Commit f3bbfe3e authored by aska-0096's avatar aska-0096
Browse files

Merge branch 'develop' of https://github.com/ROCm/composable_kernel into update_cka8w8

parents 2b840f5a efb34741
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/softmax.hpp"
#include "ck_tile/ops/topk.hpp"
namespace ck_tile {
struct MoeSortingPolicy
{
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include <string>
#include <type_traits>
namespace ck_tile {
template <typename IndexType_, typename WeightType_, index_t InternalLoadUnroll_>
struct MoeSortingProblem
{
// TODO: this kernel only support warp per row
using WeightType = remove_cvref_t<WeightType_>;
using IndexType = remove_cvref_t<IndexType_>;
static constexpr index_t WarpSize = get_warp_size();
static constexpr index_t WarpsPerBlock = 1;
static constexpr index_t InternalLoadUnroll = InternalLoadUnroll_;
};
} // namespace ck_tile
...@@ -115,12 +115,22 @@ struct GemmKernel ...@@ -115,12 +115,22 @@ struct GemmKernel
} }
}(); }();
auto a_pad_view = pad_tensor_view( auto a_pad_view = [&]() {
a_tensor_view, if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::RowMajor>)
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kK>{}), {
// somehow clang-format is splitting below line into multiple. return pad_tensor_view(
// clang-format off a_tensor_view,
sequence<false, GemmPipeline::kPadA>{}); make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kK>{}),
sequence<false, GemmPipeline::kPadK>{});
}
else
{
return pad_tensor_view(
a_tensor_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kK>{}),
sequence<GemmPipeline::kPadM, false>{});
}
}();
// clang-format on // clang-format on
auto a_block_window = make_tile_window( auto a_block_window = make_tile_window(
...@@ -128,12 +138,22 @@ struct GemmKernel ...@@ -128,12 +138,22 @@ struct GemmKernel
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kK>{}), make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kK>{}),
{i_m, 0}); {i_m, 0});
auto b_pad_view = pad_tensor_view( auto b_pad_view = [&]() {
b_tensor_view, if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::ColumnMajor>)
make_tuple(number<TilePartitioner::kN>{}, number<TilePartitioner::kK>{}), {
// clang-format off return pad_tensor_view(
sequence<false, GemmPipeline::kPadB>{}); b_tensor_view,
// clang-format on make_tuple(number<TilePartitioner::kN>{}, number<TilePartitioner::kK>{}),
sequence<false, GemmPipeline::kPadK>{});
}
else
{
return pad_tensor_view(
b_tensor_view,
make_tuple(number<TilePartitioner::kN>{}, number<TilePartitioner::kK>{}),
sequence<GemmPipeline::kPadN, false>{});
}
}();
auto b_block_window = make_tile_window( auto b_block_window = make_tile_window(
b_pad_view, b_pad_view,
...@@ -171,18 +191,28 @@ struct GemmKernel ...@@ -171,18 +191,28 @@ struct GemmKernel
} }
}(); }();
auto c_pad_view = pad_tensor_view( auto c_pad_view = [&]() {
c_tensor_view, if constexpr(std::is_same_v<CLayout, tensor_layout::gemm::RowMajor>)
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kN>{}), {
// clang-format off return pad_tensor_view(
sequence<false, GemmPipeline::kPadC>{}); c_tensor_view,
// clang-format on make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kN>{}),
auto c_block_window = make_tile_window( sequence<false, GemmPipeline::kPadN>{});
}
else
{
return pad_tensor_view(
c_tensor_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kN>{}),
sequence<GemmPipeline::kPadM, false>{});
}
}();
auto CBlockWindow_pad = make_tile_window(
c_pad_view, c_pad_view,
make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kN>{}), make_tuple(number<TilePartitioner::kM>{}, number<TilePartitioner::kN>{}),
{i_m, i_n}); {i_m, i_n});
EpiloguePipeline{}(c_block_window, c_block_tile); EpiloguePipeline{}(CBlockWindow_pad, c_block_tile);
} }
}; };
......
...@@ -113,9 +113,9 @@ struct GemmPipelineAgBgCrMem : public BaseGemmPipelineAgBgCrMem<Problem> ...@@ -113,9 +113,9 @@ struct GemmPipelineAgBgCrMem : public BaseGemmPipelineAgBgCrMem<Problem>
static constexpr index_t VectorSizeB = Problem::VectorSizeB; static constexpr index_t VectorSizeB = Problem::VectorSizeB;
static constexpr index_t VectorSizeC = Problem::VectorSizeC; static constexpr index_t VectorSizeC = Problem::VectorSizeC;
static constexpr bool kPadA = Problem::kPadA; static constexpr bool kPadM = Problem::kPadM;
static constexpr bool kPadB = Problem::kPadB; static constexpr bool kPadN = Problem::kPadN;
static constexpr bool kPadC = Problem::kPadC; static constexpr bool kPadK = Problem::kPadK;
// Where is the right place for HasHotLoop and TailNum ??? // Where is the right place for HasHotLoop and TailNum ???
static constexpr bool HasHotLoop = Problem::HasHotLoop; static constexpr bool HasHotLoop = Problem::HasHotLoop;
......
...@@ -33,9 +33,9 @@ struct GemmPipelineAGmemBGmemCRegV1 ...@@ -33,9 +33,9 @@ struct GemmPipelineAGmemBGmemCRegV1
static constexpr index_t VectorSizeB = Problem::VectorSizeB; static constexpr index_t VectorSizeB = Problem::VectorSizeB;
static constexpr index_t VectorSizeC = Problem::VectorSizeC; static constexpr index_t VectorSizeC = Problem::VectorSizeC;
static constexpr bool kPadA = Problem::kPadA; static constexpr bool kPadM = Problem::kPadM;
static constexpr bool kPadB = Problem::kPadB; static constexpr bool kPadN = Problem::kPadN;
static constexpr bool kPadC = Problem::kPadC; static constexpr bool kPadK = Problem::kPadK;
CK_TILE_HOST_DEVICE static constexpr index_t GetStaticLdsSize() CK_TILE_HOST_DEVICE static constexpr index_t GetStaticLdsSize()
{ {
...@@ -101,11 +101,8 @@ struct GemmPipelineAGmemBGmemCRegV1 ...@@ -101,11 +101,8 @@ struct GemmPipelineAGmemBGmemCRegV1
Policy::template MakeADramTileDistribution<Problem>()); Policy::template MakeADramTileDistribution<Problem>());
// A LDS tile window for store // A LDS tile window for store
auto a_copy_lds_window = auto a_copy_lds_window = make_tile_window(
make_tile_window(a_lds_block, a_lds_block, make_tuple(number<kMPerBlock>{}, number<kKPerBlock>{}), {0, 0});
make_tuple(number<kMPerBlock>{}, number<kKPerBlock>{}),
{0, 0},
a_copy_dram_window.get_tile_distribution());
// B DRAM tile window for load // B DRAM tile window for load
auto b_copy_dram_window = auto b_copy_dram_window =
...@@ -115,11 +112,8 @@ struct GemmPipelineAGmemBGmemCRegV1 ...@@ -115,11 +112,8 @@ struct GemmPipelineAGmemBGmemCRegV1
Policy::template MakeBDramTileDistribution<Problem>()); Policy::template MakeBDramTileDistribution<Problem>());
// B LDS tile window for store // B LDS tile window for store
auto b_copy_lds_window = auto b_copy_lds_window = make_tile_window(
make_tile_window(b_lds_block, b_lds_block, make_tuple(number<kNPerBlock>{}, number<kKPerBlock>{}), {0, 0});
make_tuple(number<kNPerBlock>{}, number<kKPerBlock>{}),
{0, 0},
b_copy_dram_window.get_tile_distribution());
// A LDS tile for block GEMM // A LDS tile for block GEMM
auto a_lds_gemm_window = make_tile_window( auto a_lds_gemm_window = make_tile_window(
...@@ -149,12 +143,32 @@ struct GemmPipelineAGmemBGmemCRegV1 ...@@ -149,12 +143,32 @@ struct GemmPipelineAGmemBGmemCRegV1
tile_elementwise_inout([](auto& c) { c = 0; }, c_block_tile); tile_elementwise_inout([](auto& c) { c = 0; }, c_block_tile);
// LDS write 0 // LDS write 0
const auto a_block_tile_tmp = tile_elementwise_in(a_element_func, a_block_tile); if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::ColumnMajor>)
store_tile(a_copy_lds_window, a_block_tile_tmp); {
auto a_shuffle_tmp = make_static_distributed_tensor<ADataType>(
Policy::template MakeShuffledARegBlockDescriptor<Problem>());
shuffle_tile(a_shuffle_tmp, a_block_tile);
const auto a_block_tile_tmp = tile_elementwise_in(a_element_func, a_shuffle_tmp);
store_tile(a_copy_lds_window, a_block_tile_tmp);
}
else
{
store_tile(a_copy_lds_window, tile_elementwise_in(a_element_func, a_block_tile));
}
// LDS write 0 // LDS write 0
const auto b_block_tile_tmp = tile_elementwise_in(b_element_func, b_block_tile); if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::RowMajor>)
store_tile(b_copy_lds_window, b_block_tile_tmp); {
auto b_shuffle_tmp = make_static_distributed_tensor<BDataType>(
Policy::template MakeShuffledBRegBlockDescriptor<Problem>());
shuffle_tile(b_shuffle_tmp, b_block_tile);
const auto b_block_tile_tmp = tile_elementwise_in(b_element_func, b_shuffle_tmp);
store_tile(b_copy_lds_window, b_block_tile_tmp);
}
else
{
store_tile(b_copy_lds_window, tile_elementwise_in(b_element_func, b_block_tile));
}
} }
index_t iCounter = num_loop - 1; index_t iCounter = num_loop - 1;
...@@ -180,8 +194,19 @@ struct GemmPipelineAGmemBGmemCRegV1 ...@@ -180,8 +194,19 @@ struct GemmPipelineAGmemBGmemCRegV1
store_tile(a_copy_lds_window, a_block_tile_tmp); store_tile(a_copy_lds_window, a_block_tile_tmp);
// LDS write i + 1 // LDS write i + 1
const auto b_block_tile_tmp = tile_elementwise_in(b_element_func, b_block_tile); if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::RowMajor>)
store_tile(b_copy_lds_window, b_block_tile_tmp); {
auto b_shuffle_tmp_loop = make_static_distributed_tensor<BDataType>(
Policy::template MakeShuffledBRegBlockDescriptor<Problem>());
shuffle_tile(b_shuffle_tmp_loop, b_block_tile);
store_tile(b_copy_lds_window,
tile_elementwise_in(b_element_func, b_shuffle_tmp_loop));
}
else
{
const auto b_block_tile_tmp = tile_elementwise_in(b_element_func, b_block_tile);
store_tile(b_copy_lds_window, b_block_tile_tmp);
}
iCounter--; iCounter--;
} }
......
...@@ -11,6 +11,7 @@ namespace ck_tile { ...@@ -11,6 +11,7 @@ namespace ck_tile {
// Default policy class should not be templated, put template on member functions instead // Default policy class should not be templated, put template on member functions instead
struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
{ {
#if 0 #if 0
// 2d // 2d
template <typename Problem> template <typename Problem>
...@@ -116,6 +117,20 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy ...@@ -116,6 +117,20 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
return smem_size; return smem_size;
} }
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemPackA()
{
using ADataType = remove_cvref_t<typename Problem::ADataType>;
return Problem::VectorLoadSize / sizeof(ADataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemPackB()
{
using BDataType = remove_cvref_t<typename Problem::BDataType>;
return Problem::VectorLoadSize / sizeof(BDataType);
}
#elif 1 #elif 1
// fake XOR // fake XOR
template <typename Problem> template <typename Problem>
...@@ -192,80 +207,269 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy ...@@ -192,80 +207,269 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
CK_TILE_HOST_DEVICE static constexpr auto MakeADramTileDistribution() CK_TILE_HOST_DEVICE static constexpr auto MakeADramTileDistribution()
{ {
using ADataType = remove_cvref_t<typename Problem::ADataType>; using ADataType = remove_cvref_t<typename Problem::ADataType>;
using ALayout = remove_cvref_t<typename Problem::ALayout>;
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t BlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK; constexpr index_t MPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t K1 = 16 / sizeof(ADataType);
constexpr index_t K0 = kKPerBlock / K1; if constexpr(std::is_same_v<ALayout, ck_tile::tensor_layout::gemm::ColumnMajor>)
constexpr index_t M2 = get_warp_size() / K0; {
#if 1 // coalesce reading for each blocks constexpr index_t M1 = Problem::VectorLoadSize / sizeof(ADataType);
constexpr index_t M1 = kBlockSize / get_warp_size(); constexpr index_t M0 = MPerBlock / M1;
static_assert(M2 != 0, "M2 is zero, which will lead to a division by zero error."); constexpr index_t total_pixels = MPerBlock * KPerBlock / BlockSize;
static_assert(M1 != 0, "M1 is zero, which will lead to a division by zero error."); static_assert(total_pixels % M1 == 0);
constexpr index_t M0 = kMPerBlock / (M2 * M1); constexpr index_t K3 = total_pixels / M1;
constexpr index_t KPack = GetSmemPackA<Problem>();
return make_static_tile_distribution( static_assert(KPack % K3 == 0);
tile_distribution_encoding<sequence<1>, constexpr index_t K2 = KPack / K3;
tuple<sequence<M0, M1, M2>, sequence<K0, K1>>, if constexpr(get_warp_size() % (K2 * M0))
tuple<sequence<1>, sequence<1, 2>>, {
tuple<sequence<1>, sequence<2, 0>>, constexpr index_t K1 = get_warp_size() / (K2 * M0);
sequence<1, 2>, constexpr index_t K0 = BlockSize / get_warp_size();
sequence<0, 1>>{}); static_assert(KPerBlock == K0 * K1 * K2 * K3);
#else // coalesce reading for each warps return make_static_tile_distribution(
constexpr index_t M0 = kBlockSize / get_warp_size(); tile_distribution_encoding<sequence<1>,
constexpr index_t M1 = kMPerBlock / (M2 * M0); tuple<sequence<M0, M1>, sequence<K0, K1, K2, K3>>,
tuple<sequence<2>, sequence<2, 1, 2>>,
return make_static_tile_distribution( tuple<sequence<0>, sequence<1, 0, 2>>,
tile_distribution_encoding<sequence<1>, sequence<2, 1>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1>>, sequence<3, 1>>{});
tuple<sequence<1>, sequence<1, 2>>, }
tuple<sequence<0>, sequence<2, 0>>, else
sequence<1, 2>, {
sequence<1, 1>>{}); constexpr index_t K1 = (K2 * M0) / get_warp_size();
#endif constexpr index_t K2_m = K2 / K1;
constexpr index_t K0 = BlockSize / get_warp_size() / K1;
static_assert(KPerBlock == K0 * K1 * K2_m * K3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1>, sequence<K0, K1, K2_m, K3>>,
tuple<sequence<2, 2>, sequence<1, 2>>,
tuple<sequence<0, 1>, sequence<0, 2>>,
sequence<2, 1>,
sequence<3, 1>>{});
}
}
else
{
constexpr index_t K1 = 16 / sizeof(ADataType);
constexpr index_t K0 = KPerBlock / K1;
constexpr index_t M2 = get_warp_size() / K0;
// coalesce reading for each blocks
if constexpr(get_warp_size() % (M2 * K0) == 0)
{
constexpr index_t M1 = BlockSize / get_warp_size();
static_assert(M2 != 0, "M2 is zero, which will lead to a division by zero error.");
static_assert(M1 != 0, "M1 is zero, which will lead to a division by zero error.");
constexpr index_t M0 = MPerBlock / (M2 * M1);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
}
else
{
constexpr index_t M0 = BlockSize / get_warp_size();
constexpr index_t M1 = MPerBlock / (M2 * M0);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<0>, sequence<2, 0>>,
sequence<1, 2>,
sequence<1, 1>>{});
}
}
} }
template <typename Problem> template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeBDramTileDistribution() CK_TILE_HOST_DEVICE static constexpr auto MakeBDramTileDistribution()
{ {
using BDataType = remove_cvref_t<typename Problem::BDataType>; using BDataType = remove_cvref_t<typename Problem::BDataType>;
using BLayout = remove_cvref_t<typename Problem::BLayout>;
constexpr index_t BlockSize = Problem::kBlockSize;
constexpr index_t NPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
if constexpr(std::is_same_v<BLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
constexpr index_t N1 = Problem::VectorLoadSize / sizeof(BDataType);
constexpr index_t N0 = NPerBlock / N1;
constexpr index_t total_pixels = NPerBlock * KPerBlock / BlockSize;
static_assert(total_pixels % N1 == 0);
constexpr index_t K3 = total_pixels / N1;
constexpr index_t KPack = GetSmemPackB<Problem>();
static_assert(KPack % K3 == 0);
constexpr index_t K2 = KPack / K3;
if constexpr(get_warp_size() % (K2 * N0) == 0)
{
constexpr index_t K1 = get_warp_size() / (K2 * N0);
constexpr index_t K0 = BlockSize / get_warp_size();
static_assert(KPerBlock == K0 * K1 * K2 * K3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1>, sequence<K0, K1, K2, K3>>,
tuple<sequence<2>, sequence<2, 1, 2>>,
tuple<sequence<0>, sequence<1, 0, 2>>,
sequence<2, 1>,
sequence<3, 1>>{});
}
else
{
constexpr index_t K1 = (K2 * N0) / get_warp_size();
constexpr index_t K2_m = K2 / K1;
constexpr index_t K0 = BlockSize / get_warp_size() / K1;
static_assert(KPerBlock == K0 * K1 * K2_m * K3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1>, sequence<K0, K1, K2_m, K3>>,
tuple<sequence<2, 2>, sequence<1, 2>>,
tuple<sequence<0, 1>, sequence<0, 2>>,
sequence<2, 1>,
sequence<3, 1>>{});
}
}
else
{
constexpr index_t K1 = Problem::VectorLoadSize / sizeof(BDataType);
constexpr index_t K0 = KPerBlock / K1;
constexpr index_t N2 = get_warp_size() / K0;
// coalesce reading for each blocks
if constexpr(get_warp_size() % (N2 * K0) == 0)
{
constexpr index_t N1 = BlockSize / get_warp_size();
static_assert(N2 != 0, "N2 is zero, which will lead to a division by zero error.");
static_assert(N1 != 0, "N1 is zero, which will lead to a division by zero error.");
constexpr index_t N0 = NPerBlock / (N2 * N1);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1, N2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
}
// coalesce reading for each warps
else
{
constexpr index_t N0 = BlockSize / get_warp_size();
constexpr index_t N1 = NPerBlock / (N2 * N0);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1, N2>, sequence<K0, K1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<0>, sequence<2, 0>>,
sequence<1, 2>,
sequence<1, 1>>{});
}
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffledBRegBlockDescriptor()
{
using BLayout = remove_cvref_t<typename Problem::BLayout>;
using BDataType = remove_cvref_t<typename Problem::BDataType>;
static_assert(std::is_same_v<BLayout, ck_tile::tensor_layout::gemm::RowMajor>);
constexpr index_t kBlockSize = Problem::kBlockSize; constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kNPerBlock = Problem::BlockGemmShape::kN; constexpr index_t kNPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK; constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t K1 = 16 / sizeof(BDataType); constexpr index_t N1 = Problem::VectorLoadSize / sizeof(BDataType);
constexpr index_t K0 = kKPerBlock / K1; constexpr index_t N0 = kNPerBlock / N1;
constexpr index_t N2 = get_warp_size() / K0; constexpr index_t total_pixels = kNPerBlock * kKPerBlock / kBlockSize;
#if 1 // coalesce reading for each blocks static_assert(total_pixels % N1 == 0);
constexpr index_t N1 = kBlockSize / get_warp_size(); constexpr index_t K3 = total_pixels / N1;
static_assert(N2 != 0, "M2 is zero, which will lead to a division by zero error."); constexpr index_t kKPack = GetSmemPackB<Problem>();
static_assert(N1 != 0, "M1 is zero, which will lead to a division by zero error."); static_assert(kKPack % K3 == 0);
constexpr index_t N0 = kNPerBlock / (N2 * N1); constexpr index_t K2 = kKPack / K3; // TODO: this dimention could be outside single wave
constexpr index_t warp_size = get_warp_size();
return make_static_tile_distribution( if constexpr(warp_size % (K2 * N0) == 0)
tile_distribution_encoding<sequence<1>, {
tuple<sequence<N0, N1, N2>, sequence<K0, K1>>, constexpr index_t K1 = warp_size / (K2 * N0);
tuple<sequence<1>, sequence<1, 2>>, constexpr index_t K0 = kBlockSize / warp_size;
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>, return make_static_tile_distribution(
sequence<0, 1>>{}); tile_distribution_encoding<sequence<1>,
#else // coalesce reading for each warps tuple<sequence<N0, N1>, sequence<K0, K1, K2, K3>>,
constexpr index_t N0 = kBlockSize / get_warp_size(); tuple<sequence<2>, sequence<2, 1, 2>>,
constexpr index_t N1 = kNPerBlock / (N2 * N0); tuple<sequence<0>, sequence<1, 0, 2>>,
sequence<1, 2>,
return make_static_tile_distribution( sequence<1, 3>>{});
tile_distribution_encoding<sequence<1>, }
tuple<sequence<N0, N1, N2>, sequence<K0, K1>>, else
tuple<sequence<1>, sequence<1, 2>>, {
tuple<sequence<0>, sequence<2, 0>>, constexpr index_t K1 = (K2 * N0) / get_warp_size();
sequence<1, 2>, constexpr index_t K2_m = K2 / K1;
sequence<1, 1>>{}); constexpr index_t K0 = kBlockSize / get_warp_size() / K1;
#endif static_assert(kKPerBlock == K0 * K1 * K2_m * K3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<N0, N1>, sequence<K0, K1, K2_m, K3>>,
tuple<sequence<2, 2>, sequence<1, 2>>,
tuple<sequence<0, 1>, sequence<0, 2>>,
sequence<1, 2>,
sequence<1, 3>>{});
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffledARegBlockDescriptor()
{
using ALayout = remove_cvref_t<typename Problem::ALayout>;
using ADataType = remove_cvref_t<typename Problem::ADataType>;
static_assert(std::is_same_v<ALayout, ck_tile::tensor_layout::gemm::RowMajor>);
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t M1 = Problem::VectorLoadSize / sizeof(ADataType);
constexpr index_t M0 = kMPerBlock / M1;
constexpr index_t total_pixels = kMPerBlock * kKPerBlock / kBlockSize;
static_assert(total_pixels % M1 == 0);
constexpr index_t K3 = total_pixels / M1;
constexpr index_t kKPack = GetSmemPackA<Problem>();
static_assert(kKPack % K3 == 0);
constexpr index_t K2 = kKPack / K3; // TODO: this dimention could be outside single wave
constexpr index_t warp_size = get_warp_size();
if constexpr(warp_size % (K2 * M0) == 0)
{
constexpr index_t K1 = warp_size / (K2 * M0);
constexpr index_t K0 = kBlockSize / warp_size;
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1>, sequence<K0, K1, K2, K3>>,
tuple<sequence<2>, sequence<2, 1, 2>>,
tuple<sequence<0>, sequence<1, 0, 2>>,
sequence<1, 2>,
sequence<1, 3>>{});
}
else
{
constexpr index_t K1 = (K2 * M0) / get_warp_size();
constexpr index_t K2_m = K2 / K1;
constexpr index_t K0 = kBlockSize / get_warp_size() / K1;
static_assert(kKPerBlock == K0 * K1 * K2_m * K3);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1>, sequence<K0, K1, K2_m, K3>>,
tuple<sequence<2, 2>, sequence<1, 2>>,
tuple<sequence<0, 1>, sequence<0, 2>>,
sequence<1, 2>,
sequence<1, 3>>{});
}
} }
template <typename Problem> template <typename Problem>
......
...@@ -3,40 +3,133 @@ ...@@ -3,40 +3,133 @@
#pragma once #pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_scheduler.hpp" #include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_scheduler.hpp"
namespace ck_tile { namespace ck_tile {
static constexpr int _VectorSize = 16;
template <typename ADataType_, template <typename ADataType_,
typename BDataType_, typename BDataType_,
typename CDataType_, typename CDataType_,
typename BlockGemmShape_, typename BlockGemmShape_,
typename TileGemmTraits_> typename TileGemmTraits_>
struct GemmPipelineProblem struct GemmPipelineProblemBase
{ {
using ADataType = remove_cvref_t<ADataType_>; using GemmTraits = remove_cvref_t<TileGemmTraits_>;
using BDataType = remove_cvref_t<BDataType_>;
using CDataType = remove_cvref_t<CDataType_>; using ADataType = remove_cvref_t<ADataType_>;
using BDataType = remove_cvref_t<BDataType_>;
using CDataType = remove_cvref_t<CDataType_>;
using BlockGemmShape = remove_cvref_t<BlockGemmShape_>; using BlockGemmShape = remove_cvref_t<BlockGemmShape_>;
using GemmTraits = remove_cvref_t<TileGemmTraits_>;
using ALayout = remove_cvref_t<typename GemmTraits::ALayout>; using ALayout = remove_cvref_t<typename GemmTraits::ALayout>;
using BLayout = remove_cvref_t<typename GemmTraits::BLayout>; using BLayout = remove_cvref_t<typename GemmTraits::BLayout>;
using CLayout = remove_cvref_t<typename GemmTraits::CLayout>; using CLayout = remove_cvref_t<typename GemmTraits::CLayout>;
static constexpr index_t kBlockSize = BlockGemmShape::NumWarps * get_warp_size(); static constexpr index_t VectorLoadSize = GemmTraits::_VectorSize;
static constexpr bool kPadA = GemmTraits::kPadA; static constexpr index_t kBlockSize = BlockGemmShape::NumWarps * get_warp_size();
static constexpr bool kPadB = GemmTraits::kPadB;
static constexpr bool kPadC = GemmTraits::kPadC; static constexpr bool kPadM = GemmTraits::kPadM;
static constexpr bool kPadN = GemmTraits::kPadN;
static constexpr bool kPadK = GemmTraits::kPadK;
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentA()
{
if constexpr(std::is_same_v<ALayout, ck_tile::tensor_layout::gemm::ColumnMajor>)
{
constexpr index_t pixels_per_thread =
BlockGemmShape::kM * BlockGemmShape::kK / kBlockSize;
return pixels_per_thread < VectorLoadSize / sizeof(ADataType)
? pixels_per_thread
: VectorLoadSize / sizeof(ADataType);
}
else
{
return VectorLoadSize / sizeof(ADataType);
}
}
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentB()
{
if constexpr(std::is_same_v<BLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
constexpr index_t pixels_per_thread =
BlockGemmShape::kN * BlockGemmShape::kK / kBlockSize;
return pixels_per_thread < VectorLoadSize / sizeof(BDataType)
? pixels_per_thread
: VectorLoadSize / sizeof(BDataType);
}
else
{
return VectorLoadSize / sizeof(BDataType);
}
}
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentC()
{
if constexpr(std::is_same_v<CLayout, ck_tile::tensor_layout::gemm::ColumnMajor>)
{
constexpr index_t N1 = kBlockSize / get_warp_size();
constexpr index_t N2 = std::min(BlockGemmShape::kN / N1, get_warp_size());
constexpr index_t M0 = get_warp_size() / N2;
constexpr index_t M1 = BlockGemmShape::kM / M0;
static constexpr index_t VectorSizeA = kPadA ? 1 : _VectorSize / sizeof(ADataType); return std::min(M1, static_cast<index_t>(VectorLoadSize / sizeof(CDataType)));
static constexpr index_t VectorSizeB = kPadB ? 1 : _VectorSize / sizeof(BDataType); }
static constexpr index_t VectorSizeC = kPadC ? 1 : _VectorSize / sizeof(CDataType); else
{
constexpr index_t M1 = kBlockSize / get_warp_size();
constexpr index_t M2 = std::min(BlockGemmShape::kM / M1, get_warp_size());
constexpr index_t N0 = get_warp_size() / M2;
constexpr index_t N1 = BlockGemmShape::kN / N0;
return std::min(N1, static_cast<index_t>(VectorLoadSize / sizeof(CDataType)));
}
}
static constexpr index_t VectorSizeA = []() {
if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::RowMajor>)
{
return kPadK ? 1 : GetAlignmentA();
}
else
{
return kPadM ? 1 : GetAlignmentA();
}
}();
static constexpr index_t VectorSizeB = []() {
if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::ColumnMajor>)
{
return kPadN ? 1 : GetAlignmentB();
}
else
{
return kPadK ? 1 : GetAlignmentB();
}
}();
static constexpr index_t VectorSizeC = []() {
if constexpr(std::is_same_v<CLayout, tensor_layout::gemm::RowMajor>)
{
return kPadN ? 1 : GetAlignmentC();
}
else
{
return kPadM ? 1 : GetAlignmentC();
}
}();
}; };
// Alias for GemmPipelineProblem
template <typename ADataType_,
typename BDataType_,
typename CDataType_,
typename BlockGemmShape_,
typename TileGemmTraits_>
using GemmPipelineProblem =
GemmPipelineProblemBase<ADataType_, BDataType_, CDataType_, BlockGemmShape_, TileGemmTraits_>;
template <typename ADataType_, template <typename ADataType_,
typename BDataType_, typename BDataType_,
typename CDataType_, typename CDataType_,
...@@ -45,30 +138,15 @@ template <typename ADataType_, ...@@ -45,30 +138,15 @@ template <typename ADataType_,
GemmPipelineScheduler Scheduler_ = GemmPipelineScheduler::Intrawave, GemmPipelineScheduler Scheduler_ = GemmPipelineScheduler::Intrawave,
bool HasHotLoop_ = true, bool HasHotLoop_ = true,
TailNumber TailNum_ = TailNumber::Full> TailNumber TailNum_ = TailNumber::Full>
struct UniversalGemmPipelineProblem struct UniversalGemmPipelineProblem : public GemmPipelineProblemBase<ADataType_,
BDataType_,
CDataType_,
BlockGemmShape_,
TileGemmTraits_>
{ {
using ADataType = remove_cvref_t<ADataType_>; static constexpr auto Scheduler = Scheduler_;
using BDataType = remove_cvref_t<BDataType_>; static constexpr auto HasHotLoop = HasHotLoop_;
using CDataType = remove_cvref_t<CDataType_>; static constexpr auto TailNum = TailNum_;
using BlockGemmShape = remove_cvref_t<BlockGemmShape_>;
using GemmTraits = remove_cvref_t<TileGemmTraits_>;
using ALayout = remove_cvref_t<typename GemmTraits::ALayout>;
using BLayout = remove_cvref_t<typename GemmTraits::BLayout>;
using CLayout = remove_cvref_t<typename GemmTraits::CLayout>;
static constexpr auto Scheduler = Scheduler_;
static constexpr auto HasHotLoop = HasHotLoop_;
static constexpr auto TailNum = TailNum_;
static constexpr index_t kBlockSize = BlockGemmShape::NumWarps * get_warp_size();
static constexpr bool kPadA = GemmTraits::kPadA;
static constexpr bool kPadB = GemmTraits::kPadB;
static constexpr bool kPadC = GemmTraits::kPadC;
static constexpr index_t VectorSizeA = kPadA ? _VectorSize / sizeof(ADataType) : 1;
static constexpr index_t VectorSizeB = kPadB ? _VectorSize / sizeof(BDataType) : 1;
static constexpr index_t VectorSizeC = kPadC ? _VectorSize / sizeof(CDataType) : 1;
}; };
} // namespace ck_tile } // namespace ck_tile
...@@ -3,19 +3,23 @@ ...@@ -3,19 +3,23 @@
#pragma once #pragma once
#include "ck_tile/core.hpp"
namespace ck_tile { namespace ck_tile {
template <bool kPadA_, template <bool kPadM_,
bool kPadB_, bool kPadN_,
bool kPadC_, bool kPadK_,
typename ALayout_, typename ALayout_,
typename BLayout_, typename BLayout_,
typename CLayout_> typename CLayout_>
struct TileGemmTraits struct TileGemmTraits
{ {
static constexpr bool kPadA = kPadA_; static constexpr bool kPadM = kPadM_;
static constexpr bool kPadB = kPadB_; static constexpr bool kPadN = kPadN_;
static constexpr bool kPadC = kPadC_; static constexpr bool kPadK = kPadK_;
static constexpr int _VectorSize = 16;
using ALayout = ALayout_; using ALayout = ALayout_;
using BLayout = BLayout_; using BLayout = BLayout_;
......
...@@ -28,7 +28,10 @@ struct Layernorm2dFwdHostArgs ...@@ -28,7 +28,10 @@ struct Layernorm2dFwdHostArgs
index_t m; index_t m;
index_t n; index_t n;
index_t stride; // row_stride index_t x_stride; // x row_stride
index_t xr_stride; // x residule row stride
index_t y_stride; // y row stride
index_t yr_stride; // y residule row stride
}; };
// TODO: Extract some type to wrapper class // TODO: Extract some type to wrapper class
...@@ -93,7 +96,10 @@ struct Layernorm2dFwd ...@@ -93,7 +96,10 @@ struct Layernorm2dFwd
index_t m; index_t m;
index_t n; index_t n;
index_t stride; // row_stride index_t x_stride; // x row_stride
index_t xr_stride; // x residule row stride
index_t y_stride; // y row stride
index_t yr_stride; // y residule row stride
}; };
using Hargs = Layernorm2dFwdHostArgs; using Hargs = Layernorm2dFwdHostArgs;
...@@ -112,7 +118,10 @@ struct Layernorm2dFwd ...@@ -112,7 +118,10 @@ struct Layernorm2dFwd
hargs.epsilon, hargs.epsilon,
hargs.m, hargs.m,
hargs.n, hargs.n,
hargs.stride}; hargs.x_stride,
hargs.xr_stride,
hargs.y_stride,
hargs.yr_stride};
} }
CK_TILE_HOST static constexpr auto GridSize(const Hargs& hargs) CK_TILE_HOST static constexpr auto GridSize(const Hargs& hargs)
...@@ -182,7 +191,7 @@ struct Layernorm2dFwd ...@@ -182,7 +191,7 @@ struct Layernorm2dFwd
const auto tmp_ = make_naive_tensor_view<address_space_enum::global>( const auto tmp_ = make_naive_tensor_view<address_space_enum::global>(
static_cast<const XDataType*>(kargs.p_x), static_cast<const XDataType*>(kargs.p_x),
make_tuple(kargs.m, kargs.n), make_tuple(kargs.m, kargs.n),
make_tuple(kargs.stride, 1), make_tuple(kargs.x_stride, 1),
number<Vector_N>{}, number<Vector_N>{},
number<1>{}); number<1>{});
...@@ -201,7 +210,7 @@ struct Layernorm2dFwd ...@@ -201,7 +210,7 @@ struct Layernorm2dFwd
const auto tmp_ = make_naive_tensor_view<address_space_enum::global>( const auto tmp_ = make_naive_tensor_view<address_space_enum::global>(
static_cast<const XResidualDataType*>(kargs.p_x_residual), static_cast<const XResidualDataType*>(kargs.p_x_residual),
make_tuple(kargs.m, kargs.n), make_tuple(kargs.m, kargs.n),
make_tuple(kargs.stride, 1), make_tuple(kargs.xr_stride, 1),
number<Vector_N>{}, number<Vector_N>{},
number<1>{}); number<1>{});
...@@ -250,7 +259,7 @@ struct Layernorm2dFwd ...@@ -250,7 +259,7 @@ struct Layernorm2dFwd
auto tmp_ = make_naive_tensor_view<address_space_enum::global>( auto tmp_ = make_naive_tensor_view<address_space_enum::global>(
static_cast<YDataType*>(kargs.p_y), static_cast<YDataType*>(kargs.p_y),
make_tuple(kargs.m, kargs.n), make_tuple(kargs.m, kargs.n),
make_tuple(kargs.stride, 1), make_tuple(kargs.y_stride, 1),
number<Vector_N>{}, number<Vector_N>{},
number<1>{}); number<1>{});
...@@ -266,7 +275,7 @@ struct Layernorm2dFwd ...@@ -266,7 +275,7 @@ struct Layernorm2dFwd
auto tmp_ = make_naive_tensor_view<address_space_enum::global>( auto tmp_ = make_naive_tensor_view<address_space_enum::global>(
static_cast<YResidualDataType*>(kargs.p_y_residual), static_cast<YResidualDataType*>(kargs.p_y_residual),
make_tuple(kargs.m, kargs.n), make_tuple(kargs.m, kargs.n),
make_tuple(kargs.stride, 1), make_tuple(kargs.yr_stride, 1),
number<Vector_N>{}, number<Vector_N>{},
number<1>{}); number<1>{});
......
...@@ -47,7 +47,8 @@ struct Layernorm2dFwdPipelineDefaultPolicy ...@@ -47,7 +47,8 @@ struct Layernorm2dFwdPipelineDefaultPolicy
{ {
using P_ = BlockWelfordProblem<typename Problem::ComputeDataType, using P_ = BlockWelfordProblem<typename Problem::ComputeDataType,
typename Problem::ComputeDataType, typename Problem::ComputeDataType,
typename Problem::BlockShape>; typename Problem::BlockShape,
Problem::Traits::kFastFDiv>;
return BlockWelford<P_>{}; return BlockWelford<P_>{};
} }
...@@ -57,7 +58,8 @@ struct Layernorm2dFwdPipelineDefaultPolicy ...@@ -57,7 +58,8 @@ struct Layernorm2dFwdPipelineDefaultPolicy
{ {
using P_ = BlockWelfordProblem<typename Problem::ComputeDataType, using P_ = BlockWelfordProblem<typename Problem::ComputeDataType,
typename Problem::ComputeDataType, typename Problem::ComputeDataType,
typename Problem::BlockShape>; typename Problem::BlockShape,
Problem::Traits::kFastFDiv>;
return BlockWelfordSync<P_>{}; return BlockWelfordSync<P_>{};
} }
...@@ -67,7 +69,8 @@ struct Layernorm2dFwdPipelineDefaultPolicy ...@@ -67,7 +69,8 @@ struct Layernorm2dFwdPipelineDefaultPolicy
{ {
using P_ = BlockWelfordProblem<typename Problem::ComputeDataType, using P_ = BlockWelfordProblem<typename Problem::ComputeDataType,
typename Problem::ComputeDataType, typename Problem::ComputeDataType,
typename Problem::BlockShape>; typename Problem::BlockShape,
Problem::Traits::kFastFDiv>;
return BlockWelfordCrossWarpSync<P_>{}; return BlockWelfordCrossWarpSync<P_>{};
} }
...@@ -79,7 +82,8 @@ struct Layernorm2dFwdPipelineDefaultPolicy ...@@ -79,7 +82,8 @@ struct Layernorm2dFwdPipelineDefaultPolicy
{ {
using P_ = BlockWelfordProblem<typename Problem::ComputeDataType, using P_ = BlockWelfordProblem<typename Problem::ComputeDataType,
typename Problem::ComputeDataType, typename Problem::ComputeDataType,
typename Problem::BlockShape>; typename Problem::BlockShape,
Problem::Traits::kFastFDiv>;
using block_welford = BlockWelford<P_>; using block_welford = BlockWelford<P_>;
using x_block_tile = using x_block_tile =
......
...@@ -36,6 +36,7 @@ struct Layernorm2dFwdPipelineOnePass ...@@ -36,6 +36,7 @@ struct Layernorm2dFwdPipelineOnePass
static constexpr bool kNeedCrossWarpSync = Problem::kNeedCrossWarpSync; static constexpr bool kNeedCrossWarpSync = Problem::kNeedCrossWarpSync;
static constexpr bool kPadM = false; // TODO - BlockLayernorm2dFwdProblem::kPadM static constexpr bool kPadM = false; // TODO - BlockLayernorm2dFwdProblem::kPadM
static constexpr bool kPadN = Problem::Traits::kPadN; static constexpr bool kPadN = Problem::Traits::kPadN;
static constexpr bool kFastFDiv = Problem::Traits::kFastFDiv;
static constexpr auto kFusedAdd = Problem::Traits::kFusedAdd; static constexpr auto kFusedAdd = Problem::Traits::kFusedAdd;
static constexpr auto kFusedQuant = Problem::Traits::kFusedQuant; static constexpr auto kFusedQuant = Problem::Traits::kFusedQuant;
...@@ -120,12 +121,20 @@ struct Layernorm2dFwdPipelineOnePass ...@@ -120,12 +121,20 @@ struct Layernorm2dFwdPipelineOnePass
auto [mean, var] = block_welford(acc, cur_count, max_count); auto [mean, var] = block_welford(acc, cur_count, max_count);
block_welford_sync(mean, var, cur_count); block_welford_sync(mean, var, cur_count);
block_welford_cross_warp_sync(mean, var, cur_count, smem); block_welford_cross_warp_sync(mean, var, cur_count, smem);
block_tile_welford_post_scale_var(var, cur_count); block_tile_welford_post_scale_var(var, cur_count, constant<kFastFDiv>{});
// compute inv-std // compute inv-std
auto inv_std = tile_elementwise_in( auto inv_std = tile_elementwise_in(
[&](const auto& v_) { [&](const auto& v_) {
return type_convert<ComputeDataType>(1.0f) / (sqrt(v_ + epsilon)); if(kFastFDiv && std::is_same_v<ComputeDataType, float>)
{
return type_convert<ComputeDataType>(1.0f) *
__builtin_amdgcn_rcpf(sqrt(v_ + epsilon));
}
else
{
return type_convert<ComputeDataType>(1.0f) / sqrt(v_ + epsilon);
}
}, },
var); var);
......
...@@ -35,6 +35,7 @@ struct Layernorm2dFwdPipelineTwoPass ...@@ -35,6 +35,7 @@ struct Layernorm2dFwdPipelineTwoPass
static constexpr bool kNeedCrossWarpSync = Problem::kNeedCrossWarpSync; static constexpr bool kNeedCrossWarpSync = Problem::kNeedCrossWarpSync;
static constexpr bool kPadM = false; // TODO - BlockLayernorm2dFwdProblem::kPadM static constexpr bool kPadM = false; // TODO - BlockLayernorm2dFwdProblem::kPadM
static constexpr bool kPadN = Problem::Traits::kPadN; static constexpr bool kPadN = Problem::Traits::kPadN;
static constexpr bool kFastFDiv = Problem::Traits::kFastFDiv;
static constexpr auto kFusedAdd = Problem::Traits::kFusedAdd; static constexpr auto kFusedAdd = Problem::Traits::kFusedAdd;
static constexpr auto kFusedQuant = Problem::Traits::kFusedQuant; static constexpr auto kFusedQuant = Problem::Traits::kFusedQuant;
...@@ -137,15 +138,22 @@ struct Layernorm2dFwdPipelineTwoPass ...@@ -137,15 +138,22 @@ struct Layernorm2dFwdPipelineTwoPass
block_welford_sync(mean, var, cur_count); block_welford_sync(mean, var, cur_count);
block_welford_cross_warp_sync(mean, var, cur_count, smem); block_welford_cross_warp_sync(mean, var, cur_count, smem);
block_tile_welford_post_scale_var(var, cur_count); block_tile_welford_post_scale_var(var, cur_count, constant<kFastFDiv>{});
// compute inv-std // compute inv-std
auto inv_std = tile_elementwise_in( auto inv_std = tile_elementwise_in(
[&](const auto& v_) { [&](const auto& v_) {
return type_convert<ComputeDataType>(1.0f) / (sqrt(v_ + epsilon)); if(kFastFDiv && std::is_same_v<ComputeDataType, float>)
{
return type_convert<ComputeDataType>(1.0f) *
__builtin_amdgcn_rcpf(sqrt(v_ + epsilon));
}
else
{
return type_convert<ComputeDataType>(1.0f) / sqrt(v_ + epsilon);
}
}, },
var); var);
if constexpr(kSaveMean) if constexpr(kSaveMean)
store_tile(mean_window, cast_tile<MeanDataType>(mean)); store_tile(mean_window, cast_tile<MeanDataType>(mean));
if constexpr(kSaveInvStd) if constexpr(kSaveInvStd)
......
...@@ -39,6 +39,7 @@ template<> struct Layernorm2dFusedQuantEnumName<Layernorm2dFusedQuantEnum::SMOOT ...@@ -39,6 +39,7 @@ template<> struct Layernorm2dFusedQuantEnumName<Layernorm2dFusedQuantEnum::SMOOT
template <bool kPadN_, template <bool kPadN_,
bool kSaveMeanInvStd_, bool kSaveMeanInvStd_,
bool kFastFDiv_,
bool kTwoPass_, bool kTwoPass_,
Layernorm2dFusedAddEnum kFusedAdd_, Layernorm2dFusedAddEnum kFusedAdd_,
Layernorm2dFusedQuantEnum kFusedQuant_> Layernorm2dFusedQuantEnum kFusedQuant_>
...@@ -46,6 +47,7 @@ struct Layernorm2dFwdTraits ...@@ -46,6 +47,7 @@ struct Layernorm2dFwdTraits
{ {
static constexpr bool kPadN = kPadN_; static constexpr bool kPadN = kPadN_;
static constexpr bool kSaveMeanInvStd = kSaveMeanInvStd_; static constexpr bool kSaveMeanInvStd = kSaveMeanInvStd_;
static constexpr bool kFastFDiv = kFastFDiv_;
static constexpr bool kTwoPass = kTwoPass_; static constexpr bool kTwoPass = kTwoPass_;
static constexpr Layernorm2dFusedAddEnum kFusedAdd = kFusedAdd_; static constexpr Layernorm2dFusedAddEnum kFusedAdd = kFusedAdd_;
static constexpr Layernorm2dFusedQuantEnum kFusedQuant = kFusedQuant_; static constexpr Layernorm2dFusedQuantEnum kFusedQuant = kFusedQuant_;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/ops/fused_moe/kernel/moe_sorting_kernel.hpp"
#include "ck_tile/ops/fused_moe/pipeline/moe_sorting_pipeline.hpp"
#include "ck_tile/ops/fused_moe/pipeline/moe_sorting_policy.hpp"
#include "ck_tile/ops/fused_moe/pipeline/moe_sorting_problem.hpp"
#include "ck_tile/ops/common/generic_2d_block_shape.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
...@@ -11,9 +11,10 @@ namespace ck_tile { ...@@ -11,9 +11,10 @@ namespace ck_tile {
template <typename Problem_, typename Policy_ = void> template <typename Problem_, typename Policy_ = void>
struct BlockWelford struct BlockWelford
{ {
using Problem = remove_cvref_t<Problem_>; using Problem = remove_cvref_t<Problem_>;
using XDataType = typename Problem::XDataType; using XDataType = typename Problem::XDataType;
using ComputeDataType = typename Problem::ComputeDataType; using ComputeDataType = typename Problem::ComputeDataType;
static constexpr bool kFastFDiv = Problem::kFastFDiv;
CK_TILE_DEVICE constexpr BlockWelford() {} CK_TILE_DEVICE constexpr BlockWelford() {}
...@@ -46,8 +47,11 @@ struct BlockWelford ...@@ -46,8 +47,11 @@ struct BlockWelford
auto x = ck_tile::type_convert<ComputeDataType>(x_tensor[in_dstr_idx]); auto x = ck_tile::type_convert<ComputeDataType>(x_tensor[in_dstr_idx]);
welford_update( welford_update(mean_tensor(out_dstr_idx),
mean_tensor(out_dstr_idx), var_tensor(out_dstr_idx), x, cur_count_); var_tensor(out_dstr_idx),
x,
cur_count_,
constant<kFastFDiv>{});
}); });
} }
}); });
...@@ -89,7 +93,8 @@ struct BlockWelford ...@@ -89,7 +93,8 @@ struct BlockWelford
template <typename Problem_, typename Policy_ = void> template <typename Problem_, typename Policy_ = void>
struct BlockWelfordSync struct BlockWelfordSync
{ {
using Problem = remove_cvref_t<Problem_>; using Problem = remove_cvref_t<Problem_>;
static constexpr bool kFastFDiv = Problem::kFastFDiv;
template <typename MeanDistributedTensor_, typename VarDistributedTensor_> template <typename MeanDistributedTensor_, typename VarDistributedTensor_>
CK_TILE_DEVICE void CK_TILE_DEVICE void
...@@ -157,7 +162,8 @@ struct BlockWelfordSync ...@@ -157,7 +162,8 @@ struct BlockWelfordSync
v_local_count, v_local_count,
v_remote_mean, v_remote_mean,
v_remote_var, v_remote_var,
v_remote_count); v_remote_count,
constant<kFastFDiv>{});
}); });
} }
}); });
...@@ -173,8 +179,9 @@ struct BlockWelfordSync ...@@ -173,8 +179,9 @@ struct BlockWelfordSync
template <typename Problem_, typename Policy_ = void> template <typename Problem_, typename Policy_ = void>
struct BlockWelfordCrossWarpSync struct BlockWelfordCrossWarpSync
{ {
using Problem = remove_cvref_t<Problem_>; using Problem = remove_cvref_t<Problem_>;
using BlockShape = typename Problem::BlockShape; using BlockShape = typename Problem::BlockShape;
static constexpr bool kFastFDiv = Problem::kFastFDiv;
template <typename MeanDistributedTensor_> template <typename MeanDistributedTensor_>
CK_TILE_DEVICE static constexpr index_t GetReduceWarps() CK_TILE_DEVICE static constexpr index_t GetReduceWarps()
...@@ -304,7 +311,8 @@ struct BlockWelfordCrossWarpSync ...@@ -304,7 +311,8 @@ struct BlockWelfordCrossWarpSync
v_local_count, v_local_count,
v_remote_mean, v_remote_mean,
v_remote_var, v_remote_var,
v_remote_count); v_remote_count,
constant<kFastFDiv>{});
}); });
mean_tensor.get_thread_buffer()(i_0) = v_local_mean; mean_tensor.get_thread_buffer()(i_0) = v_local_mean;
...@@ -351,12 +359,23 @@ CK_TILE_DEVICE constexpr index_t block_tile_welford_calculate_max_count(int row_ ...@@ -351,12 +359,23 @@ CK_TILE_DEVICE constexpr index_t block_tile_welford_calculate_max_count(int row_
} }
// Note: this function must be called after all the computation // Note: this function must be called after all the computation
template <typename VarDistributedTensor_> template <typename VarDistributedTensor_, bool FastFdiv_ = false>
CK_TILE_DEVICE constexpr void block_tile_welford_post_scale_var(VarDistributedTensor_& var_tensor, CK_TILE_DEVICE constexpr void block_tile_welford_post_scale_var(VarDistributedTensor_& var_tensor,
int count) int count,
bool_constant<FastFdiv_> = {})
{ {
using DataType = typename VarDistributedTensor_::DataType; using DataType = typename VarDistributedTensor_::DataType;
tile_elementwise_inout([&count](auto& x) { x = x / type_convert<DataType>(count); }, tile_elementwise_inout(
var_tensor); [&count](auto& x) {
if(FastFdiv_ && std::is_same_v<DataType, float>)
{
x = x * __builtin_amdgcn_rcpf(type_convert<DataType>(count));
}
else
{
x = x / type_convert<DataType>(count);
}
},
var_tensor);
} }
} // namespace ck_tile } // namespace ck_tile
...@@ -7,12 +7,13 @@ ...@@ -7,12 +7,13 @@
namespace ck_tile { namespace ck_tile {
template <typename XDataType_, typename ComputeDataType_, typename BlockShape_> template <typename XDataType_, typename ComputeDataType_, typename BlockShape_, bool kFastFDiv_>
struct BlockWelfordProblem struct BlockWelfordProblem
{ {
using XDataType = remove_cvref_t<XDataType_>; using XDataType = remove_cvref_t<XDataType_>;
using ComputeDataType = remove_cvref_t<ComputeDataType_>; using ComputeDataType = remove_cvref_t<ComputeDataType_>;
using BlockShape = remove_cvref_t<BlockShape_>; using BlockShape = remove_cvref_t<BlockShape_>;
static constexpr bool kFastFDiv = kFastFDiv_;
}; };
} // namespace ck_tile } // namespace ck_tile
...@@ -7,25 +7,46 @@ ...@@ -7,25 +7,46 @@
namespace ck_tile { namespace ck_tile {
template <typename T> template <typename T, bool kFastFDiv = false>
CK_TILE_DEVICE void welford_update(T& mean, T& var, T x, int count) CK_TILE_DEVICE void welford_update(T& mean, T& var, T x, int count, bool_constant<kFastFDiv> = {})
{ {
// TODO: check nan? maybe no // TODO: check nan? maybe no
T delta = x - mean; T delta = x - mean;
mean += delta / count; if(kFastFDiv && std::is_same_v<T, float>)
{
mean += delta * __builtin_amdgcn_rcpf(count);
}
else
{
mean += delta / count;
}
T delta2 = x - mean; T delta2 = x - mean;
var += delta * delta2; var += delta * delta2;
} }
template <typename T> template <typename T, bool kFastFDiv = false>
CK_TILE_DEVICE static void CK_TILE_DEVICE static void welford_merge(T& mean_a,
welford_merge(T& mean_a, T& var_a, int& count_a, T mean_b, T var_b, int count_b) T& var_a,
int& count_a,
T mean_b,
T var_b,
int count_b,
bool_constant<kFastFDiv> = {})
{ {
int count = count_a + count_b; int count = count_a + count_b;
T count_ = type_convert<T>(count); T count_ = type_convert<T>(count);
T count_a_ = type_convert<T>(count_a); T count_a_ = type_convert<T>(count_a);
T count_b_ = type_convert<T>(count_b); T count_b_ = type_convert<T>(count_b);
T count_b_over_count = count == 0 ? type_convert<T>(0) : count_b_ / count_; T count_b_over_count;
if(kFastFDiv && std::is_same_v<T, float>)
{
count_b_over_count =
count == 0 ? type_convert<T>(0) : count_b_ * __builtin_amdgcn_rcpf(count_);
}
else
{
count_b_over_count = count == 0 ? type_convert<T>(0) : count_b_ / count_;
}
T delta = mean_b - mean_a; T delta = mean_b - mean_a;
mean_a += delta * count_b_over_count; mean_a += delta * count_b_over_count;
......
...@@ -39,7 +39,25 @@ template <ck::index_t NDimSpatial, ...@@ -39,7 +39,25 @@ template <ck::index_t NDimSpatial,
ConvolutionBackwardWeightSpecialization ConvSpec, ConvolutionBackwardWeightSpecialization ConvSpec,
BlockGemmPipelineScheduler Scheduler, BlockGemmPipelineScheduler Scheduler,
BlockGemmPipelineVersion PipelineVersion> BlockGemmPipelineVersion PipelineVersion>
using device_grouped_conv_bwd_weight_two_stage_xdl_c_shuffle_f16_instances = std::tuple< using device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_f16_generic_instances =
std::tuple<
// clang-format off
//#########################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer| BlockGemm| BlockGemm| NumGroups|
//#########################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector| Pipeline| Pipeline| ToMerge|
//#########################################| Spatial| | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl| Scheduler| Version| |
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| | | | |
DeviceGroupedConvBwdWeightTwoStage_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 16, 16, 32, 8, 16, 16, 1, 1, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 1, 4, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 1, 4, false, 1, 1, S<1, 8, 1, 8>, 1, Scheduler, PipelineVersion, 1>
// clang-format on
>;
template <ck::index_t NDimSpatial,
typename ALayout,
typename BLayout,
typename ELayout,
ConvolutionBackwardWeightSpecialization ConvSpec,
BlockGemmPipelineScheduler Scheduler,
BlockGemmPipelineVersion PipelineVersion>
using device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_f16_instances = std::tuple<
// clang-format off // clang-format off
//#########################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer| BlockGemm| BlockGemm| NumGroups| //#########################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer| BlockGemm| BlockGemm| NumGroups|
//#########################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector| Pipeline| Pipeline| ToMerge| //#########################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector| Pipeline| Pipeline| ToMerge|
...@@ -64,7 +82,25 @@ template <ck::index_t NDimSpatial, ...@@ -64,7 +82,25 @@ template <ck::index_t NDimSpatial,
ConvolutionBackwardWeightSpecialization ConvSpec, ConvolutionBackwardWeightSpecialization ConvSpec,
BlockGemmPipelineScheduler Scheduler, BlockGemmPipelineScheduler Scheduler,
BlockGemmPipelineVersion PipelineVersion> BlockGemmPipelineVersion PipelineVersion>
using device_grouped_conv_bwd_weight_two_stage_xdl_c_shuffle_bf16_instances = std::tuple< using device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_bf16_generic_instances =
std::tuple<
// clang-format off
//#########################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer| BlockGemm| BlockGemm| NumGroups|
//#########################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector| Pipeline| Pipeline| ToMerge|
//#########################################| Spatial| | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl| Scheduler| Version| |
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| | | | |
DeviceGroupedConvBwdWeightTwoStage_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 16, 16, 32, 8, 16, 16, 1, 1, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 1, 4, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 1, 4, false, 1, 1, S<1, 8, 1, 8>, 1, Scheduler, PipelineVersion, 1>
// clang-format on
>;
template <ck::index_t NDimSpatial,
typename ALayout,
typename BLayout,
typename ELayout,
ConvolutionBackwardWeightSpecialization ConvSpec,
BlockGemmPipelineScheduler Scheduler,
BlockGemmPipelineVersion PipelineVersion>
using device_grouped_conv_bwd_weight_two_stage_nhwgc_xdl_c_shuffle_bf16_instances = std::tuple<
// clang-format off // clang-format off
//#########################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer| BlockGemm| BlockGemm| NumGroups| //#########################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer| BlockGemm| BlockGemm| NumGroups|
//#########################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector| Pipeline| Pipeline| ToMerge| //#########################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector| Pipeline| Pipeline| ToMerge|
...@@ -82,6 +118,24 @@ using device_grouped_conv_bwd_weight_two_stage_xdl_c_shuffle_bf16_instances = st ...@@ -82,6 +118,24 @@ using device_grouped_conv_bwd_weight_two_stage_xdl_c_shuffle_bf16_instances = st
// clang-format on // clang-format on
>; >;
template <ck::index_t NDimSpatial,
typename ALayout,
typename BLayout,
typename ELayout,
ConvolutionBackwardWeightSpecialization ConvSpec,
BlockGemmPipelineScheduler Scheduler,
BlockGemmPipelineVersion PipelineVersion>
using device_grouped_conv_bwd_weight_two_stage_ngchw_xdl_c_shuffle_f16_generic_instances =
std::tuple<
// clang-format off
//#########################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer| BlockGemm| BlockGemm| NumGroups|
//#########################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector| Pipeline| Pipeline| ToMerge|
//#########################################| Spatial| | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl| Scheduler| Version| |
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| | | | |
DeviceGroupedConvBwdWeightTwoStage_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 16, 16, 32, 8, 16, 16, 1, 1, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 1, 4, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 1, 4, false, 1, 1, S<1, 8, 1, 8>, 1, Scheduler, PipelineVersion, 1, F16, F16, 1, 1>
// clang-format on
>;
// NGCHW requires transpose, we use vector loads and stores params for them // NGCHW requires transpose, we use vector loads and stores params for them
template <ck::index_t NDimSpatial, template <ck::index_t NDimSpatial,
typename ALayout, typename ALayout,
...@@ -122,6 +176,24 @@ using device_grouped_conv_bwd_weight_two_stage_ngchw_xdl_c_shuffle_f16_instances ...@@ -122,6 +176,24 @@ using device_grouped_conv_bwd_weight_two_stage_ngchw_xdl_c_shuffle_f16_instances
// clang-format on // clang-format on
>; >;
template <ck::index_t NDimSpatial,
typename ALayout,
typename BLayout,
typename ELayout,
ConvolutionBackwardWeightSpecialization ConvSpec,
BlockGemmPipelineScheduler Scheduler,
BlockGemmPipelineVersion PipelineVersion>
using device_grouped_conv_bwd_weight_two_stage_ngchw_xdl_c_shuffle_bf16_generic_instances =
std::tuple<
// clang-format off
//#########################################| Num| InLayout| WeiLayout| OutLayout| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer| BlockGemm| BlockGemm| NumGroups|
//#########################################| Dim| | | | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ScalarPerVector| Pipeline| Pipeline| ToMerge|
//#########################################| Spatial| | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl| Scheduler| Version| |
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| | | | |
DeviceGroupedConvBwdWeightTwoStage_Xdl_CShuffle< NDimSpatial, ALayout, BLayout, ELayout, BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvSpec, 64, 16, 16, 32, 8, 16, 16, 1, 1, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 1, 4, false, S<4, 8, 1>, S<2, 0, 1>, S<1, 0, 2>, 1, 1, 4, false, 1, 1, S<1, 8, 1, 8>, 1, Scheduler, PipelineVersion, 1, BF16, BF16, 1, 1>
// clang-format on
>;
template <ck::index_t NDimSpatial, template <ck::index_t NDimSpatial,
typename ALayout, typename ALayout,
typename BLayout, typename BLayout,
......
...@@ -352,6 +352,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -352,6 +352,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{ {
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_instances( add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_f16_instances(
op_ptrs); op_ptrs);
add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev1_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev2_instances( add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev2_instances(
op_ptrs); op_ptrs);
add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev5_instances( add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_f16_pipev5_instances(
...@@ -375,6 +377,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -375,6 +377,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{ {
add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_instances( add_device_grouped_conv2d_bwd_weight_xdl_nhwgc_gkyxc_nhwgk_bf16_instances(
op_ptrs); op_ptrs);
add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev1_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev2_instances( add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev2_instances(
op_ptrs); op_ptrs);
add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev5_instances( add_device_grouped_conv2d_bwd_weight_two_stage_xdl_nhwgc_gkyxc_nhwgk_bf16_pipev5_instances(
...@@ -390,6 +394,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -390,6 +394,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, half_t> && is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, half_t> &&
is_same_v<ComputeTypeB, half_t>) is_same_v<ComputeTypeB, half_t>)
{ {
add_device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_f16_pipev1_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_f16_pipev2_instances( add_device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_f16_pipev2_instances(
op_ptrs); op_ptrs);
add_device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_f16_pipev5_instances( add_device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_f16_pipev5_instances(
...@@ -403,6 +409,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -403,6 +409,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<ComputeTypeA, ck::bhalf_t> && is_same_v<ComputeTypeA, ck::bhalf_t> &&
is_same_v<ComputeTypeB, ck::bhalf_t>) is_same_v<ComputeTypeB, ck::bhalf_t>)
{ {
add_device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_bf16_pipev1_instances(
op_ptrs);
add_device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_bf16_pipev2_instances( add_device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_bf16_pipev2_instances(
op_ptrs); op_ptrs);
add_device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_bf16_pipev5_instances( add_device_grouped_conv2d_bwd_weight_two_stage_xdl_ngchw_gkyxc_ngkhw_bf16_pipev5_instances(
...@@ -464,6 +472,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -464,6 +472,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{ {
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instances( add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_f16_instances(
op_ptrs); op_ptrs);
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev1_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev2_instances( add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev2_instances(
op_ptrs); op_ptrs);
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev5_instances( add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_f16_pipev5_instances(
...@@ -487,6 +497,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -487,6 +497,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{ {
add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instances( add_device_grouped_conv3d_bwd_weight_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instances(
op_ptrs); op_ptrs);
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev1_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev2_instances( add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev2_instances(
op_ptrs); op_ptrs);
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev5_instances( add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_pipev5_instances(
...@@ -511,6 +523,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -511,6 +523,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, half_t> && is_same_v<OutDataType, half_t> && is_same_v<ComputeTypeA, half_t> &&
is_same_v<ComputeTypeB, half_t>) is_same_v<ComputeTypeB, half_t>)
{ {
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_f16_pipev1_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_f16_pipev2_instances( add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_f16_pipev2_instances(
op_ptrs); op_ptrs);
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_f16_pipev5_instances( add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_f16_pipev5_instances(
...@@ -524,6 +538,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -524,6 +538,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<ComputeTypeA, ck::bhalf_t> && is_same_v<ComputeTypeA, ck::bhalf_t> &&
is_same_v<ComputeTypeB, ck::bhalf_t>) is_same_v<ComputeTypeB, ck::bhalf_t>)
{ {
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev1_instances(
op_ptrs);
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev2_instances( add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev2_instances(
op_ptrs); op_ptrs);
add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev5_instances( add_device_grouped_conv3d_bwd_weight_two_stage_xdl_ngcdhw_gkzyxc_ngkdhw_bf16_pipev5_instances(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment