
BetaDataType
=
ck_tile
::
half_t
;
#ifdef SAVE_MEAN_INV_STD
using
MeanDataType
=
ck_tile
::
half_t
;
using
InvStdDataType
=
ck_tile
::
half_t
;
#else
using
MeanDataType
=
ck_tile
::
null_type
;
using
InvStdDataType
=
ck_tile
::
null_type
;
#endif
using
ComputeDataType
=
float
;
// host verify
using
TypeConfig
=
LayerNormTypeConfig
<
DataType
>
;
ck_tile
::
HostTensor
<
XDataType
>
x_host
({
M
,
N
});
ck_tile
::
HostTensor
<
GammaDataType
>
gamma_host
({
N
});
using
XDataType
=
typename
TypeConfig
::
XDataType
;
ck_tile
::
HostTensor
<
BetaDataType
>
beta_host
({
N
});
using
YDataType
=
typename
TypeConfig
::
YDataType
;
using
GammaDataType
=
typename
TypeConfig
::
GammaDataType
;
using
BetaDataType
=
typename
TypeConfig
::
BetaDataType
;
using
MeanDataType
=
std
::
conditional_t
<
SaveMeanVar
,
typename
TypeConfig
::
MeanDataType
,
ck_tile
::
null_type
>
;
using
InvStdDataType
=
std
::
conditional_t
<
SaveMeanVar
,
typename
TypeConfig
::
InvStdDataType
,
ck_tile
::
null_type
>
;
ck_tile
::
HostTensor
<
YDataType
>
y_host_ref
({
M
,
N
});
using
ComputeDataType
=
typename
TypeConfig
::
ComputeDataType
;
ck_tile
::
HostTensor
<
YDataType
>
y_host_dev
({
M
,
N
});
ck_tile
::
HostTensor
<
MeanDataType
>
mean_host_ref
({
M
});
// host verify
ck_tile
::
HostTensor
<
InvStdDataType
>
invStd_host_ref
({
M
});
ck_tile
::
HostTensor
<
XDataType
>
x_host
({
m
,
n
},
{
stride
,
1
});
ck_tile
::
HostTensor
<
GammaDataType
>
gamma_host
({
n
});
ck_tile
::
HostTensor
<
BetaDataType
>
beta_host
({
n
});
ck_tile
::
HostTensor
<
YDataType
>
y_host_ref
({
m
,
n
},
{
stride
,
1
});
ck_tile
::
HostTensor
<
YDataType
>
y_host_dev
({
m
,
n
},
{
stride
,
1
});
#ifdef SAVE_MEAN_INV_STD
ck_tile
::
HostTensor
<
MeanDataType
>
mean_host_ref
({
m
});
ck_tile
::
HostTensor
<
MeanDataType
>
mean_host_dev
({
M
});
ck_tile
::
HostTensor
<
InvStdDataType
>
invStd_host_ref
({
m
});
ck_tile
::
HostTensor
<
InvStdDataType
>
invStd_host_dev
({
M
});
#endif
ck_tile
::
FillUniformDistribution
<
XDataType
>
{
-
5
.
f
,
5
.
f
}(
x_host
);
ck_tile
::
FillUniformDistribution
<
XDataType
>
{
-
.
5
f
,
.
5
f
}(
x_host
);
ck_tile
::
FillUniformDistribution
<
GammaDataType
>
{
-
5
.
f
,
5
.
f
}(
gamma_host
);
ck_tile
::
FillUniformDistribution
<
GammaDataType
>
{
-
.
5
f
,
.
5
f
}(
gamma_host
);
ck_tile
::
FillUniformDistribution
<
BetaDataType
>
{
-
5
.
f
,
5
.
f
}(
beta_host
);
ck_tile
::
FillUniformDistribution
<
BetaDataType
>
{
-
.
5
f
,
.
5
f
}(
beta_host
);
ck_tile
::
DeviceMem
x_buf
(
x_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
x_buf
(
x_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
gamma_buf
(
gamma_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
gamma_buf
(
gamma_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
beta_buf
(
beta_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
beta_buf
(
beta_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
y_buf
(
y_host_dev
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
y_buf
(
y_host_dev
.
get_element_space_size_in_bytes
());
#ifdef SAVE_MEAN_INV_STD
ck_tile
::
DeviceMem
mean_buf
(
mean_host_dev
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
invStd_buf
(
invStd_host_dev
.
get_element_space_size_in_bytes
());
#endif
x_buf
.
ToDevice
(
x_host
.
data
());
x_buf
.
ToDevice
(
x_host
.
data
());
gamma_buf
.
ToDevice
(
gamma_host
.
data
());
gamma_buf
.
ToDevice
(
gamma_host
.
data
());
beta_buf
.
ToDevice
(
beta_host
.
data
());
beta_buf
.
ToDevice
(
beta_host
.
data
());
layernorm2d_fwd_traits
traits
{
data_type
};
std
::
cout
<<
"["
<<
data_type
<<
"]"
<<
" m:"
<<
m
<<
", n:"
<<
n
<<
", stride:"
<<
stride
<<
std
::
flush
;
layernorm2d_fwd_traits
traits
{
data_type
,
SaveMeanVar
};
layernorm2d_fwd_args
args
{
x_buf
.
GetDeviceBuffer
(),
layernorm2d_fwd_args
args
{
x_buf
.
GetDeviceBuffer
(),
gamma_buf
.
GetDeviceBuffer
(),
gamma_buf
.
GetDeviceBuffer
(),
beta_buf
.
GetDeviceBuffer
(),
beta_buf
.
GetDeviceBuffer
(),
y_buf
.
GetDeviceBuffer
(),
y_buf
.
GetDeviceBuffer
(),
#ifdef SAVE_MEAN_INV_STD
mean_buf
.
GetDeviceBuffer
(),
invStd_buf
.
GetDeviceBuffer
(),
#else
nullptr
,
nullptr
,
nullptr
,
nullptr
,
#endif
epsilon
,
epsilon
,
M
,
m
,
N
};
n
,
stride
};
float
ave_time
=
layernorm2d_fwd
(
traits
,
args
,
ck_tile
::
stream_config
{
nullptr
,
true
});
float
ave_time
=
layernorm2d_fwd
(
traits
,
args
,
ck_tile
::
stream_config
{
nullptr
,
true
,
kname
?
1
:
0
,
warmup
,
repeat
});
std
::
size_t
num_byte
=
sizeof
(
XDataType
)
*
M
*
N
+
sizeof
(
GammaDataType
)
*
N
+
std
::
size_t
num_byte
=
sizeof
(
XDataType
)
*
m
*
n
+
sizeof
(
GammaDataType
)
*
n
+
sizeof
(
BetaDataType
)
*
N
+
sizeof
(
YDataType
)
*
M
*
N
;
sizeof
(
BetaDataType
)
*
n
+
sizeof
(
YDataType
)
*
m
*
n
;
float
gb_per_sec
=
num_byte
/
1.E6
/
ave_time
;
float
gb_per_sec
=
num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"["
<<
data_type
<<
"]"
std
::
cout
<<
", "
<<
ave_time
*
1.E3
<<
" us, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
flush
;
<<
" m:"
<<
M
<<
", n:"
<<
N
<<
", "
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
flush
;
bool
pass
=
true
;
bool
pass
=
true
;
...
@@ -174,20 +133,59 @@ int main(int argc, char* argv[])
...
@@ -174,20 +133,59 @@ int main(int argc, char* argv[])
y_buf
.
FromDevice
(
y_host_dev
.
data
());
y_buf
.
FromDevice
(
y_host_dev
.
data
());
pass
=
ck_tile
::
check_err
(
y_host_dev
,
y_host_ref
);
auto
[
rtol
,
atol
]
=
get_elimit
<
DataType
>
();
if
(
stride
==
n
)
{
pass
=
ck_tile
::
check_err
(
y_host_dev
,
y_host_ref
,
std
::
string
(
"OUT Error: Incorrect results!"
),
rtol
,
atol
);
}
else
{
for
(
int
i_r
=
0
;
i_r
<
m
;
i_r
++
)
{
std
::
vector
<
YDataType
>
y_host_dev_row
(
y_host_dev
.
begin
()
+
i_r
*
stride
,
y_host_dev
.
begin
()
+
i_r
*
stride
+
n
);
std
::
vector
<
YDataType
>
y_host_ref_row
(
y_host_ref
.
begin
()
+
i_r
*
stride
,
y_host_ref
.
begin
()
+
i_r
*
stride
+
n
);
pass
&=
ck_tile
::
check_err
(
y_host_dev_row
,
y_host_ref_row
,
std
::
string
(
"OUT["
)
+
std
::
to_string
(
i_r
)
+
std
::
string
(
"] Error: Incorrect results!"
),
rtol
,
atol
);
}
}
std
::
cout
<<
", valid:"
<<
(
pass
?
"y"
:
"n"
)
<<
std
::
flush
<<
std
::
endl
;
}
#ifdef SAVE_MEAN_INV_STD
return
pass
;
mean_buf
.
FromDevice
(
mean_host_dev
.
data
());
}
pass
&=
ck_tile
::
check_err
(
mean_host_dev
,
mean_host_ref
);
invStd_buf
.
FromDevice
(
invStd_host_dev
.
data
());
int
main
(
int
argc
,
char
*
argv
[])
pass
&=
ck_tile
::
check_err
(
invStd_host_dev
,
invStd_host_ref
);
{
#endif
auto
[
result
,
arg_parser
]
=
create_args
(
argc
,
argv
);
if
(
!
result
)
return
-
1
;
std
::
cout
<<
", valid:"
<<
(
pass
?
"y"
:
"n"
)
<<
std
::
flush
;
const
std
::
string
data_type
=
arg_parser
.
get_str
(
"prec"
);
int
save_mv
=
arg_parser
.
get_int
(
"save_mv"
);
if
(
data_type
==
"fp16"
&&
save_mv
)
{
return
run
<
ck_tile
::
half_t
,
true
>
(
arg_parser
)
?
0
:
-
2
;
}
else
if
(
data_type
==
"fp16"
&&
!
save_mv
)
{
return
run
<
ck_tile
::
half_t
,
false
>
(
arg_parser
)
?
0
:
-
2
;
}
else
if
(
data_type
==
"bf16"
&&
save_mv
)
{
return
run
<
ck_tile
::
bf16_t
,
true
>
(
arg_parser
)
?
0
:
-
2
;
}
else
if
(
data_type
==
"bf16"
&&
!
save_mv
)
{
return
run
<
ck_tile
::
bf16_t
,
true
>
(
arg_parser
)
?
0
:
-
2
;
}
}
std
::
cout
<<
std
::
endl
<<
std
::
flush
;
return
-
3
;
return
!
pass
;
}
}
example/ck_tile/02_layernorm2d/layernorm2d_fwd.hpp
View file @
fe488bf2
...
@@ -8,23 +8,114 @@
...
@@ -8,23 +8,114 @@
#include "ck_tile/ops/layernorm2d.hpp"
#include "ck_tile/ops/layernorm2d.hpp"
#include <string>
#include <string>
struct
layernorm2d_fwd_traits
template
<
typename
DataType
>
struct
LayerNormTypeConfig
;
template
<
>
struct
LayerNormTypeConfig
<
ck_tile
::
half_t
>
{
{
std
::
string
data_type
;
using
XDataType
=
ck_tile
::
half_t
;
using
YDataType
=
ck_tile
::
half_t
;
using
GammaDataType
=
ck_tile
::
half_t
;
using
BetaDataType
=
ck_tile
::
half_t
;
using
MeanDataType
=
ck_tile
::
half_t
;
using
InvStdDataType
=
ck_tile
::
half_t
;
using
ComputeDataType
=
float
;
};
template
<
>
struct
LayerNormTypeConfig
<
ck_tile
::
bf16_t
>
{
using
XDataType
=
ck_tile
::
bf16_t
;
using
YDataType
=
ck_tile
::
bf16_t
;
using
GammaDataType
=
ck_tile
::
bf16_t
;
using
BetaDataType
=
ck_tile
::
bf16_t
;
using
MeanDataType
=
ck_tile
::
bf16_t
;
using
InvStdDataType
=
ck_tile
::
bf16_t
;
using
ComputeDataType
=
float
;
};
// runtime args
struct
layernorm2d_fwd_args
:
public
ck_tile
::
Layernorm2dFwdHostArgs
{
};
// this is used to pattern-match internl kernel implementation, not to instantiate kernel
template
<
typename
DataType_
,
ck_tile
::
index_t
Repeat_M_
,
// each thread repeat along M
ck_tile
::
index_t
Repeat_N_
,
// each thread repeat along N
ck_tile
::
index_t
ThreadPerBlock_M_
,
// num threads along M
ck_tile
::
index_t
ThreadPerBlock_N_
,
// num threads along N
ck_tile
::
index_t
Vector_N_
,
// vector size along N
bool
kPadN_
,
bool
kSaveMeanInvStd_
,
bool
kTwoPass_
>
struct
layernorm2d_fwd_traits_
{
using
DataType
=
ck_tile
::
remove_cvref_t
<
DataType_
>
;
static
constexpr
bool
is_warp_per_row
=
ThreadPerBlock_N_
<=
warpSize
;
static_assert
((
ThreadPerBlock_M_
*
ThreadPerBlock_N_
)
%
warpSize
==
0
);
static
constexpr
ck_tile
::
index_t
total_warps
=
(
ThreadPerBlock_M_
*
ThreadPerBlock_N_
)
/
warpSize
;
// num of warps along m
static
constexpr
ck_tile
::
index_t
BlockWarps_M
=
[]()
{
if
constexpr
(
is_warp_per_row
)
{
static_assert
(
warpSize
%
ThreadPerBlock_N_
==
0
);
return
total_warps
*
(
warpSize
/
ThreadPerBlock_N_
);
}
else
{
// static_assert(warpSize % ThreadPerBlock_M_ == 0);
return
total_warps
/
(
ThreadPerBlock_N_
/
warpSize
);
}
}();
// num of warps along n
static
constexpr
ck_tile
::
index_t
BlockWarps_N
=
[]()
{
if
constexpr
(
is_warp_per_row
)
{
static_assert
(
warpSize
%
ThreadPerBlock_N_
==
0
);
return
1
;
}
else
{
static_assert
(
ThreadPerBlock_N_
%
warpSize
==
0
);
return
ThreadPerBlock_N_
/
warpSize
;
}
}();
static
constexpr
ck_tile
::
index_t
Repeat_M
=
Repeat_M_
;
static
constexpr
ck_tile
::
index_t
Repeat_N
=
Repeat_N_
;
static
constexpr
ck_tile
::
index_t
Block_M
=
Repeat_M_
*
ThreadPerBlock_M_
;
static
constexpr
ck_tile
::
index_t
Block_N
=
Repeat_N_
*
ThreadPerBlock_N_
*
Vector_N_
;
static
constexpr
ck_tile
::
index_t
Warp_M
=
ThreadPerBlock_M_
/
BlockWarps_M
;
static
constexpr
ck_tile
::
index_t
Warp_N
=
ThreadPerBlock_N_
/
BlockWarps_N
*
Vector_N_
;
using
BlockTile
=
ck_tile
::
sequence
<
Block_M
,
Block_N
>
;
using
BlockWarps
=
ck_tile
::
sequence
<
BlockWarps_M
,
BlockWarps_N
>
;
using
WarpTile
=
ck_tile
::
sequence
<
Warp_M
,
Warp_N
>
;
using
Vector
=
ck_tile
::
sequence
<
1
,
Vector_N_
>
;
using
Shape
=
ck_tile
::
Layernorm2dShape
<
BlockTile
,
BlockWarps
,
WarpTile
,
Vector
>
;
static
constexpr
bool
kPadN
=
kPadN_
;
static
constexpr
bool
kSaveMeanInvStd
=
kSaveMeanInvStd_
;
static
constexpr
bool
kTwoPass
=
kTwoPass_
;
};
};
struct
layernorm2d_fwd_args
template
<
typename
Traits_
>
float
layernorm2d_fwd_
(
const
ck_tile
::
stream_config
&
s
,
layernorm2d_fwd_args
a
);
// This is the public API, will be generated by script
struct
layernorm2d_fwd_traits
{
{
const
void
*
p_x
;
std
::
string
data_type
;
const
void
*
p_gamma
;
bool
save_mean_var
;
const
void
*
p_beta
;
void
*
p_y
;
void
*
p_mean
;
void
*
p_invStd
;
float
epsilon
;
ck_tile
::
index_t
M
;
ck_tile
::
index_t
N
;
};
};
// host API
float
layernorm2d_fwd
(
layernorm2d_fwd_traits
,
layernorm2d_fwd_args
,
const
ck_tile
::
stream_config
&
);
float
layernorm2d_fwd
(
layernorm2d_fwd_traits
,
layernorm2d_fwd_args
,
const
ck_tile
::
stream_config
&
);
example/ck_tile/02_layernorm2d/script/perf_test.sh
0 → 100755
View file @
fe488bf2
# run from top of ck folder
EXE
=
build/bin/tile_example_layernorm2d_fwd
$EXE
-m
=
1
-n
=
1
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
80
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
128
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
144
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
168
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
184
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
256
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
288
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
344
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
376
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
448
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
512
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
924
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
1024
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
1078
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
1996
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
4080
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
80
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
128
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
144
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
168
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
184
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
256
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
288
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
344
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
376
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
448
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
512
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
924
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
1024
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
1078
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
1996
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
4080
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
\ No newline at end of file
example/ck_tile/02_layernorm2d/script/smoke_test.sh
0 → 100755
View file @
fe488bf2
#!/bin/sh
# call from top of CK folder
EXE
=
./build/bin/tile_example_layernorm2d_fwd
for
pr_i
in
"fp16"
"bf16"
;
do
$EXE
-prec
=
$pr_i
-m
=
99
-n
=
13
$EXE
-prec
=
$pr_i
-m
=
17
-n
=
16
$EXE
-prec
=
$pr_i
-m
=
1
-n
=
100
$EXE
-prec
=
$pr_i
-m
=
4
-n
=
128
$EXE
-prec
=
$pr_i
-m
=
80
-n
=
127
$EXE
-prec
=
$pr_i
-m
=
22
-n
=
255
-stride
=
256
$EXE
-prec
=
$pr_i
-m
=
7
-n
=
599
$EXE
-prec
=
$pr_i
-m
=
19
-n
=
512
$EXE
-prec
=
$pr_i
-m
=
33
-n
=
313
-stride
=
1000
$EXE
-prec
=
$pr_i
-m
=
11
-n
=
510
$EXE
-prec
=
$pr_i
-m
=
171
-n
=
676
-stride
=
818
$EXE
-prec
=
$pr_i
-m
=
91
-n
=
636
$EXE
-prec
=
$pr_i
-m
=
12
-n
=
768
-stride
=
800
$EXE
-prec
=
$pr_i
-m
=
100
-n
=
766
-stride
=
812
$EXE
-prec
=
$pr_i
-m
=
31
-n
=
1024
$EXE
-prec
=
$pr_i
-m
=
64
-n
=
1000
-stride
=
1004
$EXE
-prec
=
$pr_i
-m
=
8
-n
=
1501
$EXE
-prec
=
$pr_i
-m
=
3
-n
=
1826
$EXE
-prec
=
$pr_i
-m
=
5
-n
=
2040
$EXE
-prec
=
$pr_i
-m
=
7
-n
=
2734
$EXE
-prec
=
$pr_i
-m
=
1
-n
=
3182
$EXE
-prec
=
$pr_i
-m
=
9
-n
=
4096
$EXE
-prec
=
$pr_i
-m
=
3
-n
=
8192
$EXE
-prec
=
$pr_i
-m
=
1
-n
=
10547
$EXE
-prec
=
$pr_i
-m
=
3
-n
=
17134
done
example/ck_tile/05_reduce/CMakeLists.txt
0 → 100644
View file @
fe488bf2
set
(
EXAMPLE_REDUCE
"tile_example_reduce"
)
# not using add_example_executable() to add this target, since we don't want this to have
# to be included in "make all/install/check"
message
(
"adding example
${
EXAMPLE_REDUCE
}
"
)
add_executable
(
${
EXAMPLE_REDUCE
}
EXCLUDE_FROM_ALL reduce.cpp
)
target_include_directories
(
${
EXAMPLE_REDUCE
}
PRIVATE
${
CMAKE_CURRENT_LIST_DIR
}
)
set
(
EXAMPLE_REDUCE_COMPILE_OPTIONS
)
# NOTE: we turn off undefined-func-template to let source compile without explicit declare function specializations
list
(
APPEND EXAMPLE_REDUCE_COMPILE_OPTIONS -Wno-undefined-func-template -Wno-float-equal
)
target_compile_options
(
${
EXAMPLE_REDUCE
}
PRIVATE
${
EXAMPLE_REDUCE_COMPILE_OPTIONS
}
)
# TODO: we have to turn off this global prop, otherwise the progress bar generated
# by cmake will print too many files, execvp: /bin/sh: Argument list too long
# however, this property may affect global
# TODO: consider codegen a makefile by us
set_property
(
GLOBAL PROPERTY RULE_MESSAGES OFF
)
\ No newline at end of file
example/ck_tile/05_reduce/reduce.cpp
0 → 100644
View file @
fe488bf2
#include "ck_tile/host.hpp"
#include "reduce.hpp"
#include <cstring>
auto
create_args
(
int
argc
,
char
*
argv
[])
{
ck_tile
::
ArgParser
arg_parser
;
arg_parser
.
insert
(
"m"
,
"3328"
,
"m dimension"
)
.
insert
(
"n"
,
"4096"
,
"n dimension"
)
.
insert
(
"v"
,
"1"
,
"cpu validation or not"
)
.
insert
(
"prec"
,
"fp16"
,
"precision"
)
.
insert
(
"warmup"
,
"5"
,
"cold iter"
)
.
insert
(
"repeat"
,
"20"
,
"hot iter"
);
bool
result
=
arg_parser
.
parse
(
argc
,
argv
);
return
std
::
make_tuple
(
result
,
arg_parser
);
}
template
<
typename
DataType
>
bool
run
(
const
ck_tile
::
ArgParser
&
arg_parser
)
{
using
ADataType
=
DataType
;
using
AccDataType
=
float
;
using
BDataType
=
DataType
;
ck_tile
::
index_t
m
=
arg_parser
.
get_int
(
"m"
);
ck_tile
::
index_t
n
=
arg_parser
.
get_int
(
"n"
);
int
do_validation
=
arg_parser
.
get_int
(
"v"
);
int
warmup
=
arg_parser
.
get_int
(
"warmup"
);
int
repeat
=
arg_parser
.
get_int
(
"repeat"
);
ck_tile
::
HostTensor
<
ADataType
>
a_host
({
m
,
n
});
ck_tile
::
HostTensor
<
BDataType
>
b_host_ref
({
m
});
ck_tile
::
HostTensor
<
BDataType
>
b_host_dev
({
m
});
ck_tile
::
FillUniformDistribution
<
ADataType
>
{
-
5.
f
,
5.
f
}(
a_host
);
ck_tile
::
DeviceMem
a_buf
(
a_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
b_buf
(
b_host_dev
.
get_element_space_size_in_bytes
());
a_buf
.
ToDevice
(
a_host
.
data
());
using
BlockWarps
=
ck_tile
::
sequence
<
4
,
1
>
;
using
BlockTile
=
ck_tile
::
sequence
<
128
,
128
>
;
using
WarpTile
=
ck_tile
::
sequence
<
32
,
128
>
;
using
ThreadTile
=
ck_tile
::
sequence
<
8
,
8
>
;
constexpr
ck_tile
::
index_t
kBlockSize
=
256
;
constexpr
ck_tile
::
index_t
kBlockPerCu
=
1
;
ck_tile
::
index_t
kGridSize
=
(
m
/
BlockTile
::
at
(
ck_tile
::
number
<
0
>
{}));
std
::
cout
<<
"grid size "
<<
kGridSize
<<
std
::
endl
;
using
Kernel
=
ck_tile
::
Reduce
<
ADataType
,
AccDataType
,
BDataType
,
kBlockSize
,
BlockWarps
,
BlockTile
,
WarpTile
,
ThreadTile
>
;
float
ave_time
=
launch_kernel
(
ck_tile
::
stream_config
{
nullptr
,
true
,
0
,
warmup
,
repeat
},
ck_tile
::
make_kernel
<
kBlockSize
,
kBlockPerCu
>
(
Kernel
{},
kGridSize
,
kBlockSize
,
0
,
static_cast
<
ADataType
*>
(
a_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_buf
.
GetDeviceBuffer
()),
m
,
n
));
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
m
*
n
+
sizeof
(
BDataType
)
*
m
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_validation
)
{
// reference
ck_tile
::
reference_reduce
<
ADataType
,
AccDataType
,
BDataType
>
(
a_host
,
b_host_ref
);
b_buf
.
FromDevice
(
b_host_dev
.
mData
.
data
());
pass
=
ck_tile
::
check_err
(
b_host_dev
,
b_host_ref
);
std
::
cout
<<
"valid:"
<<
(
pass
?
"y"
:
"n"
)
<<
std
::
flush
<<
std
::
endl
;
}
return
pass
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
auto
[
result
,
arg_parser
]
=
create_args
(
argc
,
argv
);
if
(
!
result
)
return
-
1
;
const
std
::
string
data_type
=
arg_parser
.
get_str
(
"prec"
);
if
(
data_type
==
"fp16"
)
{
return
run
<
ck_tile
::
half_t
>
(
arg_parser
)
?
0
:
-
2
;
}
if
(
data_type
==
"bf16"
)
{
return
run
<
ck_tile
::
bf16_t
>
(
arg_parser
)
?
0
:
-
2
;
}
}
Prev
1
2
3
4
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment