Unverified Commit f8369848 authored by Bartłomiej Kocot's avatar Bartłomiej Kocot Committed by GitHub
Browse files

Support broadcast for bias in grouped conv fwd (#1081)

* Support broadcast for bias in grouped conv fwd

* Fix comment

* Comment fixes

* Remove GK layout
parent d939411d
......@@ -16,6 +16,7 @@
using InLayout = ck::tensor_layout::convolution::NDHWGC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::NDHWGK;
using BiasLayout = ck::tensor_layout::convolution::G_K;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ScaleAddScaleAddRelu = ck::tensor_operation::element_wise::ScaleAddScaleAddRelu;
......@@ -64,6 +65,9 @@ int execute_conv_fwd_scaleadd_scaleadd_relu()
std::array<ck::index_t, 6> out_lengths{G, N, K, Do, Ho, Wo};
std::array<ck::index_t, 6> out_strides{
K, Do * Ho * Wo * G * K, 1, Ho * Wo * G * K, Wo * G * K, G * K};
// Logical broadcast bias (we have to pass bias lengths in the same format as output - GNKDHW)
std::array<ck::index_t, 6> bias_lengths{G, 1, K, 1, 1, 1};
std::array<ck::index_t, 6> bias_strides{K, 0, 1, 0, 0, 0};
std::array<ck::index_t, NumDimSpatial> filter_strides{1, 1, 1};
std::array<ck::index_t, NumDimSpatial> filter_dilations{1, 1, 1};
......@@ -74,13 +78,13 @@ int execute_conv_fwd_scaleadd_scaleadd_relu()
SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Z * Y * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * N * Do * Ho * Wo * G * K);
SimpleDeviceMem d0(sizeof(std::tuple_element_t<0, DDataTypes>) * N * Do * Ho * Wo * G * K);
SimpleDeviceMem d1(sizeof(std::tuple_element_t<1, DDataTypes>) * N * Do * Ho * Wo * G * K);
SimpleDeviceMem d1(sizeof(std::tuple_element_t<1, DDataTypes>) * G * K);
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD<
NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<OutLayout, OutLayout>,
ck::Tuple<OutLayout, BiasLayout>,
OutLayout,
InDataType,
WeiDataType,
......@@ -117,8 +121,8 @@ int execute_conv_fwd_scaleadd_scaleadd_relu()
in_strides,
wei_lengths,
wei_strides,
{out_lengths, out_lengths},
{out_strides, out_strides},
{out_lengths, bias_lengths},
{out_strides, bias_strides},
out_lengths,
out_strides,
filter_strides,
......@@ -187,8 +191,8 @@ int execute_conv_fwd_scaleadd_scaleadd_relu()
in_strides,
wei_lengths,
wei_strides,
{out_lengths, out_lengths},
{out_strides, out_strides},
{out_lengths, bias_lengths},
{out_strides, bias_strides},
out_lengths,
out_strides,
filter_strides,
......
......@@ -42,6 +42,8 @@ foreach(gpu IN LISTS GPU_TARGETS)
# ScaleAdd ScaleAdd Relu
add_example_executable(example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16 convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16.cpp)
add_example_dependencies(example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16)
add_example_executable(example_convnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16 convnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16.cpp)
add_example_dependencies(example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16)
set(target 1)
endif()
endforeach()
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
constexpr ck::index_t NDimSpatial = 3;
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using AccDataType = float;
using CShuffleDataType = ck::half_t;
using OutDataType = ck::half_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InLayout = ck::tensor_layout::convolution::NDHWGC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::NDHWGK;
using BiasLayout = ck::tensor_layout::convolution::G_K;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::ScaleAddScaleAddRelu;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <typename OutElementOp>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<OutLayout, BiasLayout>,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<OutDataType, OutDataType>,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8>;
using DeviceGroupedConvNDFwdActivInstance = DeviceGroupedConvNDFwdInstance<OutElementOp>;
namespace {
// Use custom implementation to pass two more tensors for post op
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp,
typename DeviceConvNDFwdInstance>
bool run_grouped_conv_fwd(bool do_verification,
int init_method,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param,
const HostTensorDescriptor& in_g_n_c_wis_desc,
const HostTensorDescriptor& wei_g_k_c_xs_desc,
const HostTensorDescriptor& out_g_n_k_wos_desc,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op)
{
constexpr ck::index_t NumDs = 2;
const ck::index_t G = out_g_n_k_wos_desc.GetLengths()[0];
const ck::index_t K = out_g_n_k_wos_desc.GetLengths()[2];
// Logical broadcast bias (we have to pass bias lengths in the same format as output - GNKDHW)
std::array<ck::index_t, NDimSpatial + 3> bias_g_k_lengths;
std::array<ck::index_t, NDimSpatial + 3> bias_g_k_strides;
// Fill other lenghts than G,K with 1 and strides with 0
bias_g_k_lengths.fill(1);
bias_g_k_strides.fill(0);
bias_g_k_lengths[0] = G;
bias_g_k_lengths[2] = K;
bias_g_k_strides[0] = K; // stride to G
bias_g_k_strides[2] = 1; // stride to K
const auto broadcasted_bias_desc = HostTensorDescriptor(bias_g_k_lengths, bias_g_k_strides);
// y = relu ( alpha1 * conv(x) + alpha2 * z + bias )
Tensor<InDataType> in(in_g_n_c_wis_desc);
Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
Tensor<OutDataType> out_host(out_g_n_k_wos_desc);
Tensor<OutDataType> out_device(out_g_n_k_wos_desc);
std::array<Tensor<OutDataType>, NumDs> d_tensors = {Tensor<OutDataType>(out_g_n_k_wos_desc),
Tensor<OutDataType>(broadcasted_bias_desc)};
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl;
std::cout << "out: " << out_host.mDesc << std::endl;
std::cout << "z_tensor: " << d_tensors[0].mDesc << std::endl;
std::cout << "bias_tensor: " << d_tensors[1].mDesc << std::endl;
// Make sure that we allocated only G * K values for bias
assert(static_cast<ck::index_t>(d_tensors[1].mData.size()) == G * K);
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-2, 2});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-2, 2});
d_tensors[0].GenerateTensorValue(GeneratorTensor_2<OutDataType>{-2, 2});
d_tensors[1].GenerateTensorValue(GeneratorTensor_2<OutDataType>{-2, 2});
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-1.0, 1.0});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.05, 0.05});
d_tensors[0].GenerateTensorValue(GeneratorTensor_3<OutDataType>{-0.05, 0.05});
d_tensors[1].GenerateTensorValue(GeneratorTensor_3<OutDataType>{-0.05, 0.05});
}
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize());
DeviceMem z_buf(sizeof(OutDataType) * d_tensors[0].mDesc.GetElementSpaceSize());
DeviceMem bias_buf(sizeof(OutDataType) * d_tensors[1].mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
z_buf.ToDevice(d_tensors[0].mData.data());
bias_buf.ToDevice(d_tensors[1].mData.data());
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
const std::array<const void*, NumDs> ds = {z_buf.GetDeviceBuffer(), bias_buf.GetDeviceBuffer()};
auto conv = DeviceConvNDFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(in_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
ds,
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
std::array<std::array<ck::index_t, NDimSpatial + 3>, NumDs>{
e_g_n_k_wos_lengths, bias_g_k_lengths},
std::array<std::array<ck::index_t, NDimSpatial + 3>, NumDs>{
e_g_n_k_wos_strides, bias_g_k_strides},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error("The device op with the specified compilation parameters does "
"not support this convolution problem.");
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = conv_param.GetFlops() + G * K +
conv_param.GetOutputByte<OutDataType>() / sizeof(OutDataType);
std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>() +
G * K * sizeof(OutDataType) + conv_param.GetOutputByte<OutDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv.GetTypeString() << std::endl;
if(do_verification)
{
auto ref_conv =
ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
0, /*Num A Elementwise Tensors*/
0, /*Num B Elementwise Tensors*/
NumDs>();
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in,
wei,
out_host,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
in_element_op,
wei_element_op,
out_element_op,
{},
{},
d_tensors);
ref_invoker.Run(ref_argument);
out_device_buf.FromDevice(out_device.mData.data());
return ck::utils::check_err(out_device, out_host, "Error: incorrect results!");
}
return true;
}
} // namespace
#include "run_convnd_fwd_activ_example.inc"
int main(int argc, char* argv[]) { return !run_convnd_fwd_example(argc, argv); }
......@@ -24,7 +24,7 @@ bool run_convnd_fwd_example(int argc, char* argv[])
// Following shapes are selected to avoid overflow. Expect inf in case of
// size increase for some elementwise ops.
ck::utils::conv::ConvParam conv_param{
3, 1, 16, 128, 8, {3, 3, 3}, {17, 17, 17}, {2, 2, 2}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}};
3, 2, 16, 128, 8, {3, 3, 3}, {17, 17, 17}, {2, 2, 2}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}};
if(argc == 1)
{
......
......@@ -357,15 +357,17 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
return out_gemmm_gemmn_desc;
}
// Shape of Ds and E must be aligned. Strides can be different.
// Pass e_g_n_k_wos_lengths for logical broadcast.
static auto MakeDsGridDescriptor_M_N(
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths,
const std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor>& ds_g_n_k_wos_strides)
{
return generate_tuple(
[&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
return DeviceOp::MakeEGridDescriptor_M_N<DLayout>(ds_g_n_k_wos_lengths[i],
return DeviceOp::MakeEGridDescriptor_M_N<DLayout>(e_g_n_k_wos_lengths,
ds_g_n_k_wos_strides[i]);
},
Number<NumDTensor>{});
......@@ -569,7 +571,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
// D desc
ds_grid_desc_m_n_(i) = DeviceOp::MakeEGridDescriptor_M_N<DLayout>(
ds_g_n_k_wos_lengths[i], ds_g_n_k_wos_strides[i]);
e_g_n_k_wos_lengths, ds_g_n_k_wos_strides[i]);
});
compute_ptr_offset_of_batch_.BatchStrideE_ = e_g_n_k_wos_strides[0];
......@@ -916,8 +918,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
is_same_v<DLayout, ctc::G_NDHW_K> || is_same_v<DLayout, ctc::GNWK> ||
is_same_v<DLayout, ctc::GNHWK> || is_same_v<DLayout, ctc::GNDHWK> ||
is_same_v<DLayout, ctc::NWGK> || is_same_v<DLayout, ctc::NHWGK> ||
is_same_v<DLayout, ctc::NDHWGK> || is_same_v<DLayout, ctc::GK> ||
is_same_v<DLayout, ctc::G_K>)
is_same_v<DLayout, ctc::NDHWGK> || is_same_v<DLayout, ctc::G_K>)
{
const index_t K = arg.ds_g_n_k_wos_lengths_[i][2];
......@@ -925,6 +926,27 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
{
valid = false;
}
if constexpr(is_same_v<DLayout, ctc::G_K>)
{
// G and K must be the same
if(arg.ds_g_n_k_wos_lengths_[i][0] != arg.e_g_n_k_wos_lengths_[0] ||
arg.ds_g_n_k_wos_lengths_[i][2] != arg.e_g_n_k_wos_lengths_[2])
{
valid = false;
}
}
else
{
// E and D must have the same shape
for(index_t d = 0; d < NDimSpatial + 3; d++)
{
if(arg.ds_g_n_k_wos_lengths_[i][d] != arg.e_g_n_k_wos_lengths_[d])
{
valid = false;
}
}
}
}
else
{
......
......@@ -631,8 +631,7 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
is_same_v<DLayout, ctc::G_NDHW_K> || is_same_v<DLayout, ctc::GNWK> ||
is_same_v<DLayout, ctc::GNHWK> || is_same_v<DLayout, ctc::GNDHWK> ||
is_same_v<DLayout, ctc::NWGK> || is_same_v<DLayout, ctc::NHWGK> ||
is_same_v<DLayout, ctc::NDHWGK> || is_same_v<DLayout, ctc::GK> ||
is_same_v<DLayout, ctc::G_K>)
is_same_v<DLayout, ctc::NDHWGK> || is_same_v<DLayout, ctc::G_K>)
{
const index_t K = arg.ds_g_n_k_wos_lengths_[i][2];
......
......@@ -308,12 +308,6 @@ struct GNDHWK : public BaseTensorLayout
static constexpr const char* name = "GNDHWK";
};
// for output bias
struct GK : public BaseTensorLayout
{
static constexpr const char* name = "GK";
};
// output tensor
// packed NWGK/NHWGK/NDHWGK
struct NWGK : public BaseTensorLayout
......
......@@ -522,22 +522,21 @@ struct TransformConvFwdToGemm
// for output bias
template <typename CLayout,
typename std::enable_if<is_same_v<CLayout, tensor_layout::convolution::GK> ||
is_same_v<CLayout, tensor_layout::convolution::G_K>,
typename std::enable_if<is_same_v<CLayout, tensor_layout::convolution::G_K>,
bool>::type = false>
static auto
MakeCDescriptor_M_N(const std::array<index_t, NDimSpatial + 3>& c_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& /* c_g_n_k_wos_strides */)
static auto MakeCDescriptor_M_N(const std::array<index_t, NDimSpatial + 3>& c_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& c_g_n_k_wos_strides)
{
const index_t N = c_g_n_k_wos_lengths[1];
const index_t K = c_g_n_k_wos_lengths[2];
const index_t N = c_g_n_k_wos_lengths[1];
const index_t K = c_g_n_k_wos_lengths[2];
const index_t KStride = c_g_n_k_wos_strides[2];
const index_t NHoWo =
N * ck::accumulate_n<index_t>(
c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
const auto out_gemmm_gemmn_desc =
make_naive_tensor_descriptor(make_tuple(NHoWo, K), make_tuple(I0, I1));
make_naive_tensor_descriptor(make_tuple(NHoWo, K), make_tuple(I0, KStride));
return out_gemmm_gemmn_desc;
}
......
......@@ -86,9 +86,9 @@ using NHWGK = ck::tensor_layout::convolution::NHWGK;
using NDHWGK = ck::tensor_layout::convolution::NDHWGK;
//
using GK = ck::tensor_layout::convolution::G_K;
using GK_Tuple = ck::Tuple<GK>;
using GK_GK_Tuple = ck::Tuple<GK, GK>;
using G_K = ck::tensor_layout::convolution::G_K;
using GK_Tuple = ck::Tuple<G_K>;
using GK_GK_Tuple = ck::Tuple<G_K, G_K>;
// pointwise functor
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
......
......@@ -27,7 +27,7 @@ void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhw
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
ck::Tuple<NDHWGK, G_K>,
NDHWGK,
BF16,
BF16,
......@@ -43,7 +43,7 @@ void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhw
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
ck::Tuple<NDHWGK, G_K>,
NDHWGK,
F16,
F16,
......@@ -59,7 +59,7 @@ void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhw
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
ck::Tuple<NDHWGK, G_K>,
NDHWGK,
F32,
F32,
......@@ -75,7 +75,7 @@ void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhw
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
ck::Tuple<NDHWGK, G_K>,
NDHWGK,
int8_t,
int8_t,
......@@ -130,7 +130,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, NDHWGC> &&
is_same_v<WeiLayout, GKZYXC> && is_same_v<OutLayout, NDHWGK>)
is_same_v<WeiLayout, GKZYXC> && is_same_v<OutLayout, NDHWGK> &&
DLayouts::Size() == 2 && is_same_v<tuple_element_t<0, DLayouts>, NDHWGK> &&
is_same_v<tuple_element_t<1, DLayouts>, G_K>)
{
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
......
......@@ -13,7 +13,7 @@ void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhw
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
ck::Tuple<NDHWGK, G_K>,
NDHWGK,
BF16,
BF16,
......@@ -28,7 +28,7 @@ void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhw
device_grouped_conv_fwd_xdl_scaleadd_scaleadd_relu_bf16_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
ck::Tuple<NDHWGK, G_K>,
NDHWGK,
ConvFwdDefault>{});
add_device_operation_instances(
......@@ -36,7 +36,7 @@ void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhw
device_grouped_conv_fwd_xdl_scaleadd_scaleadd_relu_bf16_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
ck::Tuple<NDHWGK, G_K>,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
......@@ -44,7 +44,7 @@ void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhw
device_grouped_conv_fwd_xdl_scaleadd_scaleadd_relu_bf16_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
ck::Tuple<NDHWGK, G_K>,
NDHWGK,
ConvFwd1x1S1P0>{});
}
......
......@@ -13,7 +13,7 @@ void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhw
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
ck::Tuple<NDHWGK, G_K>,
NDHWGK,
F16,
F16,
......@@ -28,7 +28,7 @@ void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhw
device_grouped_conv_fwd_xdl_scaleadd_scaleadd_relu_f16_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
ck::Tuple<NDHWGK, G_K>,
NDHWGK,
ConvFwdDefault>{});
add_device_operation_instances(
......@@ -36,7 +36,7 @@ void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhw
device_grouped_conv_fwd_xdl_scaleadd_scaleadd_relu_f16_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
ck::Tuple<NDHWGK, G_K>,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
......@@ -44,7 +44,7 @@ void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhw
device_grouped_conv_fwd_xdl_scaleadd_scaleadd_relu_f16_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
ck::Tuple<NDHWGK, G_K>,
NDHWGK,
ConvFwd1x1S1P0>{});
}
......
......@@ -13,7 +13,7 @@ void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhw
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
ck::Tuple<NDHWGK, G_K>,
NDHWGK,
F32,
F32,
......@@ -28,7 +28,7 @@ void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhw
device_grouped_conv_fwd_xdl_scaleadd_scaleadd_relu_f32_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
ck::Tuple<NDHWGK, G_K>,
NDHWGK,
ConvFwdDefault>{});
add_device_operation_instances(
......@@ -36,7 +36,7 @@ void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhw
device_grouped_conv_fwd_xdl_scaleadd_scaleadd_relu_f32_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
ck::Tuple<NDHWGK, G_K>,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
......@@ -44,7 +44,7 @@ void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhw
device_grouped_conv_fwd_xdl_scaleadd_scaleadd_relu_f32_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
ck::Tuple<NDHWGK, G_K>,
NDHWGK,
ConvFwd1x1S1P0>{});
}
......
......@@ -12,7 +12,7 @@ void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhw
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleABD<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
ck::Tuple<NDHWGK, G_K>,
NDHWGK,
int8_t,
int8_t,
......@@ -27,7 +27,7 @@ void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhw
device_grouped_conv_fwd_xdl_scaleadd_scaleadd_relu_int8_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
ck::Tuple<NDHWGK, G_K>,
NDHWGK,
ConvFwdDefault>{});
add_device_operation_instances(
......@@ -35,7 +35,7 @@ void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhw
device_grouped_conv_fwd_xdl_scaleadd_scaleadd_relu_int8_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
ck::Tuple<NDHWGK, G_K>,
NDHWGK,
ConvFwd1x1P0>{});
add_device_operation_instances(
......@@ -43,7 +43,7 @@ void add_device_grouped_conv3d_fwd_xdl_scaleadd_scaleadd_relu_ndhwgc_gkzyxc_ndhw
device_grouped_conv_fwd_xdl_scaleadd_scaleadd_relu_int8_instances<3,
NDHWGC,
GKZYXC,
ck::Tuple<NDHWGK, NDHWGK>,
ck::Tuple<NDHWGK, G_K>,
NDHWGK,
ConvFwd1x1S1P0>{});
}
......
......@@ -22,13 +22,13 @@ using S = ck::Sequence<Is...>;
using NHWGC = ck::tensor_layout::convolution::NHWGC;
using GKYXC = ck::tensor_layout::convolution::GKYXC;
using NHWGK = ck::tensor_layout::convolution::NHWGK;
using GK = ck::tensor_layout::convolution::G_K;
using G_K = ck::tensor_layout::convolution::G_K;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Relu = ck::tensor_operation::element_wise::Relu;
using TanH = ck::tensor_operation::element_wise::TanH;
using GK_Tuple = ck::Tuple<GK>;
using GK_GK_Tuple = ck::Tuple<GK, GK>;
using GK_Tuple = ck::Tuple<G_K>;
using GK_GK_Tuple = ck::Tuple<G_K, G_K>;
using I32_Tuple = ck::Tuple<int32_t>;
using F32_Tuple = ck::Tuple<float>;
using I32_F32_Tuple = ck::Tuple<int32_t, float>;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment