"configs/summarizers/vscode:/vscode.git/clone" did not exist on "7ca6ba625ec03c1956198bc021ad8158be9d623c"
Unverified Commit f60f0a5e authored by rocking's avatar rocking Committed by GitHub
Browse files

Refactor pool fwd (#815)

* Do not hardcode stride

* devicePool2DFwd Inherit devicePool3DFwd

* Move instance declaration out of common

* Add dilation

* use the pool3d rank, because pool2d inherit pooo3d

* calculate Do Ho Wo for the dilation

* Fix header name

* Modify ckProfiler

* Remove pool2d instance

* Remove pool2d in profiler

* Remove pool2d and add dilation

* In to client example, this commit revise following:
1. Add dilation.
2. Use pool3d to implement pool2d

* Refine naming and IsSupportedArgument()

* Add dilation to maxpool bwd example

* clang format

* 1. Remove useless header
2. Fix copyright
3. Refine naming

* Add layout parameter to pool fwd

* clang format

* Fix merge error

* Fix compile error

* Remove layout parameter in derived class

* Refine changlog

* Fix compile error

* Fix compiler error

* Add layout to external api and profiler
parent 03b8119e
...@@ -25,8 +25,8 @@ Full documentation for Composable Kernel is not yet available. ...@@ -25,8 +25,8 @@ Full documentation for Composable Kernel is not yet available.
- Added multi-embeddings support (#542). - Added multi-embeddings support (#542).
- Added Navi3x blockwise GEMM and real GEMM support (#541). - Added Navi3x blockwise GEMM and real GEMM support (#541).
- Added Navi grouped ConvBwdWeight support (#505). - Added Navi grouped ConvBwdWeight support (#505).
- Added pool3d forward (#697). - Added MaxPool, AvgPool forward (#815).
- Added maxpool backward (#750). - Added MaxPool backward (#750).
### Changed ### Changed
- Changed ... - Changed ...
...@@ -16,6 +16,9 @@ using InDataType = ck::half_t; ...@@ -16,6 +16,9 @@ using InDataType = ck::half_t;
using OutDataType = ck::half_t; using OutDataType = ck::half_t;
using IndexDataType = int32_t; using IndexDataType = int32_t;
using InLayout = ck::tensor_layout::convolution::NDHWC;
using OutLayout = ck::tensor_layout::convolution::NDHWC;
constexpr ck::index_t InOutRank = 5; constexpr ck::index_t InOutRank = 5;
constexpr ck::index_t WindowRank = 3; constexpr ck::index_t WindowRank = 3;
#if 0 #if 0
...@@ -44,33 +47,41 @@ struct SimpleDeviceMem ...@@ -44,33 +47,41 @@ struct SimpleDeviceMem
int main(int argc, char* argv[]) int main(int argc, char* argv[])
{ {
ck::index_t N = 2; ck::index_t N = 2;
ck::index_t C = 32; ck::index_t C = 32;
ck::index_t Z = 2; ck::index_t Z = 2;
ck::index_t Y = 2; ck::index_t Y = 2;
ck::index_t X = 2; ck::index_t X = 2;
ck::index_t Di = 30; ck::index_t Di = 30;
ck::index_t Hi = 30; ck::index_t Hi = 30;
ck::index_t Wi = 30; ck::index_t Wi = 30;
ck::index_t window_stride_d = 2; ck::index_t window_stride_d = 2;
ck::index_t window_stride_h = 2; ck::index_t window_stride_h = 2;
ck::index_t window_stride_w = 2; ck::index_t window_stride_w = 2;
ck::index_t in_left_pad_d = 1; ck::index_t window_dilation_d = 1;
ck::index_t in_left_pad_h = 1; ck::index_t window_dilation_h = 1;
ck::index_t in_left_pad_w = 1; ck::index_t window_dilation_w = 1;
ck::index_t in_right_pad_d = 1; ck::index_t in_left_pad_d = 1;
ck::index_t in_right_pad_h = 1; ck::index_t in_left_pad_h = 1;
ck::index_t in_right_pad_w = 1; ck::index_t in_left_pad_w = 1;
ck::index_t in_right_pad_d = 1;
ck::index_t Do = (Di + in_left_pad_d + in_right_pad_d - Z) / window_stride_d + 1; ck::index_t in_right_pad_h = 1;
ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Y) / window_stride_h + 1; ck::index_t in_right_pad_w = 1;
ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - X) / window_stride_w + 1;
const ck::index_t Zs = (Z - 1) * window_dilation_d + 1;
const ck::index_t Ys = (Y - 1) * window_dilation_h + 1;
const ck::index_t Xs = (X - 1) * window_dilation_w + 1;
ck::index_t Do = (Di + in_left_pad_d + in_right_pad_d - Zs) / window_stride_d + 1;
ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Ys) / window_stride_h + 1;
ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - Xs) / window_stride_w + 1;
// Pool API only support the order of NCDHW // Pool API only support the order of NCDHW
std::vector<ck::index_t> in_length = {N, C, Di, Hi, Wi}; std::vector<ck::index_t> in_length = {N, C, Di, Hi, Wi};
std::vector<ck::index_t> out_length = {N, C, Do, Ho, Wo}; std::vector<ck::index_t> out_length = {N, C, Do, Ho, Wo};
std::vector<ck::index_t> window_spatial_lengths = {Z, Y, X}; std::vector<ck::index_t> window_spatial_lengths = {Z, Y, X};
std::vector<ck::index_t> window_strides = {window_stride_d, window_stride_h, window_stride_w}; std::vector<ck::index_t> window_strides = {window_stride_d, window_stride_h, window_stride_w};
std::vector<ck::index_t> window_dilations{
window_dilation_d, window_dilation_h, window_dilation_w};
std::vector<ck::index_t> input_left_pads = {in_left_pad_d, in_left_pad_h, in_left_pad_w}; std::vector<ck::index_t> input_left_pads = {in_left_pad_d, in_left_pad_h, in_left_pad_w};
std::vector<ck::index_t> input_right_pads = {in_right_pad_d, in_right_pad_h, in_right_pad_w}; std::vector<ck::index_t> input_right_pads = {in_right_pad_d, in_right_pad_h, in_right_pad_w};
...@@ -90,6 +101,8 @@ int main(int argc, char* argv[]) ...@@ -90,6 +101,8 @@ int main(int argc, char* argv[])
InDataType, InDataType,
OutDataType, OutDataType,
IndexDataType, IndexDataType,
InLayout,
OutLayout,
ReduceOpId, ReduceOpId,
OutputIndex>; OutputIndex>;
...@@ -122,6 +135,7 @@ int main(int argc, char* argv[]) ...@@ -122,6 +135,7 @@ int main(int argc, char* argv[])
out_tensor_stride, out_tensor_stride,
out_tensor_stride, out_tensor_stride,
window_strides, window_strides,
window_dilations,
input_left_pads, input_left_pads,
input_right_pads, input_right_pads,
{2, 3, 4}); {2, 3, 4});
...@@ -181,6 +195,7 @@ int main(int argc, char* argv[]) ...@@ -181,6 +195,7 @@ int main(int argc, char* argv[])
out_tensor_stride, out_tensor_stride,
out_tensor_stride, out_tensor_stride,
window_strides, window_strides,
window_dilations,
input_left_pads, input_left_pads,
input_right_pads, input_right_pads,
{2, 3, 4}); {2, 3, 4});
......
...@@ -10,14 +10,18 @@ ...@@ -10,14 +10,18 @@
#include "ck/tensor_operation/gpu/device/device_pool_fwd.hpp" #include "ck/tensor_operation/gpu/device/device_pool_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/pool2d_fwd.hpp" #include "ck/library/tensor_operation_instance/gpu/pool3d_fwd.hpp"
using InDataType = ck::half_t; using InDataType = ck::half_t;
using OutDataType = ck::half_t; using OutDataType = ck::half_t;
using IndexDataType = int32_t; using IndexDataType = int32_t;
constexpr ck::index_t InOutRank = 4; // We use pool3d to implement pool2d in this example
constexpr ck::index_t WindowRank = 2; using InLayout = ck::tensor_layout::convolution::NDHWC;
using OutLayout = ck::tensor_layout::convolution::NDHWC;
constexpr ck::index_t InOutRank = 5;
constexpr ck::index_t WindowRank = 3;
#if 1 #if 1
constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX; constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
constexpr bool OutputIndex = true; constexpr bool OutputIndex = true;
...@@ -42,31 +46,66 @@ struct SimpleDeviceMem ...@@ -42,31 +46,66 @@ struct SimpleDeviceMem
void* p_mem_; void* p_mem_;
}; };
void TransformPool2dparamToPool3d(std::vector<ck::index_t>& input_lengths,
std::vector<ck::index_t>& window_lengths,
std::vector<ck::index_t>& output_lengths,
std::vector<ck::index_t>& input_stride,
std::vector<ck::index_t>& output_stride,
std::vector<ck::index_t>& indices_stride,
std::vector<ck::index_t>& window_strides,
std::vector<ck::index_t>& window_dilations,
std::vector<ck::index_t>& input_left_pads,
std::vector<ck::index_t>& input_right_pads,
std::vector<ck::index_t>& pooling_dims)
{
// NCHW to NCDHW
input_lengths.insert(input_lengths.begin() + 2, 1);
output_lengths.insert(output_lengths.begin() + 2, 1);
input_stride.insert(input_stride.begin() + 2, 0);
output_stride.insert(output_stride.begin() + 2, 0);
indices_stride.insert(indices_stride.begin() + 2, 0);
// YX to ZYX
window_lengths.insert(window_lengths.begin(), 1);
window_strides.insert(window_strides.begin(), 0);
window_dilations.insert(window_dilations.begin(), 0);
input_left_pads.insert(input_left_pads.begin(), 0);
input_right_pads.insert(input_right_pads.begin(), 0);
pooling_dims = {2, 3, 4};
}
int main(int argc, char* argv[]) int main(int argc, char* argv[])
{ {
ck::index_t N = 2; ck::index_t N = 2;
ck::index_t C = 32; ck::index_t C = 32;
ck::index_t Y = 2; ck::index_t Y = 2;
ck::index_t X = 2; ck::index_t X = 2;
ck::index_t Hi = 30; ck::index_t Hi = 30;
ck::index_t Wi = 30; ck::index_t Wi = 30;
ck::index_t window_stride_h = 2; ck::index_t window_stride_h = 2;
ck::index_t window_stride_w = 2; ck::index_t window_stride_w = 2;
ck::index_t in_left_pad_h = 1; ck::index_t window_dilation_h = 1;
ck::index_t in_left_pad_w = 1; ck::index_t window_dilation_w = 1;
ck::index_t in_right_pad_h = 1; ck::index_t in_left_pad_h = 1;
ck::index_t in_right_pad_w = 1; ck::index_t in_left_pad_w = 1;
ck::index_t in_right_pad_h = 1;
ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Y) / window_stride_h + 1; ck::index_t in_right_pad_w = 1;
ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - X) / window_stride_w + 1;
const ck::index_t Ys = (Y - 1) * window_dilation_h + 1;
const ck::index_t Xs = (X - 1) * window_dilation_w + 1;
ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Ys) / window_stride_h + 1;
ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - Xs) / window_stride_w + 1;
// Pool API only support the order of NCHW // Pool API only support the order of NCHW
std::vector<ck::index_t> in_length = {N, C, Hi, Wi}; std::vector<ck::index_t> in_length = {N, C, Hi, Wi};
std::vector<ck::index_t> out_length = {N, C, Ho, Wo}; std::vector<ck::index_t> out_length = {N, C, Ho, Wo};
std::vector<ck::index_t> window_spatial_lengths = {Y, X}; std::vector<ck::index_t> window_spatial_lengths = {Y, X};
std::vector<ck::index_t> window_strides = {window_stride_h, window_stride_w}; std::vector<ck::index_t> window_strides = {window_stride_h, window_stride_w};
std::vector<ck::index_t> window_dilations = {window_dilation_h, window_dilation_w};
std::vector<ck::index_t> input_left_pads = {in_left_pad_h, in_left_pad_w}; std::vector<ck::index_t> input_left_pads = {in_left_pad_h, in_left_pad_w};
std::vector<ck::index_t> input_right_pads = {in_right_pad_h, in_right_pad_w}; std::vector<ck::index_t> input_right_pads = {in_right_pad_h, in_right_pad_w};
std::vector<ck::index_t> pooling_dims = {2, 3};
std::size_t in_tensor_size = N * C * Hi * Wi; std::size_t in_tensor_size = N * C * Hi * Wi;
std::size_t out_tensor_size = N * C * Ho * Wo; std::size_t out_tensor_size = N * C * Ho * Wo;
...@@ -75,6 +114,18 @@ int main(int argc, char* argv[]) ...@@ -75,6 +114,18 @@ int main(int argc, char* argv[])
std::vector<ck::index_t> in_tensor_stride = {C * Hi * Wi, 1, Wi * C, C}; std::vector<ck::index_t> in_tensor_stride = {C * Hi * Wi, 1, Wi * C, C};
std::vector<ck::index_t> out_tensor_stride = {C * Ho * Wo, 1, Wo * C, C}; std::vector<ck::index_t> out_tensor_stride = {C * Ho * Wo, 1, Wo * C, C};
TransformPool2dparamToPool3d(in_length,
window_spatial_lengths,
out_length,
in_tensor_stride,
out_tensor_stride,
out_tensor_stride,
window_strides,
window_dilations,
input_left_pads,
input_right_pads,
pooling_dims);
SimpleDeviceMem in_device_buf(sizeof(InDataType) * in_tensor_size); SimpleDeviceMem in_device_buf(sizeof(InDataType) * in_tensor_size);
SimpleDeviceMem out_device_buf(sizeof(OutDataType) * out_tensor_size); SimpleDeviceMem out_device_buf(sizeof(OutDataType) * out_tensor_size);
SimpleDeviceMem out_indices_device_buf(sizeof(IndexDataType) * out_tensor_size); SimpleDeviceMem out_indices_device_buf(sizeof(IndexDataType) * out_tensor_size);
...@@ -84,6 +135,8 @@ int main(int argc, char* argv[]) ...@@ -84,6 +135,8 @@ int main(int argc, char* argv[])
InDataType, InDataType,
OutDataType, OutDataType,
IndexDataType, IndexDataType,
InLayout,
OutLayout,
ReduceOpId, ReduceOpId,
OutputIndex>; OutputIndex>;
...@@ -116,9 +169,10 @@ int main(int argc, char* argv[]) ...@@ -116,9 +169,10 @@ int main(int argc, char* argv[])
out_tensor_stride, out_tensor_stride,
out_tensor_stride, out_tensor_stride,
window_strides, window_strides,
window_dilations,
input_left_pads, input_left_pads,
input_right_pads, input_right_pads,
{2, 3}); pooling_dims);
auto invoker_ptr = op_ptr->MakeInvokerPointer(); auto invoker_ptr = op_ptr->MakeInvokerPointer();
...@@ -175,9 +229,10 @@ int main(int argc, char* argv[]) ...@@ -175,9 +229,10 @@ int main(int argc, char* argv[])
out_tensor_stride, out_tensor_stride,
out_tensor_stride, out_tensor_stride,
window_strides, window_strides,
window_dilations,
input_left_pads, input_left_pads,
input_right_pads, input_right_pads,
{2, 3}); pooling_dims);
auto invoker_ptr = op_ptr->MakeInvokerPointer(); auto invoker_ptr = op_ptr->MakeInvokerPointer();
......
...@@ -39,31 +39,35 @@ bool pool_test(bool do_verification, ...@@ -39,31 +39,35 @@ bool pool_test(bool do_verification,
ck::index_t Wi, ck::index_t Wi,
ck::index_t window_stride_h, ck::index_t window_stride_h,
ck::index_t window_stride_w, ck::index_t window_stride_w,
ck::index_t window_dilation_h,
ck::index_t window_dilation_w,
ck::index_t in_left_pad_h, ck::index_t in_left_pad_h,
ck::index_t in_left_pad_w, ck::index_t in_left_pad_w,
ck::index_t in_right_pad_h, ck::index_t in_right_pad_h,
ck::index_t in_right_pad_w) ck::index_t in_right_pad_w)
{ {
using DevicePoolFwdInstance = using DevicePoolFwdInstance =
ck::tensor_operation::device::DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C< ck::tensor_operation::device::DevicePool2dFwd_NHWC_NHWC<InDataType,
InDataType, // InDataType OutDataType,
OutDataType, // OutDataType IndexDataType,
IndexDataType, // IndexDataType ComputeDataType,
ComputeDataType, // ComputeDataType ReduceOpId,
ReduceOpId, OutputIndex,
OutputIndex, 64, // BlockSize
64, // BlockSize 64, // ReduceMThreadClusterSize
64, // ReduceMThreadClusterSize 1, // ReduceKThreadClusterSize
1, // ReduceKThreadClusterSize 4, // ReduceMThreadSliceSize
4, // ReduceMThreadSliceSize 1, // ReduceKThreadSliceSize
1, // ReduceKThreadSliceSize 1>; // InSrcOutDstVectorSize
4>; // InSrcOutDstVectorSize
const ck::index_t Ys = (Y - 1) * window_dilation_h + 1;
const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Y) / window_stride_h + 1; const ck::index_t Xs = (X - 1) * window_dilation_w + 1;
const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - X) / window_stride_w + 1; const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Ys) / window_stride_h + 1;
const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - Xs) / window_stride_w + 1;
const std::vector<ck::index_t> window_spatial_lengths{Y, X}; const std::vector<ck::index_t> window_spatial_lengths{Y, X};
const std::vector<ck::index_t> window_strides{window_stride_h, window_stride_w}; const std::vector<ck::index_t> window_strides{window_stride_h, window_stride_w};
const std::vector<ck::index_t> window_dilations{window_dilation_h, window_dilation_w};
const std::vector<ck::index_t> input_left_pads{in_left_pad_h, in_left_pad_w}; const std::vector<ck::index_t> input_left_pads{in_left_pad_h, in_left_pad_w};
const std::vector<ck::index_t> input_right_pads{in_right_pad_h, in_right_pad_w}; const std::vector<ck::index_t> input_right_pads{in_right_pad_h, in_right_pad_w};
...@@ -123,6 +127,7 @@ bool pool_test(bool do_verification, ...@@ -123,6 +127,7 @@ bool pool_test(bool do_verification,
{C * Ho * Wo, 1, Wo * C, C}, {C * Ho * Wo, 1, Wo * C, C},
{C * Ho * Wo, 1, Wo * C, C}, {C * Ho * Wo, 1, Wo * C, C},
window_strides, window_strides,
window_dilations,
input_left_pads, input_left_pads,
input_right_pads, input_right_pads,
{2, 3}); {2, 3});
...@@ -144,8 +149,8 @@ bool pool_test(bool do_verification, ...@@ -144,8 +149,8 @@ bool pool_test(bool do_verification,
float gb_per_sec = num_btype / 1.E6 / ave_time; float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s" std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< std::endl; << " GB / s " << std::endl;
bool pass = true; bool pass = true;
...@@ -169,6 +174,7 @@ bool pool_test(bool do_verification, ...@@ -169,6 +174,7 @@ bool pool_test(bool do_verification,
out_indices_n_c_ho_wo_host, out_indices_n_c_ho_wo_host,
window_spatial_lengths, window_spatial_lengths,
window_strides, window_strides,
window_dilations,
input_left_pads, input_left_pads,
input_right_pads); input_right_pads);
......
...@@ -34,18 +34,20 @@ int main(int argc, char* argv[]) ...@@ -34,18 +34,20 @@ int main(int argc, char* argv[])
bool time_kernel; bool time_kernel;
// Pool shape // Pool shape
ck::index_t N = 128; ck::index_t N = 128;
ck::index_t C = 192; ck::index_t C = 192;
ck::index_t Y = 3; ck::index_t Y = 3;
ck::index_t X = 3; ck::index_t X = 3;
ck::index_t Hi = 71; ck::index_t Hi = 71;
ck::index_t Wi = 71; ck::index_t Wi = 71;
ck::index_t window_stride_h = 2; ck::index_t window_stride_h = 2;
ck::index_t window_stride_w = 2; ck::index_t window_stride_w = 2;
ck::index_t in_left_pad_h = 1; ck::index_t window_dilation_h = 1;
ck::index_t in_left_pad_w = 1; ck::index_t window_dilation_w = 1;
ck::index_t in_right_pad_h = 1; ck::index_t in_left_pad_h = 1;
ck::index_t in_right_pad_w = 1; ck::index_t in_left_pad_w = 1;
ck::index_t in_right_pad_h = 1;
ck::index_t in_right_pad_w = 1;
if(argc == 1) if(argc == 1)
{ {
...@@ -59,31 +61,33 @@ int main(int argc, char* argv[]) ...@@ -59,31 +61,33 @@ int main(int argc, char* argv[])
init_method = std::stoi(argv[2]); init_method = std::stoi(argv[2]);
time_kernel = static_cast<bool>(std::stoi(argv[3])); time_kernel = static_cast<bool>(std::stoi(argv[3]));
} }
else if(argc == 16) else if(argc == 18)
{ {
do_verification = std::stoi(argv[1]); do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]); init_method = std::stoi(argv[2]);
time_kernel = static_cast<bool>(std::stoi(argv[3])); time_kernel = static_cast<bool>(std::stoi(argv[3]));
N = std::stoi(argv[4]); N = std::stoi(argv[4]);
C = std::stoi(argv[5]); C = std::stoi(argv[5]);
Y = std::stoi(argv[6]); Y = std::stoi(argv[6]);
X = std::stoi(argv[7]); X = std::stoi(argv[7]);
Hi = std::stoi(argv[8]); Hi = std::stoi(argv[8]);
Wi = std::stoi(argv[9]); Wi = std::stoi(argv[9]);
window_stride_h = std::stoi(argv[10]); window_stride_h = std::stoi(argv[10]);
window_stride_w = std::stoi(argv[11]); window_stride_w = std::stoi(argv[11]);
in_left_pad_h = std::stoi(argv[12]); window_dilation_h = std::stoi(argv[12]);
in_left_pad_w = std::stoi(argv[13]); window_dilation_w = std::stoi(argv[13]);
in_right_pad_h = std::stoi(argv[14]); in_left_pad_h = std::stoi(argv[14]);
in_right_pad_w = std::stoi(argv[15]); in_left_pad_w = std::stoi(argv[15]);
in_right_pad_h = std::stoi(argv[16]);
in_right_pad_w = std::stoi(argv[17]);
} }
else else
{ {
printf("arg1: verification (0=no, 1=yes)\n"); printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"); printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n"); printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, " printf("arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx\n"); "RightPx\n");
exit(0); exit(0);
} }
...@@ -107,6 +111,8 @@ int main(int argc, char* argv[]) ...@@ -107,6 +111,8 @@ int main(int argc, char* argv[])
Wi, Wi,
window_stride_h, window_stride_h,
window_stride_w, window_stride_w,
window_dilation_h,
window_dilation_w,
in_left_pad_h, in_left_pad_h,
in_left_pad_w, in_left_pad_w,
in_right_pad_h, in_right_pad_h,
......
...@@ -34,18 +34,20 @@ int main(int argc, char* argv[]) ...@@ -34,18 +34,20 @@ int main(int argc, char* argv[])
bool time_kernel; bool time_kernel;
// Pool shape // Pool shape
ck::index_t N = 128; ck::index_t N = 128;
ck::index_t C = 192; ck::index_t C = 192;
ck::index_t Y = 3; ck::index_t Y = 3;
ck::index_t X = 3; ck::index_t X = 3;
ck::index_t Hi = 71; ck::index_t Hi = 71;
ck::index_t Wi = 71; ck::index_t Wi = 71;
ck::index_t window_stride_h = 2; ck::index_t window_stride_h = 2;
ck::index_t window_stride_w = 2; ck::index_t window_stride_w = 2;
ck::index_t in_left_pad_h = 1; ck::index_t window_dilation_h = 1;
ck::index_t in_left_pad_w = 1; ck::index_t window_dilation_w = 1;
ck::index_t in_right_pad_h = 1; ck::index_t in_left_pad_h = 1;
ck::index_t in_right_pad_w = 1; ck::index_t in_left_pad_w = 1;
ck::index_t in_right_pad_h = 1;
ck::index_t in_right_pad_w = 1;
if(argc == 1) if(argc == 1)
{ {
...@@ -59,31 +61,33 @@ int main(int argc, char* argv[]) ...@@ -59,31 +61,33 @@ int main(int argc, char* argv[])
init_method = std::stoi(argv[2]); init_method = std::stoi(argv[2]);
time_kernel = static_cast<bool>(std::stoi(argv[3])); time_kernel = static_cast<bool>(std::stoi(argv[3]));
} }
else if(argc == 16) else if(argc == 18)
{ {
do_verification = std::stoi(argv[1]); do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]); init_method = std::stoi(argv[2]);
time_kernel = static_cast<bool>(std::stoi(argv[3])); time_kernel = static_cast<bool>(std::stoi(argv[3]));
N = std::stoi(argv[4]); N = std::stoi(argv[4]);
C = std::stoi(argv[5]); C = std::stoi(argv[5]);
Y = std::stoi(argv[6]); Y = std::stoi(argv[6]);
X = std::stoi(argv[7]); X = std::stoi(argv[7]);
Hi = std::stoi(argv[8]); Hi = std::stoi(argv[8]);
Wi = std::stoi(argv[9]); Wi = std::stoi(argv[9]);
window_stride_h = std::stoi(argv[10]); window_stride_h = std::stoi(argv[10]);
window_stride_w = std::stoi(argv[11]); window_stride_w = std::stoi(argv[11]);
in_left_pad_h = std::stoi(argv[12]); window_dilation_h = std::stoi(argv[12]);
in_left_pad_w = std::stoi(argv[13]); window_dilation_w = std::stoi(argv[13]);
in_right_pad_h = std::stoi(argv[14]); in_left_pad_h = std::stoi(argv[14]);
in_right_pad_w = std::stoi(argv[15]); in_left_pad_w = std::stoi(argv[15]);
in_right_pad_h = std::stoi(argv[16]);
in_right_pad_w = std::stoi(argv[17]);
} }
else else
{ {
printf("arg1: verification (0=no, 1=yes)\n"); printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"); printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n"); printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, " printf("arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx\n"); "RightPx\n");
exit(0); exit(0);
} }
...@@ -107,6 +111,8 @@ int main(int argc, char* argv[]) ...@@ -107,6 +111,8 @@ int main(int argc, char* argv[])
Wi, Wi,
window_stride_h, window_stride_h,
window_stride_w, window_stride_w,
window_dilation_h,
window_dilation_w,
in_left_pad_h, in_left_pad_h,
in_left_pad_w, in_left_pad_w,
in_right_pad_h, in_right_pad_h,
......
...@@ -18,7 +18,45 @@ ...@@ -18,7 +18,45 @@
#include "ck/library/utility/literals.hpp" #include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp"
template <typename InDataType, template <typename TensorLayout>
std::vector<ck::index_t> f_tensor_strides_ncdhw(ck::index_t N_,
ck::index_t C_,
ck::index_t D,
ck::index_t H,
ck::index_t W,
TensorLayout layout)
{
using namespace ck::literals;
(void)N_;
if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCDHW>::value)
return {C_ * D * H * W, D * H * W, H * W, W, 1_uz};
else if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NDHWC>::value)
return {D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_};
};
template <typename TensorLayout>
HostTensorDescriptor f_host_tensor_descriptor(std::size_t N_,
std::size_t C_,
std::size_t D,
std::size_t H,
std::size_t W,
TensorLayout layout)
{
using namespace ck::literals;
if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCDHW>::value)
{
return HostTensorDescriptor({N_, C_, D, H, W}, {C_ * D * H * W, D * H * W, H * W, W, 1_uz});
}
else if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NDHWC>::value)
{
return HostTensorDescriptor({N_, C_, D, H, W},
{D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_});
}
};
template <typename DevicePoolFwdInstance,
typename InDataType,
typename OutDataType, typename OutDataType,
typename ComputeDataType, typename ComputeDataType,
typename IndexDataType, typename IndexDataType,
...@@ -40,6 +78,9 @@ bool pool3d_test(bool do_verification, ...@@ -40,6 +78,9 @@ bool pool3d_test(bool do_verification,
ck::index_t window_stride_d, ck::index_t window_stride_d,
ck::index_t window_stride_h, ck::index_t window_stride_h,
ck::index_t window_stride_w, ck::index_t window_stride_w,
ck::index_t window_dilation_d,
ck::index_t window_dilation_h,
ck::index_t window_dilation_w,
ck::index_t in_left_pad_d, ck::index_t in_left_pad_d,
ck::index_t in_left_pad_h, ck::index_t in_left_pad_h,
ck::index_t in_left_pad_w, ck::index_t in_left_pad_w,
...@@ -47,53 +88,21 @@ bool pool3d_test(bool do_verification, ...@@ -47,53 +88,21 @@ bool pool3d_test(bool do_verification,
ck::index_t in_right_pad_h, ck::index_t in_right_pad_h,
ck::index_t in_right_pad_w) ck::index_t in_right_pad_w)
{ {
using DevicePoolFwdInstance = const ck::index_t Zs = (Z - 1) * window_dilation_d + 1;
ck::tensor_operation::device::DevicePool3dFwd_Input_N_Di_Hi_Wi_C_Output_N_Do_Ho_Wo_C< const ck::index_t Ys = (Y - 1) * window_dilation_h + 1;
InDataType, // InDataType const ck::index_t Xs = (X - 1) * window_dilation_w + 1;
OutDataType, // OutDataType const ck::index_t Do = (Di + in_left_pad_d + in_right_pad_d - Zs) / window_stride_d + 1;
IndexDataType, // IndexDataType const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Ys) / window_stride_h + 1;
ComputeDataType, // ComputeDataType const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - Xs) / window_stride_w + 1;
ReduceOpId,
OutputIndex,
64, // BlockSize
64, // ReduceMThreadClusterSize
1, // ReduceKThreadClusterSize
4, // ReduceMThreadSliceSize
1, // ReduceKThreadSliceSize
4>; // InSrcOutDstVectorSize
const ck::index_t Do = (Di + in_left_pad_d + in_right_pad_d - Z) / window_stride_d + 1;
const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Y) / window_stride_h + 1;
const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - X) / window_stride_w + 1;
const std::vector<ck::index_t> window_spatial_lengths{Z, Y, X}; const std::vector<ck::index_t> window_spatial_lengths{Z, Y, X};
const std::vector<ck::index_t> window_strides{ const std::vector<ck::index_t> window_strides{
window_stride_d, window_stride_h, window_stride_w}; window_stride_d, window_stride_h, window_stride_w};
const std::vector<ck::index_t> window_dilations{
window_dilation_d, window_dilation_h, window_dilation_w};
const std::vector<ck::index_t> input_left_pads{in_left_pad_d, in_left_pad_h, in_left_pad_w}; const std::vector<ck::index_t> input_left_pads{in_left_pad_d, in_left_pad_h, in_left_pad_w};
const std::vector<ck::index_t> input_right_pads{in_right_pad_d, in_right_pad_h, in_right_pad_w}; const std::vector<ck::index_t> input_right_pads{in_right_pad_d, in_right_pad_h, in_right_pad_w};
// tensor layout
auto f_host_tensor_descriptor = [](std::size_t N_,
std::size_t C_,
std::size_t D,
std::size_t H,
std::size_t W,
auto layout) {
using namespace ck::literals;
if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCDHW>::value)
{
return HostTensorDescriptor({N_, C_, D, H, W},
{C_ * D * H * W, D * H * W, H * W, W, 1_uz});
}
else if constexpr(ck::is_same<decltype(layout),
ck::tensor_layout::convolution::NDHWC>::value)
{
return HostTensorDescriptor({N_, C_, D, H, W},
{D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_});
}
};
Tensor<InDataType> in_n_c_di_hi_wi(f_host_tensor_descriptor(N, C, Di, Hi, Wi, InLayout{})); Tensor<InDataType> in_n_c_di_hi_wi(f_host_tensor_descriptor(N, C, Di, Hi, Wi, InLayout{}));
Tensor<OutDataType> out_n_c_do_ho_wo_host( Tensor<OutDataType> out_n_c_do_ho_wo_host(
f_host_tensor_descriptor(N, C, Do, Ho, Wo, OutLayout{})); f_host_tensor_descriptor(N, C, Do, Ho, Wo, OutLayout{}));
...@@ -126,10 +135,11 @@ bool pool3d_test(bool do_verification, ...@@ -126,10 +135,11 @@ bool pool3d_test(bool do_verification,
{N, C, Di, Hi, Wi}, {N, C, Di, Hi, Wi},
{Z, Y, X}, {Z, Y, X},
{N, C, Do, Ho, Wo}, {N, C, Do, Ho, Wo},
{Di * C * Hi * Wi, 1, C * Hi * Wi, Wi * C, C}, f_tensor_strides_ncdhw(N, C, Di, Hi, Wi, InLayout{}),
{Do * C * Ho * Wo, 1, C * Ho * Wo, Wo * C, C}, f_tensor_strides_ncdhw(N, C, Do, Ho, Wo, OutLayout{}),
{Do * C * Ho * Wo, 1, C * Ho * Wo, Wo * C, C}, f_tensor_strides_ncdhw(N, C, Do, Ho, Wo, OutLayout{}),
window_strides, window_strides,
window_dilations,
input_left_pads, input_left_pads,
input_right_pads, input_right_pads,
{2, 3, 4}); {2, 3, 4});
...@@ -165,6 +175,7 @@ bool pool3d_test(bool do_verification, ...@@ -165,6 +175,7 @@ bool pool3d_test(bool do_verification,
out_indices_n_c_do_ho_wo_host, out_indices_n_c_do_ho_wo_host,
window_spatial_lengths, window_spatial_lengths,
window_strides, window_strides,
window_dilations,
input_left_pads, input_left_pads,
input_right_pads); input_right_pads);
......
...@@ -27,31 +27,49 @@ static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG; ...@@ -27,31 +27,49 @@ static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
static constexpr bool OutputIndex = false; static constexpr bool OutputIndex = false;
static constexpr bool PropagateNan = false; static constexpr bool PropagateNan = false;
using DevicePoolFwdInstance =
ck::tensor_operation::device::DevicePool3dFwd_NDHWC_NDHWC<InDataType,
OutDataType,
IndexDataType,
ComputeDataType,
ReduceOpId,
OutputIndex,
64, // BlockSize
64, // ReduceMThreadClusterSize
1, // ReduceKThreadClusterSize
1, // ReduceMThreadSliceSize
1, // ReduceKThreadSliceSize
1>; // InSrcOutDstVectorSize
int main() int main()
{ {
bool do_verification = true; bool do_verification = true;
bool time_kernel = false; bool time_kernel = false;
// Pool shape // Pool shape
ck::index_t N = 2; ck::index_t N = 2;
ck::index_t C = 32; ck::index_t C = 32;
ck::index_t Z = 2; ck::index_t Z = 2;
ck::index_t Y = 2; ck::index_t Y = 2;
ck::index_t X = 2; ck::index_t X = 2;
ck::index_t Di = 30; ck::index_t Di = 30;
ck::index_t Hi = 30; ck::index_t Hi = 30;
ck::index_t Wi = 30; ck::index_t Wi = 30;
ck::index_t window_stride_d = 2; ck::index_t window_stride_d = 2;
ck::index_t window_stride_h = 2; ck::index_t window_stride_h = 2;
ck::index_t window_stride_w = 2; ck::index_t window_stride_w = 2;
ck::index_t in_left_pad_d = 1; ck::index_t window_dilation_d = 1;
ck::index_t in_left_pad_h = 1; ck::index_t window_dilation_h = 1;
ck::index_t in_left_pad_w = 1; ck::index_t window_dilation_w = 1;
ck::index_t in_right_pad_d = 1; ck::index_t in_left_pad_d = 1;
ck::index_t in_right_pad_h = 1; ck::index_t in_left_pad_h = 1;
ck::index_t in_right_pad_w = 1; ck::index_t in_left_pad_w = 1;
ck::index_t in_right_pad_d = 1;
ck::index_t in_right_pad_h = 1;
ck::index_t in_right_pad_w = 1;
bool pass = pool3d_test<InDataType, bool pass = pool3d_test<DevicePoolFwdInstance,
InDataType,
OutDataType, OutDataType,
ComputeDataType, ComputeDataType,
IndexDataType, IndexDataType,
...@@ -72,6 +90,9 @@ int main() ...@@ -72,6 +90,9 @@ int main()
window_stride_d, window_stride_d,
window_stride_h, window_stride_h,
window_stride_w, window_stride_w,
window_dilation_d,
window_dilation_h,
window_dilation_w,
in_left_pad_d, in_left_pad_d,
in_left_pad_h, in_left_pad_h,
in_left_pad_w, in_left_pad_w,
......
...@@ -24,18 +24,20 @@ int main() ...@@ -24,18 +24,20 @@ int main()
bool time_kernel = false; bool time_kernel = false;
// Pool shape // Pool shape
ck::index_t N = 1; ck::index_t N = 1;
ck::index_t C = 1; ck::index_t C = 1;
ck::index_t Y = 3; ck::index_t Y = 3;
ck::index_t X = 3; ck::index_t X = 3;
ck::index_t Hi = 32; ck::index_t Hi = 32;
ck::index_t Wi = 32; ck::index_t Wi = 32;
ck::index_t window_stride_h = 1; ck::index_t window_stride_h = 1;
ck::index_t window_stride_w = 1; ck::index_t window_stride_w = 1;
ck::index_t in_left_pad_h = 0; ck::index_t window_dilation_h = 1;
ck::index_t in_left_pad_w = 0; ck::index_t window_dilation_w = 1;
ck::index_t in_right_pad_h = 0; ck::index_t in_left_pad_h = 0;
ck::index_t in_right_pad_w = 0; ck::index_t in_left_pad_w = 0;
ck::index_t in_right_pad_h = 0;
ck::index_t in_right_pad_w = 0;
bool pass = maxpool_bwd_test<InDataType, bool pass = maxpool_bwd_test<InDataType,
OutDataType, OutDataType,
...@@ -53,6 +55,8 @@ int main() ...@@ -53,6 +55,8 @@ int main()
Wi, Wi,
window_stride_h, window_stride_h,
window_stride_w, window_stride_w,
window_dilation_h,
window_dilation_w,
in_left_pad_h, in_left_pad_h,
in_left_pad_w, in_left_pad_w,
in_right_pad_h, in_right_pad_h,
......
...@@ -36,6 +36,8 @@ bool maxpool_bwd_test(bool do_verification, ...@@ -36,6 +36,8 @@ bool maxpool_bwd_test(bool do_verification,
ck::index_t Wi, ck::index_t Wi,
ck::index_t window_stride_h, ck::index_t window_stride_h,
ck::index_t window_stride_w, ck::index_t window_stride_w,
ck::index_t window_dilation_h,
ck::index_t window_dilation_w,
ck::index_t in_left_pad_h, ck::index_t in_left_pad_h,
ck::index_t in_left_pad_w, ck::index_t in_left_pad_w,
ck::index_t in_right_pad_h, ck::index_t in_right_pad_h,
...@@ -44,28 +46,30 @@ bool maxpool_bwd_test(bool do_verification, ...@@ -44,28 +46,30 @@ bool maxpool_bwd_test(bool do_verification,
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DevicePoolFwdInstance = using DevicePoolFwdInstance =
ck::tensor_operation::device::DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C< ck::tensor_operation::device::DevicePool2dFwd_NHWC_NHWC<InDataType, // InDataType
InDataType, // InDataType OutDataType, // OutDataType
OutDataType, // OutDataType IndexDataType, // IndexDataType
IndexDataType, // IndexDataType ComputeDataType, // ComputeDataType
ComputeDataType, // ComputeDataType ck::ReduceTensorOp::MAX,
ck::ReduceTensorOp::MAX, true,
true, // OutputIndex 64, // BlockSize
64, // BlockSize 64, // ReduceMThreadClusterSize
64, // ReduceMThreadClusterSize 1, // ReduceKThreadClusterSize
1, // ReduceKThreadClusterSize 4, // ReduceMThreadSliceSize
4, // ReduceMThreadSliceSize 1, // ReduceKThreadSliceSize
1, // ReduceKThreadSliceSize 1>; // InSrcOutDstVectorSize
1>; // InSrcOutDstVectorSize
using DeviceMaxPoolBwdInstance = ck::tensor_operation::device:: using DeviceMaxPoolBwdInstance = ck::tensor_operation::device::
DeviceIndexPoolBwdImpl<DOutDataType, IndexDataType, DInDataType, 4>; DeviceIndexPoolBwdImpl<DOutDataType, IndexDataType, DInDataType, 4>;
const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Y) / window_stride_h + 1; const ck::index_t Ys = (Y - 1) * window_dilation_h + 1;
const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - X) / window_stride_w + 1; const ck::index_t Xs = (X - 1) * window_dilation_w + 1;
const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Ys) / window_stride_h + 1;
const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - Xs) / window_stride_w + 1;
const std::vector<ck::index_t> window_spatial_lengths{Y, X}; const std::vector<ck::index_t> window_spatial_lengths{Y, X};
const std::vector<ck::index_t> window_strides{window_stride_h, window_stride_w}; const std::vector<ck::index_t> window_strides{window_stride_h, window_stride_w};
const std::vector<ck::index_t> window_dilations{window_dilation_h, window_dilation_w};
const std::vector<ck::index_t> input_left_pads{in_left_pad_h, in_left_pad_w}; const std::vector<ck::index_t> input_left_pads{in_left_pad_h, in_left_pad_w};
const std::vector<ck::index_t> input_right_pads{in_right_pad_h, in_right_pad_w}; const std::vector<ck::index_t> input_right_pads{in_right_pad_h, in_right_pad_w};
...@@ -128,6 +132,7 @@ bool maxpool_bwd_test(bool do_verification, ...@@ -128,6 +132,7 @@ bool maxpool_bwd_test(bool do_verification,
{C * Ho * Wo, 1, Wo * C, C}, {C * Ho * Wo, 1, Wo * C, C},
{C * Ho * Wo, 1, Wo * C, C}, {C * Ho * Wo, 1, Wo * C, C},
window_strides, window_strides,
window_dilations,
input_left_pads, input_left_pads,
input_right_pads, input_right_pads,
{2, 3}); {2, 3});
...@@ -191,6 +196,7 @@ bool maxpool_bwd_test(bool do_verification, ...@@ -191,6 +196,7 @@ bool maxpool_bwd_test(bool do_verification,
indices_n_c_ho_wo_host, indices_n_c_ho_wo_host,
window_spatial_lengths, window_spatial_lengths,
window_strides, window_strides,
window_dilations,
input_left_pads, input_left_pads,
input_right_pads); input_right_pads);
ref_pooling_fwd_invoker.Run(ref_pooling_fwd_argument); ref_pooling_fwd_invoker.Run(ref_pooling_fwd_argument);
......
...@@ -24,18 +24,20 @@ int main() ...@@ -24,18 +24,20 @@ int main()
bool time_kernel = false; bool time_kernel = false;
// Pool shape // Pool shape
ck::index_t N = 1; ck::index_t N = 1;
ck::index_t C = 1; ck::index_t C = 1;
ck::index_t Y = 3; ck::index_t Y = 3;
ck::index_t X = 3; ck::index_t X = 3;
ck::index_t Hi = 32; ck::index_t Hi = 32;
ck::index_t Wi = 32; ck::index_t Wi = 32;
ck::index_t window_stride_h = 1; ck::index_t window_stride_h = 1;
ck::index_t window_stride_w = 1; ck::index_t window_stride_w = 1;
ck::index_t in_left_pad_h = 0; ck::index_t window_dilation_h = 1;
ck::index_t in_left_pad_w = 0; ck::index_t window_dilation_w = 1;
ck::index_t in_right_pad_h = 0; ck::index_t in_left_pad_h = 0;
ck::index_t in_right_pad_w = 0; ck::index_t in_left_pad_w = 0;
ck::index_t in_right_pad_h = 0;
ck::index_t in_right_pad_w = 0;
bool pass = maxpool_bwd_test<InDataType, bool pass = maxpool_bwd_test<InDataType,
OutDataType, OutDataType,
...@@ -53,6 +55,8 @@ int main() ...@@ -53,6 +55,8 @@ int main()
Wi, Wi,
window_stride_h, window_stride_h,
window_stride_w, window_stride_w,
window_dilation_h,
window_dilation_w,
in_left_pad_h, in_left_pad_h,
in_left_pad_w, in_left_pad_w,
in_right_pad_h, in_right_pad_h,
......
...@@ -24,18 +24,20 @@ int main() ...@@ -24,18 +24,20 @@ int main()
bool time_kernel = false; bool time_kernel = false;
// Pool shape // Pool shape
ck::index_t N = 1; ck::index_t N = 1;
ck::index_t C = 1; ck::index_t C = 1;
ck::index_t Y = 2; ck::index_t Y = 2;
ck::index_t X = 2; ck::index_t X = 2;
ck::index_t Hi = 32; ck::index_t Hi = 32;
ck::index_t Wi = 32; ck::index_t Wi = 32;
ck::index_t window_stride_h = 2; ck::index_t window_stride_h = 2;
ck::index_t window_stride_w = 2; ck::index_t window_stride_w = 2;
ck::index_t in_left_pad_h = 0; ck::index_t window_dilation_h = 1;
ck::index_t in_left_pad_w = 0; ck::index_t window_dilation_w = 1;
ck::index_t in_right_pad_h = 0; ck::index_t in_left_pad_h = 0;
ck::index_t in_right_pad_w = 0; ck::index_t in_left_pad_w = 0;
ck::index_t in_right_pad_h = 0;
ck::index_t in_right_pad_w = 0;
bool pass = maxpool_bwd_test<InDataType, bool pass = maxpool_bwd_test<InDataType,
OutDataType, OutDataType,
...@@ -53,6 +55,8 @@ int main() ...@@ -53,6 +55,8 @@ int main()
Wi, Wi,
window_stride_h, window_stride_h,
window_stride_w, window_stride_w,
window_dilation_h,
window_dilation_w,
in_left_pad_h, in_left_pad_h,
in_left_pad_w, in_left_pad_w,
in_right_pad_h, in_right_pad_h,
......
...@@ -17,6 +17,8 @@ template <index_t InOutRank, ...@@ -17,6 +17,8 @@ template <index_t InOutRank,
typename InDataType, typename InDataType,
typename OutDataType, typename OutDataType,
typename IndexDataType, typename IndexDataType,
typename InLayout,
typename OutLayout,
ReduceTensorOp ReduceOpId, ReduceTensorOp ReduceOpId,
bool OutputIndex> bool OutputIndex>
struct DevicePoolFwd : public BaseOperator struct DevicePoolFwd : public BaseOperator
...@@ -25,13 +27,14 @@ struct DevicePoolFwd : public BaseOperator ...@@ -25,13 +27,14 @@ struct DevicePoolFwd : public BaseOperator
MakeArgumentPointer(const void* p_in_dev, MakeArgumentPointer(const void* p_in_dev,
void* p_out_dev, void* p_out_dev,
void* p_out_indices_dev, void* p_out_indices_dev,
std::vector<ck::index_t> input_lengths, std::vector<ck::index_t> input_n_c_wis_lengths,
std::vector<ck::index_t> window_lengths, std::vector<ck::index_t> window_xs_lengths,
std::vector<ck::index_t> output_lengths, std::vector<ck::index_t> output_n_c_wos_lengths,
std::vector<ck::index_t> input_stride, std::vector<ck::index_t> input_n_c_wis_stride,
std::vector<ck::index_t> output_stride, std::vector<ck::index_t> output_n_c_wis_stride,
std::vector<ck::index_t> indices_stride, std::vector<ck::index_t> indices_n_c_wis_stride,
std::vector<ck::index_t> window_strides, std::vector<ck::index_t> window_xs_strides,
std::vector<ck::index_t> window_xs_dilations,
std::vector<ck::index_t> input_left_pads, std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads, std::vector<ck::index_t> input_right_pads,
std::vector<ck::index_t> pooling_dims) = 0; std::vector<ck::index_t> pooling_dims) = 0;
......
...@@ -3,16 +3,7 @@ ...@@ -3,16 +3,7 @@
#pragma once #pragma once
#include <iostream> #include "ck/tensor_operation/gpu/device/impl/device_pool3d_fwd_ndhwc_ndhwc.hpp"
#include <sstream>
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/device_pool_fwd.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_2d_reduction_threadwise.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -30,255 +21,32 @@ template <typename InDataType, ...@@ -30,255 +21,32 @@ template <typename InDataType,
ck::index_t ReduceMThreadSliceSize, ck::index_t ReduceMThreadSliceSize,
ck::index_t ReduceKThreadSliceSize, ck::index_t ReduceKThreadSliceSize,
ck::index_t InSrcOutDstVectorSize> ck::index_t InSrcOutDstVectorSize>
struct DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C struct DevicePool2dFwd_NHWC_NHWC : public DevicePool3dFwd_NDHWC_NDHWC<InDataType,
: public DevicePoolFwd<4, 2, InDataType, OutDataType, IndexDataType, ReduceOpId, OutputIndex> OutDataType,
IndexDataType,
ComputeDataType,
ReduceOpId,
OutputIndex,
BlockSize,
ReduceMThreadClusterSize,
ReduceKThreadClusterSize,
ReduceMThreadSliceSize,
ReduceKThreadSliceSize,
InSrcOutDstVectorSize>
{ {
static constexpr auto I0 = Number<0>{}; using DevicePool3D = DevicePool3dFwd_NDHWC_NDHWC<InDataType,
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr index_t InOutRank = 4;
static constexpr index_t WindowRank = 2;
using ReduceOperation = typename reduce_binary_operator<ReduceOpId>::opType;
using InElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::InElementwiseOperation;
using AccElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::AccElementwiseOperation;
static constexpr index_t InSrcOutDstVectorDim =
0; // for NHWC, the dim C is the vector Dim for both input and output in memory, which is
// not reduced.
static constexpr ck::index_t ReduceM_BlockTileSize =
ReduceMThreadClusterSize * ReduceMThreadSliceSize;
static constexpr ck::index_t ReduceK_BlockTileSize =
ReduceKThreadClusterSize * ReduceKThreadSliceSize;
static auto MakeABGridDescriptor_A_M_K_B_M(ck::index_t N,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> window_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> window_strides,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads)
{
const index_t Hi = input_spatial_lengths[0];
const index_t Wi = input_spatial_lengths[1];
const index_t Ho = output_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[1];
const index_t Y = window_spatial_lengths[0];
const index_t X = window_spatial_lengths[1];
const index_t ConvStrideH = window_strides[0];
const index_t ConvStrideW = window_strides[1];
const index_t InLeftPadH = input_left_pads[0];
const index_t InLeftPadW = input_left_pads[1];
const index_t InRightPadH = input_right_pads[0];
const index_t InRightPadW = input_right_pads[1];
const index_t ReduceMRaw = N * Ho * Wo * C;
const index_t ReduceMPad =
math::integer_least_multiple(ReduceMRaw, ReduceM_BlockTileSize) - ReduceMRaw;
const index_t ReduceKRaw = Y * X;
const index_t ReduceKPad =
math::integer_least_multiple(ReduceKRaw, ReduceK_BlockTileSize) - ReduceKRaw;
// A[ReduceM, ReduceK]
const auto in_grid_desc_n_hi_wi_c =
make_naive_tensor_descriptor_packed(make_tuple(N, Hi, Wi, C));
const auto in_grid_desc_n_hip_wip_c = transform_tensor_descriptor(
in_grid_desc_n_hi_wi_c,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_grid_desc_n_y_ho_x_wo_c = transform_tensor_descriptor(
in_grid_desc_n_hip_wip_c,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Y, Ho), make_tuple(I1, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(I1, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_grid_desc_reducemraw_reducekraw =
transform_tensor_descriptor(in_grid_desc_n_y_ho_x_wo_c,
make_tuple(make_merge_transform(make_tuple(N, Ho, Wo, C)),
make_merge_transform(make_tuple(Y, X))),
make_tuple(Sequence<0, 2, 4, 5>{}, Sequence<1, 3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_grid_desc_reducem_reducek = transform_tensor_descriptor(
in_grid_desc_reducemraw_reducekraw,
make_tuple(make_right_pad_transform(ReduceMRaw, ReduceMPad),
make_right_pad_transform(ReduceKRaw, ReduceKPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
// B[ReduceM]
const auto out_grid_desc_reducemraw =
make_naive_tensor_descriptor_packed(make_tuple(N * Ho * Wo * C));
const auto out_grid_desc_reducem = transform_tensor_descriptor(
out_grid_desc_reducemraw,
make_tuple(make_right_pad_transform(ReduceMRaw, ReduceMPad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
return make_tuple(in_grid_desc_reducem_reducek, out_grid_desc_reducem);
}
using ABGridDescs = decltype(MakeABGridDescriptor_A_M_K_B_M(1, 1, {}, {}, {}, {}, {}, {}));
using AGridDesc_M_K = remove_cvref_t<decltype(ABGridDescs{}[I0])>;
using BGridDesc_M = remove_cvref_t<decltype(ABGridDescs{}[I1])>;
// TODO
struct Argument : public BaseArgument
{
Argument(const InDataType* p_in_dev,
OutDataType* p_out_dev,
IndexDataType* p_out_indices_dev,
ck::index_t N,
ck::index_t C,
std::vector<ck::index_t>& input_spatial_lengths,
std::vector<ck::index_t>& window_spatial_lengths,
std::vector<ck::index_t>& output_spatial_lengths,
std::vector<ck::index_t>& window_strides,
std::vector<ck::index_t>& input_left_pads,
std::vector<ck::index_t>& input_right_pads)
: p_in_dev_{p_in_dev},
p_out_dev_{p_out_dev},
p_out_indices_dev_{p_out_indices_dev},
a_grid_desc_m_k_{},
b_grid_desc_m_{}
{
const auto descs = MakeABGridDescriptor_A_M_K_B_M(N,
C,
input_spatial_lengths,
window_spatial_lengths,
output_spatial_lengths,
window_strides,
input_left_pads,
input_right_pads);
a_grid_desc_m_k_ = descs[I0];
b_grid_desc_m_ = descs[I1];
invariant_lowest_length_ = C;
reduce_lowest_length_ = window_spatial_lengths[1];
int32_t reduceLength = window_spatial_lengths[0] * window_spatial_lengths[1];
std::tie(in_element_op_, acc_element_op_) =
reduce_unary_operator<ReduceOpId, true, true>::GetElementwiseOperator(reduceLength);
}
const InDataType* p_in_dev_;
OutDataType* p_out_dev_;
IndexDataType* p_out_indices_dev_;
AGridDesc_M_K a_grid_desc_m_k_;
BGridDesc_M b_grid_desc_m_;
InElementwiseOperation in_element_op_;
AccElementwiseOperation acc_element_op_;
// for checking vector load/store
ck::index_t invariant_lowest_length_;
ck::index_t reduce_lowest_length_;
};
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
using gridwise_reduce =
GridwiseReduction_mk_to_m_threadwise<InDataType,
OutDataType, OutDataType,
ComputeDataType,
IndexDataType, IndexDataType,
AGridDesc_M_K, ComputeDataType,
BGridDesc_M, ReduceOpId,
ReduceOperation, OutputIndex,
InElementwiseOperation,
AccElementwiseOperation,
InMemoryDataOperationEnum::Set,
false, // propagate_nan
BlockSize, BlockSize,
ReduceMThreadClusterSize,
ReduceKThreadClusterSize,
ReduceMThreadSliceSize, ReduceMThreadSliceSize,
ReduceKThreadSliceSize, ReduceKThreadSliceSize,
InSrcOutDstVectorDim,
InSrcOutDstVectorSize,
InSrcOutDstVectorSize>; InSrcOutDstVectorSize>;
const auto kernel =
kernel_reduce_threadwise<gridwise_reduce,
OutputIndex,
true, // pooling need to return global index
false, // don't have index input
InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
AGridDesc_M_K,
BGridDesc_M,
InElementwiseOperation,
AccElementwiseOperation>;
ck::index_t ReduceM = arg.a_grid_desc_m_k_.GetLength(I0);
const index_t grid_size = (ReduceM / ReduceM_BlockTileSize);
return launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.a_grid_desc_m_k_,
arg.b_grid_desc_m_,
arg.in_element_op_,
arg.acc_element_op_,
float(1),
arg.p_in_dev_,
nullptr,
float(0),
arg.p_out_dev_,
arg.p_out_indices_dev_);
}
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
const Argument* pArg = dynamic_cast<const Argument*>(p_arg);
if(pArg->invariant_lowest_length_ % InSrcOutDstVectorSize != 0)
{
return (false);
}
return (true);
}
std::unique_ptr<BaseArgument> std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in_dev, MakeArgumentPointer(const void* p_in_dev,
void* p_out_dev, void* p_out_dev,
...@@ -286,62 +54,57 @@ struct DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C ...@@ -286,62 +54,57 @@ struct DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C
std::vector<ck::index_t> input_lengths, std::vector<ck::index_t> input_lengths,
std::vector<ck::index_t> window_lengths, std::vector<ck::index_t> window_lengths,
std::vector<ck::index_t> output_lengths, std::vector<ck::index_t> output_lengths,
std::vector<ck::index_t>, // Suppose tensor layout = NHWC std::vector<ck::index_t> input_stride,
std::vector<ck::index_t>, // Suppose tensor layout = NHWC std::vector<ck::index_t> output_stride,
std::vector<ck::index_t>, // Suppose tensor layout = NHWC std::vector<ck::index_t> indices_stride,
std::vector<ck::index_t> window_strides, std::vector<ck::index_t> window_strides,
std::vector<ck::index_t> window_dilations,
std::vector<ck::index_t> input_left_pads, std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads, std::vector<ck::index_t> input_right_pads,
std::vector<ck::index_t> pooling_dims) override std::vector<ck::index_t> pooling_dims) override
{ {
static constexpr index_t InOutRank = 4;
static constexpr index_t WindowRank = 2;
if(input_lengths.size() != InOutRank || window_lengths.size() != WindowRank || if(input_lengths.size() != InOutRank || window_lengths.size() != WindowRank ||
input_lengths.size() != InOutRank || window_strides.size() != WindowRank || input_lengths.size() != InOutRank || window_strides.size() != WindowRank ||
input_left_pads.size() != WindowRank || input_right_pads.size() != WindowRank) window_dilations.size() != WindowRank || input_left_pads.size() != WindowRank ||
input_right_pads.size() != WindowRank)
throw std::runtime_error("dimension is incorrect"); throw std::runtime_error("dimension is incorrect");
if(pooling_dims != std::vector<ck::index_t>{2, 3}) if(pooling_dims != std::vector<ck::index_t>{2, 3})
throw std::runtime_error("pooling_dims only support {2, 3} in pool2d so far"); throw std::runtime_error("pooling_dims only support {2, 3} in pool2d so far");
index_t N = input_lengths[0]; // NCHW to NCDHW
index_t C = input_lengths[1]; input_lengths.insert(input_lengths.begin() + 2, 1);
index_t Hi = input_lengths[2]; output_lengths.insert(output_lengths.begin() + 2, 1);
index_t Wi = input_lengths[3]; input_stride.insert(input_stride.begin() + 2, 0);
index_t Ho = output_lengths[2]; output_stride.insert(output_stride.begin() + 2, 0);
index_t Wo = output_lengths[3]; indices_stride.insert(indices_stride.begin() + 2, 0);
std::vector<ck::index_t> input_spatial_lengths = {Hi, Wi}; // YX to ZYX
std::vector<ck::index_t> output_spatial_lengths = {Ho, Wo}; window_lengths.insert(window_lengths.begin(), 1);
window_strides.insert(window_strides.begin(), 0);
return std::make_unique<Argument>(static_cast<const InDataType*>(p_in_dev), window_dilations.insert(window_dilations.begin(), 0);
static_cast<OutDataType*>(p_out_dev), input_left_pads.insert(input_left_pads.begin(), 0);
static_cast<IndexDataType*>(p_out_indices_dev), input_right_pads.insert(input_right_pads.begin(), 0);
N,
C, pooling_dims = {2, 3, 4};
input_spatial_lengths,
window_lengths, return DevicePool3D::MakeArgumentPointer(p_in_dev,
output_spatial_lengths, p_out_dev,
window_strides, p_out_indices_dev,
input_left_pads, input_lengths,
input_right_pads); window_lengths,
} output_lengths,
input_stride,
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override output_stride,
{ indices_stride,
return std::make_unique<Invoker>(Invoker{}); window_strides,
} window_dilations,
input_left_pads,
std::string GetTypeString() const override input_right_pads,
{ pooling_dims);
auto str = std::stringstream();
// clang-format off
str << "DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C<" << BlockSize << ",";
str << "M_C" << ReduceMThreadClusterSize << "_S" << ReduceMThreadSliceSize << ",";
str << "K_C" << ReduceKThreadClusterSize << "_S" << ReduceKThreadSliceSize << ",";
str <<"InSrcOutDstVectorSize_" << InSrcOutDstVectorSize << ">";
// clang-format on
return str.str();
} }
}; };
......
...@@ -39,6 +39,7 @@ struct ReferencePoolingFwd : public device::BaseOperator ...@@ -39,6 +39,7 @@ struct ReferencePoolingFwd : public device::BaseOperator
Tensor<IndexDataType>& out_indices, Tensor<IndexDataType>& out_indices,
const std::vector<ck::index_t>& window_spatial_lengths, const std::vector<ck::index_t>& window_spatial_lengths,
const std::vector<ck::index_t>& window_strides, const std::vector<ck::index_t>& window_strides,
const std::vector<ck::index_t>& window_dilations,
const std::vector<ck::index_t>& in_left_pads, const std::vector<ck::index_t>& in_left_pads,
const std::vector<ck::index_t>& /*in_right_pads*/) const std::vector<ck::index_t>& /*in_right_pads*/)
: in_(in), : in_(in),
...@@ -46,6 +47,7 @@ struct ReferencePoolingFwd : public device::BaseOperator ...@@ -46,6 +47,7 @@ struct ReferencePoolingFwd : public device::BaseOperator
out_indices_(out_indices), out_indices_(out_indices),
window_spatial_lengths_(window_spatial_lengths), window_spatial_lengths_(window_spatial_lengths),
window_strides_(window_strides), window_strides_(window_strides),
window_dilations_(window_dilations),
in_left_pads_(in_left_pads), in_left_pads_(in_left_pads),
reduceLength_(1) reduceLength_(1)
{ {
...@@ -58,6 +60,7 @@ struct ReferencePoolingFwd : public device::BaseOperator ...@@ -58,6 +60,7 @@ struct ReferencePoolingFwd : public device::BaseOperator
Tensor<IndexDataType>& out_indices_; Tensor<IndexDataType>& out_indices_;
const std::vector<ck::index_t>& window_spatial_lengths_; const std::vector<ck::index_t>& window_spatial_lengths_;
const std::vector<ck::index_t>& window_strides_; const std::vector<ck::index_t>& window_strides_;
const std::vector<ck::index_t>& window_dilations_;
const std::vector<ck::index_t>& in_left_pads_; const std::vector<ck::index_t>& in_left_pads_;
int reduceLength_; int reduceLength_;
}; };
...@@ -85,14 +88,17 @@ struct ReferencePoolingFwd : public device::BaseOperator ...@@ -85,14 +88,17 @@ struct ReferencePoolingFwd : public device::BaseOperator
for(ck::index_t z = 0; z < arg.window_spatial_lengths_[0]; ++z) for(ck::index_t z = 0; z < arg.window_spatial_lengths_[0]; ++z)
{ {
ck::index_t di = do_ * arg.window_strides_[0] + z - arg.in_left_pads_[0]; ck::index_t di = do_ * arg.window_strides_[0] +
z * arg.window_dilations_[0] - arg.in_left_pads_[0];
for(ck::index_t y = 0; y < arg.window_spatial_lengths_[1]; ++y) for(ck::index_t y = 0; y < arg.window_spatial_lengths_[1]; ++y)
{ {
ck::index_t hi = ho * arg.window_strides_[1] + y - arg.in_left_pads_[1]; ck::index_t hi = ho * arg.window_strides_[1] +
y * arg.window_dilations_[1] - arg.in_left_pads_[1];
for(ck::index_t x = 0; x < arg.window_spatial_lengths_[2]; ++x) for(ck::index_t x = 0; x < arg.window_spatial_lengths_[2]; ++x)
{ {
ck::index_t wi = ck::index_t wi = wo * arg.window_strides_[2] +
wo * arg.window_strides_[2] + x - arg.in_left_pads_[2]; x * arg.window_dilations_[2] -
arg.in_left_pads_[2];
if(di >= 0 && if(di >= 0 &&
di < static_cast<ck::index_t>(arg.in_.mDesc.GetLengths()[2]) && di < static_cast<ck::index_t>(arg.in_.mDesc.GetLengths()[2]) &&
hi >= 0 && hi >= 0 &&
...@@ -136,14 +142,17 @@ struct ReferencePoolingFwd : public device::BaseOperator ...@@ -136,14 +142,17 @@ struct ReferencePoolingFwd : public device::BaseOperator
for(ck::index_t z = 0; z < arg.window_spatial_lengths_[0]; ++z) for(ck::index_t z = 0; z < arg.window_spatial_lengths_[0]; ++z)
{ {
ck::index_t di = do_ * arg.window_strides_[0] + z - arg.in_left_pads_[0]; ck::index_t di = do_ * arg.window_strides_[0] +
z * arg.window_dilations_[0] - arg.in_left_pads_[0];
for(ck::index_t y = 0; y < arg.window_spatial_lengths_[1]; ++y) for(ck::index_t y = 0; y < arg.window_spatial_lengths_[1]; ++y)
{ {
ck::index_t hi = ho * arg.window_strides_[1] + y - arg.in_left_pads_[1]; ck::index_t hi = ho * arg.window_strides_[1] +
y * arg.window_dilations_[1] - arg.in_left_pads_[1];
for(ck::index_t x = 0; x < arg.window_spatial_lengths_[2]; ++x) for(ck::index_t x = 0; x < arg.window_spatial_lengths_[2]; ++x)
{ {
ck::index_t wi = ck::index_t wi = wo * arg.window_strides_[2] +
wo * arg.window_strides_[2] + x - arg.in_left_pads_[2]; x * arg.window_dilations_[2] -
arg.in_left_pads_[2];
if(di >= 0 && if(di >= 0 &&
di < static_cast<ck::index_t>(arg.in_.mDesc.GetLengths()[2]) && di < static_cast<ck::index_t>(arg.in_.mDesc.GetLengths()[2]) &&
hi >= 0 && hi >= 0 &&
...@@ -202,10 +211,12 @@ struct ReferencePoolingFwd : public device::BaseOperator ...@@ -202,10 +211,12 @@ struct ReferencePoolingFwd : public device::BaseOperator
for(ck::index_t y = 0; y < arg.window_spatial_lengths_[0]; ++y) for(ck::index_t y = 0; y < arg.window_spatial_lengths_[0]; ++y)
{ {
ck::index_t hi = ho * arg.window_strides_[0] + y - arg.in_left_pads_[0]; ck::index_t hi = ho * arg.window_strides_[0] +
y * arg.window_dilations_[0] - arg.in_left_pads_[0];
for(ck::index_t x = 0; x < arg.window_spatial_lengths_[1]; ++x) for(ck::index_t x = 0; x < arg.window_spatial_lengths_[1]; ++x)
{ {
ck::index_t wi = wo * arg.window_strides_[1] + x - arg.in_left_pads_[1]; ck::index_t wi = wo * arg.window_strides_[1] +
x * arg.window_dilations_[1] - arg.in_left_pads_[1];
if(hi >= 0 && if(hi >= 0 &&
hi < static_cast<ck::index_t>(arg.in_.mDesc.GetLengths()[2]) && hi < static_cast<ck::index_t>(arg.in_.mDesc.GetLengths()[2]) &&
wi >= 0 && wi >= 0 &&
...@@ -308,6 +319,7 @@ struct ReferencePoolingFwd : public device::BaseOperator ...@@ -308,6 +319,7 @@ struct ReferencePoolingFwd : public device::BaseOperator
Tensor<IndexDataType>& out_indices, Tensor<IndexDataType>& out_indices,
const std::vector<ck::index_t>& window_spatial_lengths, const std::vector<ck::index_t>& window_spatial_lengths,
const std::vector<ck::index_t>& window_strides, const std::vector<ck::index_t>& window_strides,
const std::vector<ck::index_t>& window_dilations,
const std::vector<ck::index_t>& in_left_pads, const std::vector<ck::index_t>& in_left_pads,
const std::vector<ck::index_t>& in_right_pads) const std::vector<ck::index_t>& in_right_pads)
{ {
...@@ -316,6 +328,7 @@ struct ReferencePoolingFwd : public device::BaseOperator ...@@ -316,6 +328,7 @@ struct ReferencePoolingFwd : public device::BaseOperator
out_indices, out_indices,
window_spatial_lengths, window_spatial_lengths,
window_strides, window_strides,
window_dilations,
in_left_pads, in_left_pads,
in_right_pads}; in_right_pads};
} }
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_pool_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto InOutRank = 4;
static constexpr auto WindowRank = 2;
static constexpr auto MaxOp = ck::ReduceTensorOp::MAX;
static constexpr auto AvgOp = ck::ReduceTensorOp::AVG;
#ifdef __fp16__
// FP16
void add_device_pool2d_fwd_nhwc_f16_instances(
std::vector<
std::unique_ptr<DevicePoolFwd<InOutRank, WindowRank, F16, F16, I32, MaxOp, false>>>&);
void add_device_pool2d_fwd_nhwc_f16_instances(
std::vector<
std::unique_ptr<DevicePoolFwd<InOutRank, WindowRank, F16, F16, I32, AvgOp, false>>>&);
// FP16 - return index
void add_device_pool2d_fwd_nhwc_index_f16_instances(
std::vector<
std::unique_ptr<DevicePoolFwd<InOutRank, WindowRank, F16, F16, I32, MaxOp, true>>>&);
#endif
#ifdef __fp32__
// FP32
void add_device_pool2d_fwd_nhwc_f32_instances(
std::vector<
std::unique_ptr<DevicePoolFwd<InOutRank, WindowRank, F32, F32, I32, MaxOp, false>>>&);
void add_device_pool2d_fwd_nhwc_f32_instances(
std::vector<
std::unique_ptr<DevicePoolFwd<InOutRank, WindowRank, F32, F32, I32, AvgOp, false>>>&);
// FP32 - return index
void add_device_pool2d_fwd_nhwc_index_f32_instances(
std::vector<
std::unique_ptr<DevicePoolFwd<InOutRank, WindowRank, F32, F32, I32, MaxOp, true>>>&);
#endif
template <typename InDataType,
typename OutDataType,
typename IndexDataType,
ck::ReduceTensorOp ReduceOpId,
bool OutputIndex>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DevicePoolFwd<InOutRank,
WindowRank,
InDataType,
OutDataType,
IndexDataType,
ReduceOpId,
OutputIndex>>
{
using DeviceOp = DevicePoolFwd<InOutRank,
WindowRank,
InDataType,
OutDataType,
IndexDataType,
ReduceOpId,
OutputIndex>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
#ifdef __fp16__
if constexpr(is_same_v<InDataType, F16> && is_same_v<OutDataType, F16> &&
is_same_v<IndexDataType, I32>)
{
if constexpr(OutputIndex && ReduceOpId == MaxOp)
{
add_device_pool2d_fwd_nhwc_index_f16_instances(op_ptrs);
}
else
{
add_device_pool2d_fwd_nhwc_f16_instances(op_ptrs);
}
}
#endif
#ifdef __fp32__
if constexpr(is_same_v<InDataType, F32> && is_same_v<OutDataType, F32> &&
is_same_v<IndexDataType, I32>)
{
if constexpr(OutputIndex && ReduceOpId == MaxOp)
{
add_device_pool2d_fwd_nhwc_index_f32_instances(op_ptrs);
}
else
{
add_device_pool2d_fwd_nhwc_f32_instances(op_ptrs);
}
}
#endif
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -25,36 +25,38 @@ static constexpr auto AvgOp = ck::ReduceTensorOp::AVG; ...@@ -25,36 +25,38 @@ static constexpr auto AvgOp = ck::ReduceTensorOp::AVG;
#ifdef __fp16__ #ifdef __fp16__
// FP16 // FP16
void add_device_pool3d_fwd_ndhwc_f16_instances( void add_device_pool3d_fwd_ndhwc_f16_instances(
std::vector< std::vector<std::unique_ptr<
std::unique_ptr<DevicePoolFwd<InOutRank, WindowRank, F16, F16, I32, MaxOp, false>>>&); DevicePoolFwd<InOutRank, WindowRank, F16, F16, I32, NDHWC, NDHWC, MaxOp, false>>>&);
void add_device_pool3d_fwd_ndhwc_f16_instances( void add_device_pool3d_fwd_ndhwc_f16_instances(
std::vector< std::vector<std::unique_ptr<
std::unique_ptr<DevicePoolFwd<InOutRank, WindowRank, F16, F16, I32, AvgOp, false>>>&); DevicePoolFwd<InOutRank, WindowRank, F16, F16, I32, NDHWC, NDHWC, AvgOp, false>>>&);
// FP16 - return index // FP16 - return index
void add_device_pool3d_fwd_ndhwc_index_f16_instances( void add_device_pool3d_fwd_ndhwc_index_f16_instances(
std::vector< std::vector<std::unique_ptr<
std::unique_ptr<DevicePoolFwd<InOutRank, WindowRank, F16, F16, I32, MaxOp, true>>>&); DevicePoolFwd<InOutRank, WindowRank, F16, F16, I32, NDHWC, NDHWC, MaxOp, true>>>&);
#endif #endif
#ifdef __fp32__ #ifdef __fp32__
// FP32 // FP32
void add_device_pool3d_fwd_ndhwc_f32_instances( void add_device_pool3d_fwd_ndhwc_f32_instances(
std::vector< std::vector<std::unique_ptr<
std::unique_ptr<DevicePoolFwd<InOutRank, WindowRank, F32, F32, I32, MaxOp, false>>>&); DevicePoolFwd<InOutRank, WindowRank, F32, F32, I32, NDHWC, NDHWC, MaxOp, false>>>&);
void add_device_pool3d_fwd_ndhwc_f32_instances( void add_device_pool3d_fwd_ndhwc_f32_instances(
std::vector< std::vector<std::unique_ptr<
std::unique_ptr<DevicePoolFwd<InOutRank, WindowRank, F32, F32, I32, AvgOp, false>>>&); DevicePoolFwd<InOutRank, WindowRank, F32, F32, I32, NDHWC, NDHWC, AvgOp, false>>>&);
// FP32 - return index // FP32 - return index
void add_device_pool3d_fwd_ndhwc_index_f32_instances( void add_device_pool3d_fwd_ndhwc_index_f32_instances(
std::vector< std::vector<std::unique_ptr<
std::unique_ptr<DevicePoolFwd<InOutRank, WindowRank, F32, F32, I32, MaxOp, true>>>&); DevicePoolFwd<InOutRank, WindowRank, F32, F32, I32, NDHWC, NDHWC, MaxOp, true>>>&);
#endif #endif
template <typename InDataType, template <typename InDataType,
typename OutDataType, typename OutDataType,
typename IndexDataType, typename IndexDataType,
typename InLayout,
typename OutLayout,
ck::ReduceTensorOp ReduceOpId, ck::ReduceTensorOp ReduceOpId,
bool OutputIndex> bool OutputIndex>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DevicePoolFwd<InOutRank, struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DevicePoolFwd<InOutRank,
...@@ -62,6 +64,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DevicePoolFw ...@@ -62,6 +64,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DevicePoolFw
InDataType, InDataType,
OutDataType, OutDataType,
IndexDataType, IndexDataType,
InLayout,
OutLayout,
ReduceOpId, ReduceOpId,
OutputIndex>> OutputIndex>>
{ {
...@@ -70,40 +74,46 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DevicePoolFw ...@@ -70,40 +74,46 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DevicePoolFw
InDataType, InDataType,
OutDataType, OutDataType,
IndexDataType, IndexDataType,
InLayout,
OutLayout,
ReduceOpId, ReduceOpId,
OutputIndex>; OutputIndex>;
static auto GetInstances() static auto GetInstances()
{ {
std::vector<std::unique_ptr<DeviceOp>> op_ptrs; std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
#ifdef __fp16__ if constexpr(is_same_v<InLayout, NDHWC> && is_same_v<OutLayout, NDHWC>)
if constexpr(is_same_v<InDataType, F16> && is_same_v<OutDataType, F16> &&
is_same_v<IndexDataType, I32>)
{ {
if constexpr(OutputIndex && ReduceOpId == MaxOp) #ifdef __fp16__
{ if constexpr(is_same_v<InDataType, F16> && is_same_v<OutDataType, F16> &&
add_device_pool3d_fwd_ndhwc_index_f16_instances(op_ptrs); is_same_v<IndexDataType, I32>)
}
else
{ {
add_device_pool3d_fwd_ndhwc_f16_instances(op_ptrs); if constexpr(OutputIndex && ReduceOpId == MaxOp)
{
add_device_pool3d_fwd_ndhwc_index_f16_instances(op_ptrs);
}
else
{
add_device_pool3d_fwd_ndhwc_f16_instances(op_ptrs);
}
} }
}
#endif #endif
#ifdef __fp32__ #ifdef __fp32__
if constexpr(is_same_v<InDataType, F32> && is_same_v<OutDataType, F32> && if constexpr(is_same_v<InDataType, F32> && is_same_v<OutDataType, F32> &&
is_same_v<IndexDataType, I32>) is_same_v<IndexDataType, I32>)
{
if constexpr(OutputIndex && ReduceOpId == MaxOp)
{ {
add_device_pool3d_fwd_ndhwc_index_f32_instances(op_ptrs); if constexpr(OutputIndex && ReduceOpId == MaxOp)
{
add_device_pool3d_fwd_ndhwc_index_f32_instances(op_ptrs);
}
else
{
add_device_pool3d_fwd_ndhwc_f32_instances(op_ptrs);
}
} }
else
{
add_device_pool3d_fwd_ndhwc_f32_instances(op_ptrs);
}
}
#endif #endif
}
return op_ptrs; return op_ptrs;
} }
}; };
......
set(DEVICE_POOL_FWD_INSTANCES) set(DEVICE_POOL3D_FWD_INSTANCES)
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES) if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND DEVICE_POOL_FWD_INSTANCES device_avg_pool2d_fwd_nhwc_f16_instance.cpp list(APPEND DEVICE_POOL3D_FWD_INSTANCES device_avg_pool3d_fwd_ndhwc_f16_instance.cpp
device_avg_pool3d_fwd_ndhwc_f16_instance.cpp
device_max_pool2d_fwd_nhwc_f16_instance.cpp
device_max_pool3d_fwd_ndhwc_f16_instance.cpp) device_max_pool3d_fwd_ndhwc_f16_instance.cpp)
endif() endif()
if(DTYPES MATCHES "fp32" OR NOT DEFINED DTYPES) if(DTYPES MATCHES "fp32" OR NOT DEFINED DTYPES)
list(APPEND DEVICE_POOL_FWD_INSTANCES device_avg_pool2d_fwd_nhwc_f32_instance.cpp list(APPEND DEVICE_POOL3D_FWD_INSTANCES device_avg_pool3d_fwd_ndhwc_f32_instance.cpp
device_avg_pool3d_fwd_ndhwc_f32_instance.cpp
device_max_pool2d_fwd_nhwc_f32_instance.cpp
device_max_pool3d_fwd_ndhwc_f32_instance.cpp) device_max_pool3d_fwd_ndhwc_f32_instance.cpp)
endif() endif()
add_instance_library(device_pool_fwd_instance ${DEVICE_POOL_FWD_INSTANCES}) add_instance_library(device_pool3d_fwd_instance ${DEVICE_POOL3D_FWD_INSTANCES})
...@@ -11,7 +11,9 @@ namespace instance { ...@@ -11,7 +11,9 @@ namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG; static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
void add_device_pool3d_fwd_ndhwc_f16_instances( void add_device_pool3d_fwd_ndhwc_f16_instances(
std::vector<std::unique_ptr<DevicePoolFwd<5, 3, F16, F16, I32, ReduceOpId, false>>>& instances) std::vector<
std::unique_ptr<DevicePoolFwd<5, 3, F16, F16, I32, NDHWC, NDHWC, ReduceOpId, false>>>&
instances)
{ {
add_device_operation_instances( add_device_operation_instances(
instances, device_pool3d_fwd_ndhwc_instances<F16, F16, I32, F32, ReduceOpId, false>{}); instances, device_pool3d_fwd_ndhwc_instances<F16, F16, I32, F32, ReduceOpId, false>{});
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment