Unverified Commit fe488bf2 authored by rocking's avatar rocking Committed by GitHub
Browse files

Merge branch 'develop' into layernorm/instance_support

parents 8bed8529 0394f8a7
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 4, 64, 8, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 4, 64, 4, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 4, 64, 2, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 8, 4, 64, 1, true , false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 4, 64, 1, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 4, 64, 2, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 4, 64, 1, true , false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 4, 64, 4, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 6, 4, 64, 2, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 12, 4, 64, 1, true , false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
#if 0
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 2, 4, 64, 8, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 4, 64, 4, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 8, 4, 64, 2, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 16, 4, 64, 1, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 1, 1, 256, 4, true , false, false>>(const S&, A);
#endif
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 1, 2, 128, 8, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 2, 2, 128, 4, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 2, 128, 2, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 1, 256, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 3, 4, 64, 8, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 3, 2, 128, 4, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 3, 1, 256, 2, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 6, 1, 256, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 1, 1, 256, 8, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 2, 1, 256, 4, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 1, 256, 2, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 8, 1, 256, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 1, 4, 64, 4, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 2, 4, 64, 2, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 4, 64, 1, true , false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 3, 1, 128, 8, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 3, 1, 256, 4, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 6, 1, 256, 2, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 3, 1, 1024, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 2, 1, 256, 8, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 1, 256, 4, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 2, 1, 1024, 2, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 1, 1024, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 2, 1, 256, 8, true, false, true>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 1, 256, 4, true, false, true>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 2, 1, 1024, 2, true, false, true>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 1, 1024, 1, true, false, true>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 1, 4, 64, 8, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 2, 4, 64, 4, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 4, 64, 2, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 8, 4, 64, 1, true , false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 1, 4, 64, 1, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 1, 4, 64, 2, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 2, 4, 64, 1, true , false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 3, 4, 64, 4, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 6, 4, 64, 2, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 12, 4, 64, 1, true , false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <ck_tile/core.hpp>
#include "layernorm2d_fwd.hpp"
#include <iostream>
#pragma once
using S = ck_tile::stream_config;
using A = layernorm2d_fwd_args;
template <typename DataType_,
ck_tile::index_t Repeat_M_, // each thread repeat along M
ck_tile::index_t Repeat_N_, // each thread repeat along N
ck_tile::index_t ThreadPerBlock_M_, // num threads along M
ck_tile::index_t ThreadPerBlock_N_, // num threads along N
ck_tile::index_t Vector_N_, // vector size along N
bool kPadN_,
bool kSaveMeanInvStd_,
bool kTwoPass_>
using trait_ = layernorm2d_fwd_traits_<DataType_,
Repeat_M_,
Repeat_N_,
ThreadPerBlock_M_,
ThreadPerBlock_N_,
Vector_N_,
kPadN_,
kSaveMeanInvStd_,
kTwoPass_>;
template <typename Traits_>
float layernorm2d_fwd_(const S& s, A a)
{
using DataType = typename Traits_::DataType;
using PipelineProblem = ck_tile::Layernorm2dFwdPipelineProblem<
typename LayerNormTypeConfig<DataType>::XDataType,
typename LayerNormTypeConfig<DataType>::GammaDataType,
typename LayerNormTypeConfig<DataType>::BetaDataType,
typename LayerNormTypeConfig<DataType>::ComputeDataType,
typename LayerNormTypeConfig<DataType>::YDataType,
typename LayerNormTypeConfig<DataType>::MeanDataType,
typename LayerNormTypeConfig<DataType>::InvStdDataType,
typename Traits_::Shape,
Traits_::kPadN,
Traits_::kSaveMeanInvStd,
Traits_::kTwoPass>;
using OnePassPipeline = ck_tile::Layernorm2dFwdPipelineOnePass<PipelineProblem>;
using TwoPassPipeline = ck_tile::Layernorm2dFwdPipelineTwoPass<PipelineProblem>;
using Pipeline = std::conditional_t<Traits_::kTwoPass, TwoPassPipeline, OnePassPipeline>;
using Kernel = ck_tile::Layernorm2dFwd<Pipeline>;
const dim3 grids = Kernel::GridSize(a);
constexpr dim3 blocks = Kernel::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = 1;
auto kargs = Kernel::MakeKargs(a);
if(s.log_level_ > 0)
std::cout << ", " << Kernel::GetName() << std::flush;
return ck_tile::launch_kernel(
s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(Kernel{}, grids, blocks, 0, kargs));
}
...@@ -2,161 +2,120 @@ ...@@ -2,161 +2,120 @@
#include "layernorm2d_fwd.hpp" #include "layernorm2d_fwd.hpp"
#include <cstring> #include <cstring>
// Host API implementation // different threshold for different dtype
float layernorm2d_fwd(layernorm2d_fwd_traits t, template <typename DataType>
layernorm2d_fwd_args a, auto get_elimit()
const ck_tile::stream_config& s)
{ {
if(t.data_type.compare("fp16") == 0) double rtol = 1e-2;
{ double atol = 1e-2;
using XDataType = ck_tile::half_t; return ck_tile::make_tuple(rtol, atol);
using YDataType = ck_tile::half_t; }
using GammaDataType = ck_tile::half_t;
using BetaDataType = ck_tile::half_t;
#ifdef SAVE_MEAN_INV_STD
using MeanDataType = ck_tile::half_t;
using InvStdDataType = ck_tile::half_t;
#else
using MeanDataType = ck_tile::null_type;
using InvStdDataType = ck_tile::null_type;
#endif
using ComputeDataType = float;
using thread_tile = ck_tile::sequence<4, 4>;
using warp_tile = ck_tile::sequence<8, 128>;
using block_tile = ck_tile::sequence<32, 128>;
using Shape = ck_tile::TileLayernorm2dShape<thread_tile, warp_tile, block_tile>;
using PipelineProblem = ck_tile::BlockLayernorm2dFwdProblem<XDataType,
GammaDataType,
BetaDataType,
ComputeDataType,
YDataType,
MeanDataType,
InvStdDataType,
Shape,
true,
true>;
using Kernel = ck_tile::Layernorm2dFwd<PipelineProblem>;
auto kargs = Kernel::MakeKargs(
a.p_x, a.p_gamma, a.p_beta, a.p_y, a.p_mean, a.p_invStd, a.epsilon, a.M, a.N);
const dim3 grids = Kernel::GridSize(a.M);
constexpr dim3 blocks = Kernel::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = Shape::kMWarpPerBlock * Shape::kNWarpPerBlock;
float ave_time = ck_tile::launch_kernel(
s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(Kernel{}, grids, blocks, 0, kargs));
return ave_time;
}
return 0; template <>
auto get_elimit<ck_tile::bf16_t>()
{
double rtol = 1e-2;
double atol = 1e-2;
return ck_tile::make_tuple(rtol, atol);
} }
auto create_args(int argc, char* argv[]) auto create_args(int argc, char* argv[])
{ {
ck_tile::ArgParser arg_parser; ck_tile::ArgParser arg_parser;
arg_parser.insert("m", "3328", "m dimension") arg_parser.insert("m", "3328", "m dimension")
.insert("n", "4096", "m dimension") .insert("n", "4096", "n dimension")
.insert("stride", "-1", "stride per row, if -1 then equal to n")
.insert("e", "1e-5", "epsilon") .insert("e", "1e-5", "epsilon")
.insert("save_mv", "0", "save mean/variance(invstd) or not. set to 1 in training case")
.insert("v", "1", "cpu validation or not") .insert("v", "1", "cpu validation or not")
.insert("prec", "fp16", "precision"); .insert("kname", "1", "print kernel name or not")
.insert("prec", "fp16", "precision")
.insert("warmup", "5", "cold iter")
.insert("repeat", "20", "hot iter");
bool result = arg_parser.parse(argc, argv); bool result = arg_parser.parse(argc, argv);
return std::make_tuple(result, arg_parser); return std::make_tuple(result, arg_parser);
} }
int main(int argc, char* argv[]) template <typename DataType, bool SaveMeanVar>
bool run(const ck_tile::ArgParser& arg_parser)
{ {
ck_tile::index_t m = arg_parser.get_int("m");
auto [result, arg_parser] = create_args(argc, argv); ck_tile::index_t n = arg_parser.get_int("n");
if(!result) ck_tile::index_t stride = arg_parser.get_int("stride");
return -1; if(stride < 0)
stride = n;
float epsilon = arg_parser.get_float("e"); float epsilon = arg_parser.get_float("e");
ck_tile::index_t M = arg_parser.get_int("m");
ck_tile::index_t N = arg_parser.get_int("n");
std::string data_type = arg_parser.get_str("prec"); std::string data_type = arg_parser.get_str("prec");
int kname = arg_parser.get_int("kname");
int do_validation = arg_parser.get_int("v"); int do_validation = arg_parser.get_int("v");
int warmup = arg_parser.get_int("warmup");
int repeat = arg_parser.get_int("repeat");
using XDataType = ck_tile::half_t; assert(stride >= n);
using YDataType = ck_tile::half_t;
using GammaDataType = ck_tile::half_t;
using BetaDataType = ck_tile::half_t;
#ifdef SAVE_MEAN_INV_STD
using MeanDataType = ck_tile::half_t;
using InvStdDataType = ck_tile::half_t;
#else
using MeanDataType = ck_tile::null_type;
using InvStdDataType = ck_tile::null_type;
#endif
using ComputeDataType = float;
// host verify using TypeConfig = LayerNormTypeConfig<DataType>;
ck_tile::HostTensor<XDataType> x_host({M, N});
ck_tile::HostTensor<GammaDataType> gamma_host({N}); using XDataType = typename TypeConfig::XDataType;
ck_tile::HostTensor<BetaDataType> beta_host({N}); using YDataType = typename TypeConfig::YDataType;
using GammaDataType = typename TypeConfig::GammaDataType;
using BetaDataType = typename TypeConfig::BetaDataType;
using MeanDataType =
std::conditional_t<SaveMeanVar, typename TypeConfig::MeanDataType, ck_tile::null_type>;
using InvStdDataType =
std::conditional_t<SaveMeanVar, typename TypeConfig::InvStdDataType, ck_tile::null_type>;
ck_tile::HostTensor<YDataType> y_host_ref({M, N}); using ComputeDataType = typename TypeConfig::ComputeDataType;
ck_tile::HostTensor<YDataType> y_host_dev({M, N});
ck_tile::HostTensor<MeanDataType> mean_host_ref({M}); // host verify
ck_tile::HostTensor<InvStdDataType> invStd_host_ref({M}); ck_tile::HostTensor<XDataType> x_host({m, n}, {stride, 1});
ck_tile::HostTensor<GammaDataType> gamma_host({n});
ck_tile::HostTensor<BetaDataType> beta_host({n});
ck_tile::HostTensor<YDataType> y_host_ref({m, n}, {stride, 1});
ck_tile::HostTensor<YDataType> y_host_dev({m, n}, {stride, 1});
#ifdef SAVE_MEAN_INV_STD ck_tile::HostTensor<MeanDataType> mean_host_ref({m});
ck_tile::HostTensor<MeanDataType> mean_host_dev({M}); ck_tile::HostTensor<InvStdDataType> invStd_host_ref({m});
ck_tile::HostTensor<InvStdDataType> invStd_host_dev({M});
#endif
ck_tile::FillUniformDistribution<XDataType>{-5.f, 5.f}(x_host); ck_tile::FillUniformDistribution<XDataType>{-.5f, .5f}(x_host);
ck_tile::FillUniformDistribution<GammaDataType>{-5.f, 5.f}(gamma_host); ck_tile::FillUniformDistribution<GammaDataType>{-.5f, .5f}(gamma_host);
ck_tile::FillUniformDistribution<BetaDataType>{-5.f, 5.f}(beta_host); ck_tile::FillUniformDistribution<BetaDataType>{-.5f, .5f}(beta_host);
ck_tile::DeviceMem x_buf(x_host.get_element_space_size_in_bytes()); ck_tile::DeviceMem x_buf(x_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem gamma_buf(gamma_host.get_element_space_size_in_bytes()); ck_tile::DeviceMem gamma_buf(gamma_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem beta_buf(beta_host.get_element_space_size_in_bytes()); ck_tile::DeviceMem beta_buf(beta_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem y_buf(y_host_dev.get_element_space_size_in_bytes()); ck_tile::DeviceMem y_buf(y_host_dev.get_element_space_size_in_bytes());
#ifdef SAVE_MEAN_INV_STD
ck_tile::DeviceMem mean_buf(mean_host_dev.get_element_space_size_in_bytes());
ck_tile::DeviceMem invStd_buf(invStd_host_dev.get_element_space_size_in_bytes());
#endif
x_buf.ToDevice(x_host.data()); x_buf.ToDevice(x_host.data());
gamma_buf.ToDevice(gamma_host.data()); gamma_buf.ToDevice(gamma_host.data());
beta_buf.ToDevice(beta_host.data()); beta_buf.ToDevice(beta_host.data());
layernorm2d_fwd_traits traits{data_type}; std::cout << "[" << data_type << "]"
<< " m:" << m << ", n:" << n << ", stride:" << stride << std::flush;
layernorm2d_fwd_traits traits{data_type, SaveMeanVar};
layernorm2d_fwd_args args{x_buf.GetDeviceBuffer(), layernorm2d_fwd_args args{x_buf.GetDeviceBuffer(),
gamma_buf.GetDeviceBuffer(), gamma_buf.GetDeviceBuffer(),
beta_buf.GetDeviceBuffer(), beta_buf.GetDeviceBuffer(),
y_buf.GetDeviceBuffer(), y_buf.GetDeviceBuffer(),
#ifdef SAVE_MEAN_INV_STD
mean_buf.GetDeviceBuffer(),
invStd_buf.GetDeviceBuffer(),
#else
nullptr, nullptr,
nullptr, nullptr,
#endif
epsilon, epsilon,
M, m,
N}; n,
stride};
float ave_time = layernorm2d_fwd(traits, args, ck_tile::stream_config{nullptr, true}); float ave_time = layernorm2d_fwd(
traits, args, ck_tile::stream_config{nullptr, true, kname ? 1 : 0, warmup, repeat});
std::size_t num_byte = sizeof(XDataType) * M * N + sizeof(GammaDataType) * N + std::size_t num_byte = sizeof(XDataType) * m * n + sizeof(GammaDataType) * n +
sizeof(BetaDataType) * N + sizeof(YDataType) * M * N; sizeof(BetaDataType) * n + sizeof(YDataType) * m * n;
float gb_per_sec = num_byte / 1.E6 / ave_time; float gb_per_sec = num_byte / 1.E6 / ave_time;
std::cout << "[" << data_type << "]" std::cout << ", " << ave_time * 1.E3 << " us, " << gb_per_sec << " GB/s" << std::flush;
<< " m:" << M << ", n:" << N << ", " << ave_time << " ms, " << gb_per_sec << " GB/s"
<< std::flush;
bool pass = true; bool pass = true;
...@@ -174,20 +133,59 @@ int main(int argc, char* argv[]) ...@@ -174,20 +133,59 @@ int main(int argc, char* argv[])
y_buf.FromDevice(y_host_dev.data()); y_buf.FromDevice(y_host_dev.data());
pass = ck_tile::check_err(y_host_dev, y_host_ref); auto [rtol, atol] = get_elimit<DataType>();
if(stride == n)
{
pass = ck_tile::check_err(
y_host_dev, y_host_ref, std::string("OUT Error: Incorrect results!"), rtol, atol);
}
else
{
for(int i_r = 0; i_r < m; i_r++)
{
std::vector<YDataType> y_host_dev_row(y_host_dev.begin() + i_r * stride,
y_host_dev.begin() + i_r * stride + n);
std::vector<YDataType> y_host_ref_row(y_host_ref.begin() + i_r * stride,
y_host_ref.begin() + i_r * stride + n);
pass &= ck_tile::check_err(y_host_dev_row,
y_host_ref_row,
std::string("OUT[") + std::to_string(i_r) +
std::string("] Error: Incorrect results!"),
rtol,
atol);
}
}
std::cout << ", valid:" << (pass ? "y" : "n") << std::flush << std::endl;
}
#ifdef SAVE_MEAN_INV_STD return pass;
mean_buf.FromDevice(mean_host_dev.data()); }
pass &= ck_tile::check_err(mean_host_dev, mean_host_ref);
invStd_buf.FromDevice(invStd_host_dev.data()); int main(int argc, char* argv[])
pass &= ck_tile::check_err(invStd_host_dev, invStd_host_ref); {
#endif auto [result, arg_parser] = create_args(argc, argv);
if(!result)
return -1;
std::cout << ", valid:" << (pass ? "y" : "n") << std::flush; const std::string data_type = arg_parser.get_str("prec");
int save_mv = arg_parser.get_int("save_mv");
if(data_type == "fp16" && save_mv)
{
return run<ck_tile::half_t, true>(arg_parser) ? 0 : -2;
}
else if(data_type == "fp16" && !save_mv)
{
return run<ck_tile::half_t, false>(arg_parser) ? 0 : -2;
}
else if(data_type == "bf16" && save_mv)
{
return run<ck_tile::bf16_t, true>(arg_parser) ? 0 : -2;
}
else if(data_type == "bf16" && !save_mv)
{
return run<ck_tile::bf16_t, true>(arg_parser) ? 0 : -2;
} }
std::cout << std::endl << std::flush; return -3;
return !pass;
} }
...@@ -8,23 +8,114 @@ ...@@ -8,23 +8,114 @@
#include "ck_tile/ops/layernorm2d.hpp" #include "ck_tile/ops/layernorm2d.hpp"
#include <string> #include <string>
struct layernorm2d_fwd_traits template <typename DataType>
struct LayerNormTypeConfig;
template <>
struct LayerNormTypeConfig<ck_tile::half_t>
{ {
std::string data_type; using XDataType = ck_tile::half_t;
using YDataType = ck_tile::half_t;
using GammaDataType = ck_tile::half_t;
using BetaDataType = ck_tile::half_t;
using MeanDataType = ck_tile::half_t;
using InvStdDataType = ck_tile::half_t;
using ComputeDataType = float;
};
template <>
struct LayerNormTypeConfig<ck_tile::bf16_t>
{
using XDataType = ck_tile::bf16_t;
using YDataType = ck_tile::bf16_t;
using GammaDataType = ck_tile::bf16_t;
using BetaDataType = ck_tile::bf16_t;
using MeanDataType = ck_tile::bf16_t;
using InvStdDataType = ck_tile::bf16_t;
using ComputeDataType = float;
};
// runtime args
struct layernorm2d_fwd_args : public ck_tile::Layernorm2dFwdHostArgs
{
};
// this is used to pattern-match internl kernel implementation, not to instantiate kernel
template <typename DataType_,
ck_tile::index_t Repeat_M_, // each thread repeat along M
ck_tile::index_t Repeat_N_, // each thread repeat along N
ck_tile::index_t ThreadPerBlock_M_, // num threads along M
ck_tile::index_t ThreadPerBlock_N_, // num threads along N
ck_tile::index_t Vector_N_, // vector size along N
bool kPadN_,
bool kSaveMeanInvStd_,
bool kTwoPass_>
struct layernorm2d_fwd_traits_
{
using DataType = ck_tile::remove_cvref_t<DataType_>;
static constexpr bool is_warp_per_row = ThreadPerBlock_N_ <= warpSize;
static_assert((ThreadPerBlock_M_ * ThreadPerBlock_N_) % warpSize == 0);
static constexpr ck_tile::index_t total_warps =
(ThreadPerBlock_M_ * ThreadPerBlock_N_) / warpSize;
// num of warps along m
static constexpr ck_tile::index_t BlockWarps_M = []() {
if constexpr(is_warp_per_row)
{
static_assert(warpSize % ThreadPerBlock_N_ == 0);
return total_warps * (warpSize / ThreadPerBlock_N_);
}
else
{
// static_assert(warpSize % ThreadPerBlock_M_ == 0);
return total_warps / (ThreadPerBlock_N_ / warpSize);
}
}();
// num of warps along n
static constexpr ck_tile::index_t BlockWarps_N = []() {
if constexpr(is_warp_per_row)
{
static_assert(warpSize % ThreadPerBlock_N_ == 0);
return 1;
}
else
{
static_assert(ThreadPerBlock_N_ % warpSize == 0);
return ThreadPerBlock_N_ / warpSize;
}
}();
static constexpr ck_tile::index_t Repeat_M = Repeat_M_;
static constexpr ck_tile::index_t Repeat_N = Repeat_N_;
static constexpr ck_tile::index_t Block_M = Repeat_M_ * ThreadPerBlock_M_;
static constexpr ck_tile::index_t Block_N = Repeat_N_ * ThreadPerBlock_N_ * Vector_N_;
static constexpr ck_tile::index_t Warp_M = ThreadPerBlock_M_ / BlockWarps_M;
static constexpr ck_tile::index_t Warp_N = ThreadPerBlock_N_ / BlockWarps_N * Vector_N_;
using BlockTile = ck_tile::sequence<Block_M, Block_N>;
using BlockWarps = ck_tile::sequence<BlockWarps_M, BlockWarps_N>;
using WarpTile = ck_tile::sequence<Warp_M, Warp_N>;
using Vector = ck_tile::sequence<1, Vector_N_>;
using Shape = ck_tile::Layernorm2dShape<BlockTile, BlockWarps, WarpTile, Vector>;
static constexpr bool kPadN = kPadN_;
static constexpr bool kSaveMeanInvStd = kSaveMeanInvStd_;
static constexpr bool kTwoPass = kTwoPass_;
}; };
struct layernorm2d_fwd_args template <typename Traits_>
float layernorm2d_fwd_(const ck_tile::stream_config& s, layernorm2d_fwd_args a);
// This is the public API, will be generated by script
struct layernorm2d_fwd_traits
{ {
const void* p_x; std::string data_type;
const void* p_gamma; bool save_mean_var;
const void* p_beta;
void* p_y;
void* p_mean;
void* p_invStd;
float epsilon;
ck_tile::index_t M;
ck_tile::index_t N;
}; };
// host API
float layernorm2d_fwd(layernorm2d_fwd_traits, layernorm2d_fwd_args, const ck_tile::stream_config&); float layernorm2d_fwd(layernorm2d_fwd_traits, layernorm2d_fwd_args, const ck_tile::stream_config&);
# run from top of ck folder
EXE=build/bin/tile_example_layernorm2d_fwd
$EXE -m=1 -n=1 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=80 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=128 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=144 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=168 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=184 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=256 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=288 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=344 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=376 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=448 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=512 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=924 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=1024 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=1078 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=1996 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=4080 -e=1e-12 -v=1 -prec=bf16 -repeat=1000
$EXE -m=700 -n=80 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=128 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=144 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=168 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=184 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=256 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=288 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=344 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=376 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=448 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=512 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=924 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=1024 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=1078 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=1996 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
$EXE -m=700 -n=4080 -e=1e-12 -v=1 -prec=fp16 -repeat=1000
\ No newline at end of file
#!/bin/sh
# call from top of CK folder
EXE=./build/bin/tile_example_layernorm2d_fwd
for pr_i in "fp16" "bf16" ; do
$EXE -prec=$pr_i -m=99 -n=13
$EXE -prec=$pr_i -m=17 -n=16
$EXE -prec=$pr_i -m=1 -n=100
$EXE -prec=$pr_i -m=4 -n=128
$EXE -prec=$pr_i -m=80 -n=127
$EXE -prec=$pr_i -m=22 -n=255 -stride=256
$EXE -prec=$pr_i -m=7 -n=599
$EXE -prec=$pr_i -m=19 -n=512
$EXE -prec=$pr_i -m=33 -n=313 -stride=1000
$EXE -prec=$pr_i -m=11 -n=510
$EXE -prec=$pr_i -m=171 -n=676 -stride=818
$EXE -prec=$pr_i -m=91 -n=636
$EXE -prec=$pr_i -m=12 -n=768 -stride=800
$EXE -prec=$pr_i -m=100 -n=766 -stride=812
$EXE -prec=$pr_i -m=31 -n=1024
$EXE -prec=$pr_i -m=64 -n=1000 -stride=1004
$EXE -prec=$pr_i -m=8 -n=1501
$EXE -prec=$pr_i -m=3 -n=1826
$EXE -prec=$pr_i -m=5 -n=2040
$EXE -prec=$pr_i -m=7 -n=2734
$EXE -prec=$pr_i -m=1 -n=3182
$EXE -prec=$pr_i -m=9 -n=4096
$EXE -prec=$pr_i -m=3 -n=8192
$EXE -prec=$pr_i -m=1 -n=10547
$EXE -prec=$pr_i -m=3 -n=17134
done
set(EXAMPLE_REDUCE "tile_example_reduce")
# not using add_example_executable() to add this target, since we don't want this to have
# to be included in "make all/install/check"
message("adding example ${EXAMPLE_REDUCE}")
add_executable(${EXAMPLE_REDUCE} EXCLUDE_FROM_ALL reduce.cpp)
target_include_directories(${EXAMPLE_REDUCE} PRIVATE ${CMAKE_CURRENT_LIST_DIR})
set(EXAMPLE_REDUCE_COMPILE_OPTIONS)
# NOTE: we turn off undefined-func-template to let source compile without explicit declare function specializations
list(APPEND EXAMPLE_REDUCE_COMPILE_OPTIONS -Wno-undefined-func-template -Wno-float-equal)
target_compile_options(${EXAMPLE_REDUCE} PRIVATE ${EXAMPLE_REDUCE_COMPILE_OPTIONS})
# TODO: we have to turn off this global prop, otherwise the progress bar generated
# by cmake will print too many files, execvp: /bin/sh: Argument list too long
# however, this property may affect global
# TODO: consider codegen a makefile by us
set_property(GLOBAL PROPERTY RULE_MESSAGES OFF)
\ No newline at end of file
#include "ck_tile/host.hpp"
#include "reduce.hpp"
#include <cstring>
auto create_args(int argc, char* argv[])
{
ck_tile::ArgParser arg_parser;
arg_parser.insert("m", "3328", "m dimension")
.insert("n", "4096", "n dimension")
.insert("v", "1", "cpu validation or not")
.insert("prec", "fp16", "precision")
.insert("warmup", "5", "cold iter")
.insert("repeat", "20", "hot iter");
bool result = arg_parser.parse(argc, argv);
return std::make_tuple(result, arg_parser);
}
template <typename DataType>
bool run(const ck_tile::ArgParser& arg_parser)
{
using ADataType = DataType;
using AccDataType = float;
using BDataType = DataType;
ck_tile::index_t m = arg_parser.get_int("m");
ck_tile::index_t n = arg_parser.get_int("n");
int do_validation = arg_parser.get_int("v");
int warmup = arg_parser.get_int("warmup");
int repeat = arg_parser.get_int("repeat");
ck_tile::HostTensor<ADataType> a_host({m, n});
ck_tile::HostTensor<BDataType> b_host_ref({m});
ck_tile::HostTensor<BDataType> b_host_dev({m});
ck_tile::FillUniformDistribution<ADataType>{-5.f, 5.f}(a_host);
ck_tile::DeviceMem a_buf(a_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem b_buf(b_host_dev.get_element_space_size_in_bytes());
a_buf.ToDevice(a_host.data());
using BlockWarps = ck_tile::sequence<4, 1>;
using BlockTile = ck_tile::sequence<128, 128>;
using WarpTile = ck_tile::sequence<32, 128>;
using ThreadTile = ck_tile::sequence<8, 8>;
constexpr ck_tile::index_t kBlockSize = 256;
constexpr ck_tile::index_t kBlockPerCu = 1;
ck_tile::index_t kGridSize = (m / BlockTile::at(ck_tile::number<0>{}));
std::cout << "grid size " << kGridSize << std::endl;
using Kernel = ck_tile::Reduce<ADataType,
AccDataType,
BDataType,
kBlockSize,
BlockWarps,
BlockTile,
WarpTile,
ThreadTile>;
float ave_time = launch_kernel(ck_tile::stream_config{nullptr, true, 0, warmup, repeat},
ck_tile::make_kernel<kBlockSize, kBlockPerCu>(
Kernel{},
kGridSize,
kBlockSize,
0,
static_cast<ADataType*>(a_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_buf.GetDeviceBuffer()),
m,
n));
std::size_t num_btype = sizeof(ADataType) * m * n + sizeof(BDataType) * m;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << gb_per_sec << " GB/s" << std::endl;
bool pass = true;
if(do_validation)
{
// reference
ck_tile::reference_reduce<ADataType, AccDataType, BDataType>(a_host, b_host_ref);
b_buf.FromDevice(b_host_dev.mData.data());
pass = ck_tile::check_err(b_host_dev, b_host_ref);
std::cout << "valid:" << (pass ? "y" : "n") << std::flush << std::endl;
}
return pass;
}
int main(int argc, char* argv[])
{
auto [result, arg_parser] = create_args(argc, argv);
if(!result)
return -1;
const std::string data_type = arg_parser.get_str("prec");
if(data_type == "fp16")
{
return run<ck_tile::half_t>(arg_parser) ? 0 : -2;
}
if(data_type == "bf16")
{
return run<ck_tile::bf16_t>(arg_parser) ? 0 : -2;
}
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment