Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
f23a2e2a
Commit
f23a2e2a
authored
Feb 11, 2025
by
Jakub Piasecki
Browse files
resolved conflicts
parents
f3eb5a18
c0adab48
Changes
340
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
742 additions
and
11 deletions
+742
-11
codegen/test/rtc/include/rtc/manage_ptr.hpp
codegen/test/rtc/include/rtc/manage_ptr.hpp
+3
-0
codegen/test/rtc/include/rtc/tmp_dir.hpp
codegen/test/rtc/include/rtc/tmp_dir.hpp
+3
-0
codegen/test/rtc/src/compile_kernel.cpp
codegen/test/rtc/src/compile_kernel.cpp
+3
-0
codegen/test/rtc/src/hip.cpp
codegen/test/rtc/src/hip.cpp
+3
-0
codegen/test/rtc/src/kernel.cpp
codegen/test/rtc/src/kernel.cpp
+4
-0
codegen/test/rtc/src/tmp_dir.cpp
codegen/test/rtc/src/tmp_dir.cpp
+3
-0
docs/sphinx/requirements.in
docs/sphinx/requirements.in
+1
-1
docs/sphinx/requirements.txt
docs/sphinx/requirements.txt
+1
-1
example/01_gemm/CMakeLists.txt
example/01_gemm/CMakeLists.txt
+1
-1
example/01_gemm/gemm_xdl_fp16.cpp
example/01_gemm/gemm_xdl_fp16.cpp
+0
-2
example/04_gemm_add_add_fastgelu/CMakeLists.txt
example/04_gemm_add_add_fastgelu/CMakeLists.txt
+1
-1
example/18_batched_gemm_reduce/CMakeLists.txt
example/18_batched_gemm_reduce/CMakeLists.txt
+1
-1
example/24_batched_gemm/CMakeLists.txt
example/24_batched_gemm/CMakeLists.txt
+3
-0
example/24_batched_gemm/batched_gemm_xdl_fp16int4_b_scale_v3.cpp
.../24_batched_gemm/batched_gemm_xdl_fp16int4_b_scale_v3.cpp
+82
-0
example/24_batched_gemm/run_batched_gemm_example_fp16int4_b_scale.inc
...atched_gemm/run_batched_gemm_example_fp16int4_b_scale.inc
+578
-0
example/30_grouped_conv_fwd_multiple_d/run_grouped_conv_fwd_bias_relu_add_example.inc
...multiple_d/run_grouped_conv_fwd_bias_relu_add_example.inc
+51
-0
example/31_batched_gemm_gemm/CMakeLists.txt
example/31_batched_gemm_gemm/CMakeLists.txt
+1
-1
example/41_grouped_conv_conv_fwd/CMakeLists.txt
example/41_grouped_conv_conv_fwd/CMakeLists.txt
+1
-1
example/62_convnd_activ/binary/CMakeLists.txt
example/62_convnd_activ/binary/CMakeLists.txt
+1
-1
example/62_convnd_activ/convinvscale/CMakeLists.txt
example/62_convnd_activ/convinvscale/CMakeLists.txt
+1
-1
No files found.
codegen/test/rtc/include/rtc/manage_ptr.hpp
View file @
f23a2e2a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024-2025, Advanced Micro Devices, Inc. All rights reserved.
#ifndef GUARD_HOST_TEST_RTC_INCLUDE_RTC_MANAGE_POINTER
#ifndef GUARD_HOST_TEST_RTC_INCLUDE_RTC_MANAGE_POINTER
#define GUARD_HOST_TEST_RTC_INCLUDE_RTC_MANAGE_POINTER
#define GUARD_HOST_TEST_RTC_INCLUDE_RTC_MANAGE_POINTER
...
...
codegen/test/rtc/include/rtc/tmp_dir.hpp
View file @
f23a2e2a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024-2025, Advanced Micro Devices, Inc. All rights reserved.
#ifndef GUARD_HOST_TEST_RTC_INCLUDE_RTC_TMP_DIR
#ifndef GUARD_HOST_TEST_RTC_INCLUDE_RTC_TMP_DIR
#define GUARD_HOST_TEST_RTC_INCLUDE_RTC_TMP_DIR
#define GUARD_HOST_TEST_RTC_INCLUDE_RTC_TMP_DIR
...
...
codegen/test/rtc/src/compile_kernel.cpp
View file @
f23a2e2a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024-2025, Advanced Micro Devices, Inc. All rights reserved.
#include <rtc/hip.hpp>
#include <rtc/hip.hpp>
#include <rtc/compile_kernel.hpp>
#include <rtc/compile_kernel.hpp>
#include <rtc/tmp_dir.hpp>
#include <rtc/tmp_dir.hpp>
...
...
codegen/test/rtc/src/hip.cpp
View file @
f23a2e2a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024-2025, Advanced Micro Devices, Inc. All rights reserved.
#include <rtc/hip.hpp>
#include <rtc/hip.hpp>
#include <rtc/manage_ptr.hpp>
#include <rtc/manage_ptr.hpp>
#include <stdexcept>
#include <stdexcept>
...
...
codegen/test/rtc/src/kernel.cpp
View file @
f23a2e2a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024-2025, Advanced Micro Devices, Inc. All rights reserved.
#include <rtc/kernel.hpp>
#include <rtc/kernel.hpp>
#include <rtc/manage_ptr.hpp>
#include <rtc/manage_ptr.hpp>
#include <rtc/hip.hpp>
#include <rtc/hip.hpp>
#include <stdexcept>
#include <cassert>
#include <cassert>
// extern declare the function since hip/hip_ext.h header is broken
// extern declare the function since hip/hip_ext.h header is broken
...
...
codegen/test/rtc/src/tmp_dir.cpp
View file @
f23a2e2a
// SPDX-License-Identifier: MIT
// Copyright (c) 2024-2025, Advanced Micro Devices, Inc. All rights reserved.
#include <rtc/tmp_dir.hpp>
#include <rtc/tmp_dir.hpp>
#include <algorithm>
#include <algorithm>
#include <random>
#include <random>
...
...
docs/sphinx/requirements.in
View file @
f23a2e2a
rocm-docs-core==1.1
4.1
rocm-docs-core==1.1
5.0
sphinxcontrib-bibtex==2.6.3
sphinxcontrib-bibtex==2.6.3
docs/sphinx/requirements.txt
View file @
f23a2e2a
...
@@ -199,7 +199,7 @@ requests==2.32.3
...
@@ -199,7 +199,7 @@ requests==2.32.3
# via
# via
# pygithub
# pygithub
# sphinx
# sphinx
rocm-docs-core==1.1
4.1
rocm-docs-core==1.1
5.0
# via -r requirements.in
# via -r requirements.in
rpds-py==0.22.3
rpds-py==0.22.3
# via
# via
...
...
example/01_gemm/CMakeLists.txt
View file @
f23a2e2a
...
@@ -61,7 +61,7 @@ add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp64)
...
@@ -61,7 +61,7 @@ add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp64)
add_example_executable
(
example_gemm_xdl_streamk gemm_xdl_streamk.cpp
)
add_example_executable
(
example_gemm_xdl_streamk gemm_xdl_streamk.cpp
)
list
(
APPEND gpu_list gfx90a gfx940 gfx941 gfx942
)
list
(
APPEND gpu_list gfx90a gfx940 gfx941 gfx942
gfx950
)
set
(
target 0
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
...
...
example/01_gemm/gemm_xdl_fp16.cpp
View file @
f23a2e2a
...
@@ -31,9 +31,7 @@ using DeviceGemmInstance0 = ck::tensor_operation::device::DeviceGemmXdl
...
@@ -31,9 +31,7 @@ using DeviceGemmInstance0 = ck::tensor_operation::device::DeviceGemmXdl
// ######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
// ######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
true
,
7
,
1
>
;
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
true
,
7
,
1
>
;
// // clang-format on
// clang-format off
using
DeviceGemmInstance1
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_CShuffle
using
DeviceGemmInstance1
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_CShuffle
// ######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// ######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// ######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// ######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
...
...
example/04_gemm_add_add_fastgelu/CMakeLists.txt
View file @
f23a2e2a
...
@@ -16,7 +16,7 @@ if(USE_BITINT_EXTENSION_INT4)
...
@@ -16,7 +16,7 @@ if(USE_BITINT_EXTENSION_INT4)
add_example_dependencies
(
example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_int4
)
add_example_dependencies
(
example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_int4
)
endif
(
USE_BITINT_EXTENSION_INT4
)
endif
(
USE_BITINT_EXTENSION_INT4
)
list
(
APPEND gpu_list gfx90a gfx940 gfx941 gfx942
)
list
(
APPEND gpu_list gfx90a gfx940 gfx941 gfx942
gfx950
)
set
(
target 0
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
...
...
example/18_batched_gemm_reduce/CMakeLists.txt
View file @
f23a2e2a
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
gfx950
)
set
(
target 0
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
...
...
example/24_batched_gemm/CMakeLists.txt
View file @
f23a2e2a
...
@@ -22,3 +22,6 @@ if(USE_BITINT_EXTENSION_INT4)
...
@@ -22,3 +22,6 @@ if(USE_BITINT_EXTENSION_INT4)
add_example_executable
(
example_batched_gemm_xdl_int4 batched_gemm_xdl_int4.cpp
)
add_example_executable
(
example_batched_gemm_xdl_int4 batched_gemm_xdl_int4.cpp
)
add_example_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_int4
)
add_example_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_int4
)
endif
()
endif
()
add_example_executable
(
example_batched_gemm_xdl_fp16int4_b_scale_v3 batched_gemm_xdl_fp16int4_b_scale_v3.cpp
)
add_example_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_fp16int4_b_scale_v3
)
example/24_batched_gemm/batched_gemm_xdl_fp16int4_b_scale_v3.cpp
0 → 100644
View file @
f23a2e2a
#include <cstdlib>
#include <initializer_list>
#include <iostream>
#include <numeric>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_xdl_fpAintB_b_scale.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
BDataType
=
ck
::
pk_i4_t
;
using
BScaleDataType
=
ck
::
half_t
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
CDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
CLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
PermuteA
=
false
;
static
constexpr
bool
PermuteB
=
false
;
static
constexpr
ck
::
index_t
Scale_Block_N
=
1
;
static
constexpr
ck
::
index_t
Scale_Block_K
=
128
;
static
constexpr
ck
::
index_t
KPerBlock
=
256
;
// clang-format off
using
DeviceBatchedGemmV2Instance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemm_Xdl_CShuffleV3_BScale
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
BScaleDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
256
,
Scale_Block_N
,
Scale_Block_K
,
16
,
64
,
KPerBlock
,
8
,
32
,
16
,
16
,
1
,
1
,
S
<
32
,
8
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
32
,
32
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v3
,
CDataType
,
CDataType
,
PermuteA
,
PermuteB
>
;
// clang-format on
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
AccDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
#include "run_batched_gemm_example_fp16int4_b_scale.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_batched_gemm_fp16_int4_b_scale_example
(
argc
,
argv
);
}
example/24_batched_gemm/run_batched_gemm_example_fp16int4_b_scale.inc
0 → 100644
View file @
f23a2e2a
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include <random>
#pragma once
struct
ProblemSize
final
{
ck
::
index_t
M
=
128
;
ck
::
index_t
N
=
128
;
ck
::
index_t
K
=
384
;
ck
::
index_t
stride_A
=
K
;
ck
::
index_t
stride_B
=
K
;
ck
::
index_t
stride_C
=
N
;
ck
::
index_t
batch_stride_A
=
M
*
K
;
ck
::
index_t
batch_stride_B
=
K
*
N
;
ck
::
index_t
batch_stride_C
=
M
*
N
;
// Batched Gemm count
ck
::
index_t
batch_count
=
2
;
// Split K count
ck
::
index_t
KBatch
=
1
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
};
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_rtol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1
e
-
6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5
e
-
2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
1
e
-
1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
1.5e-1
;
// 57344 and 49152 are acceptable
}
else
{
return
1
e
-
3
;
}
}
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_atol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1
e
-
6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5
e
-
2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
16.1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
8192.1
;
// 57344 and 49152 are acceptable
}
else
{
return
1
e
-
3
;
}
}
bool
run_batched_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
using
namespace
ck
::
literals
;
auto
&
[
M
,
N
,
K
,
stride_A
,
stride_B
,
stride_C
,
batch_stride_A
,
batch_stride_B
,
batch_stride_C
,
batch_count
,
KBatch
]
=
problem_size
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count_
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
if
constexpr
(
std
::
is_same_v
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
HostTensorDescriptor
({
batch_count_
,
row
,
col
},
{
batch_stride
,
stride
,
1_
uz
});
}
else
{
return
HostTensorDescriptor
({
batch_count_
,
row
,
col
},
{
batch_stride
,
1_
uz
,
stride
});
}
};
ck
::
index_t
Scale_Stride_BN
=
(
K
+
Scale_Block_K
-
1
)
/
Scale_Block_K
;
ck
::
index_t
batch_BScale_Stride
=
((
K
+
Scale_Block_K
-
1
)
/
Scale_Block_K
)
*
((
N
+
Scale_Block_N
-
1
)
/
Scale_Block_N
);
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
batch_count
,
M
,
K
,
stride_A
,
batch_stride_A
,
ALayout
{}));
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
batch_count
,
K
,
N
,
stride_B
,
batch_stride_B
,
BLayout
{}));
Tensor
<
BDataType
>
b_g_k_n_permute
(
f_host_tensor_descriptor
(
batch_count
,
K
,
N
,
stride_B
,
batch_stride_B
,
BLayout
{}));
Tensor
<
BScaleDataType
>
b1_g_k_n
(
f_host_tensor_descriptor
(
batch_count
,
(
K
+
Scale_Block_K
-
1
)
/
Scale_Block_K
,
(
N
+
Scale_Block_N
-
1
)
/
Scale_Block_N
,
Scale_Stride_BN
,
batch_BScale_Stride
,
BLayout
{}));
switch
(
config
.
init_method
)
{
case
0
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{
1
});
b1_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
BScaleDataType
>
{
1
});
break
;
case
1
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
b1_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BScaleDataType
>
{
0
,
1.0
});
break
;
case
2
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
b1_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
BScaleDataType
>
{
1
});
break
;
case
3
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{
1
});
b1_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
BScaleDataType
>
{
1
});
break
;
case
4
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{
1
});
b1_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BScaleDataType
>
{
0
,
1.0
});
break
;
case
5
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
b1_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
BScaleDataType
>
{
1
});
break
;
default
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.5
,
0.5
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
b1_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BScaleDataType
>
{
0
,
1.0
});
}
Tensor
<
CDataType
>
c_g_m_n_host_result
(
f_host_tensor_descriptor
(
batch_count
,
M
,
N
,
stride_C
,
batch_stride_C
,
CLayout
{}));
Tensor
<
CDataType
>
c_g_m_n_device_result
(
f_host_tensor_descriptor
(
batch_count
,
M
,
N
,
stride_C
,
batch_stride_C
,
CLayout
{}));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_g_k_n: "
<<
b1_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_g_m_n: "
<<
c_g_m_n_host_result
.
mDesc
<<
std
::
endl
;
DeviceMem
a_g_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_g_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_g_k_n_permute
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b1_g_scale_device_buf
(
sizeof
(
BScaleDataType
)
*
b1_g_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_g_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_g_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
printf
(
"a_g_m_k size: %zu, b_g_k_n size: %zu, b1_g_k_n size: %zu, c_g_m_n size: %zu
\n
"
,
a_g_m_k
.
mDesc
.
GetElementSpaceSize
(),
b_g_k_n_permute
.
mDesc
.
GetElementSpaceSize
(),
b1_g_k_n
.
mDesc
.
GetElementSpaceSize
(),
c_g_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
// weight permute
if
constexpr
(
PermuteB
)
{
printf
(
"Permute B
\n
"
);
int
K1
=
KPerBlock
;
int
K0
=
K
/
KPerBlock
;
// int K0, N, K1
for
(
int
bs
=
0
;
bs
<
batch_count
;
bs
++
)
{
for
(
int
j
=
0
;
j
<
K0
;
j
++
)
{
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
for
(
int
jj
=
0
;
jj
<
K1
;
jj
++
)
{
b_g_k_n_permute
(
bs
*
batch_stride_B
+
j
*
N
*
K1
+
i
*
K1
+
jj
)
=
b_g_k_n
(
bs
*
batch_stride_B
+
i
*
K
+
(
j
*
K1
+
jj
));
}
}
}
}
}
else
{
b_g_k_n_permute
=
b_g_k_n
;
}
// vector pk_i4x4 permute
for
(
int
bs
=
0
;
bs
<
batch_count
;
bs
++
)
{
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
for
(
int
j
=
0
;
j
<
K
;
j
+=
8
)
{
int
input
[
8
];
for
(
int
k
=
0
;
k
<
4
;
k
++
)
{
int
i4x2
=
b_g_k_n_permute
(
bs
,
j
+
k
*
2
,
i
)
.
data
;
input
[
k
*
2
+
0
]
=
(
i4x2
>>
4
)
&
0xf
;
input
[
k
*
2
+
1
]
=
(
i4x2
>>
0
)
&
0xf
;
}
// permute 01234567->20643175
{
int
hi
=
input
[
2
];
int
lo
=
input
[
0
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_g_k_n_permute
(
bs
,
j
+
0
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
6
];
int
lo
=
input
[
4
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_g_k_n_permute
(
bs
,
j
+
2
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
3
];
int
lo
=
input
[
1
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_g_k_n_permute
(
bs
,
j
+
4
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
7
];
int
lo
=
input
[
5
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_g_k_n_permute
(
bs
,
j
+
6
,
i
)
=
i4x2
;
}
}
}
}
a_g_m_k_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b_g_k_n_device_buf
.
ToDevice
(
b_g_k_n_permute
.
mData
.
data
());
b1_g_scale_device_buf
.
ToDevice
(
b1_g_k_n
.
mData
.
data
());
DeviceMem
workspace
;
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceBatchedGemmV2Instance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
float
ave_time
=
0
;
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_g_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_g_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_g_m_n_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
stride_A
,
stride_B
,
stride_C
,
Scale_Stride_BN
,
batch_stride_A
,
batch_stride_B
,
batch_stride_C
,
batch_BScale_Stride
,
static_cast
<
BScaleDataType
*>
(
b1_g_scale_device_buf
.
GetDeviceBuffer
()),
batch_count
,
// batch count
KBatch
,
// split K count
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cerr
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
true
;
}
bool
pass
=
true
;
Tensor
<
float
>
b_g_k_n_dequant
({
batch_count
,
K
,
N
});
if
(
config
.
do_verification
)
{
float
v_b
=
0
;
for
(
int
bs
=
0
;
bs
<
batch_count
;
bs
++
)
{
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
for
(
int
k
=
0
;
k
<
K
;
k
++
)
{
ck
::
pk_i4_t
i4x2
=
b_g_k_n
(
bs
,
k
,
n
)
.
data
;
int8_t
i4
=
0
;
if
(
k
%
2
==
1
)
i4
=
(
i4x2
.
data
>>
0
)
&
0xf
;
else
i4
=
(
i4x2
.
data
>>
4
)
&
0xf
;
i4
=
i4
-
8
;
v_b
=
ck
::
type_convert
<
float
>
(
i4
);
b_g_k_n_dequant
(
bs
,
k
,
n
)
=
ck
::
type_convert
<
float
>
(
v_b
)
*
ck
::
type_convert
<
float
>
(
b1_g_k_n
(
bs
,
k
/
Scale_Block_K
,
n
/
Scale_Block_N
));
}
}
}
auto
ref_gemm
=
ReferenceBatchedGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_g_m_k
,
b_g_k_n_dequant
,
c_g_m_n_host_result
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
,
0
});
hip_check_error
(
hipDeviceSynchronize
());
c_g_m_n_device_buf
.
FromDevice
(
c_g_m_n_device_result
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
c_g_m_n_device_result
,
c_g_m_n_host_result
,
"Error: Incorrect results!"
,
get_rtol
<
CDataType
>
(),
get_atol
<
CDataType
>
());
}
if
(
config
.
time_kernel
)
{
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
std
::
size_t
flop
=
2_
uz
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
/
(
ck
::
is_same_v
<
ck
::
remove_cvref_t
<
BDataType
>
,
ck
::
pk_i4_t
>
?
2
:
1
)
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
#if 0
// print A matrix
printf
(
"A matrix:
\n
"
);
for
(
int
bs
=
0
;
bs
<
batch_count
;
bs
++
)
{
printf
(
"batch %d -> Address: %p
\n
"
,
bs
,
static_cast
<
void
*>
(
&
a_g_m_k
(
bs
,
0
,
0
)));
for
(
int
i
=
0
;
i
<
M
;
i
++
)
{
for
(
int
j
=
0
;
j
<
K
;
j
++
)
{
printf
(
"%.2f,"
,
static_cast
<
float
>
(
a_g_m_k
(
bs
,
i
,
j
)));
}
printf
(
"
\n
"
);
}
}
// print B matrix original
printf
(
"B matrix original:
\n
"
);
for
(
int
bs
=
0
;
bs
<
batch_count
;
bs
++
)
{
printf
(
"batch %d -> Address: %p
\n
"
,
bs
,
static_cast
<
void
*>
(
&
b_g_k_n
(
bs
,
0
,
0
)));
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
for
(
int
k
=
0
;
k
<
K
;
k
++
)
{
ck
::
pk_i4_t
i4x2
=
b_g_k_n
(
bs
,
k
,
n
)
.
data
;
int8_t
i4
=
0
;
if
(
k
%
2
==
1
)
i4
=
(
i4x2
.
data
>>
0
)
&
0xf
;
else
i4
=
(
i4x2
.
data
>>
4
)
&
0xf
;
i4
=
i4
-
8
;
printf
(
"%d,"
,
static_cast
<
int
>
(
i4
));
}
printf
(
"
\n
"
);
}
}
// print B matrix
printf
(
"B matrix:
\n
"
);
for
(
int
bs
=
0
;
bs
<
batch_count
;
bs
++
)
{
printf
(
"batch %d -> Address: %p
\n
"
,
bs
,
static_cast
<
void
*>
(
&
b_g_k_n_dequant
(
bs
,
0
,
0
)));
for
(
int
i
=
0
;
i
<
K
;
i
++
)
{
for
(
int
j
=
0
;
j
<
N
;
j
++
)
{
printf
(
"%.2f, "
,
static_cast
<
float
>
(
b_g_k_n_dequant
(
bs
,
i
,
j
)));
}
printf
(
"
\n
"
);
}
}
// print B scale matrix
printf
(
"B Scale matrix:
\n
"
);
for
(
int
bs
=
0
;
bs
<
batch_count
;
bs
++
)
{
printf
(
"batch %d -> Address: %p
\n
"
,
bs
,
static_cast
<
void
*>
(
&
b1_g_k_n
(
bs
,
0
,
0
)));
for
(
int
i
=
0
;
i
<
(
K
+
Scale_Block_K
-
1
)
/
Scale_Block_K
;
i
++
)
{
for
(
int
j
=
0
;
j
<
(
N
+
Scale_Block_N
-
1
)
/
Scale_Block_N
;
j
++
)
{
printf
(
"%.2f, "
,
static_cast
<
float
>
(
b1_g_k_n
(
bs
,
i
,
j
)));
}
printf
(
"
\n
"
);
}
}
// print C matrix
printf
(
"C matrix:
\n
"
);
for
(
int
bs
=
0
;
bs
<
batch_count
;
bs
++
)
{
printf
(
"batch %d -> Address: %p
\n
"
,
bs
,
static_cast
<
void
*>
(
&
c_g_m_n_device_result
(
bs
,
0
,
0
)));
for
(
int
i
=
0
;
i
<
M
;
i
++
)
{
for
(
int
j
=
0
;
j
<
N
;
j
++
)
{
printf
(
"%.2f, "
,
static_cast
<
float
>
(
c_g_m_n_device_result
(
bs
,
i
,
j
)));
}
printf
(
"
\n
"
);
}
}
printf
(
"C reference matrix:
\n
"
);
for
(
int
bs
=
0
;
bs
<
batch_count
;
bs
++
)
{
printf
(
"batch %d -> Address: %p
\n
"
,
bs
,
static_cast
<
void
*>
(
&
c_g_m_n_host_result
(
bs
,
0
,
0
)));
for
(
int
i
=
0
;
i
<
M
;
i
++
)
{
for
(
int
j
=
0
;
j
<
N
;
j
++
)
{
printf
(
"%.2f, "
,
static_cast
<
float
>
(
c_g_m_n_host_result
(
bs
,
i
,
j
)));
}
printf
(
"
\n
"
);
}
}
#endif
return
pass
;
}
bool
run_batched_gemm_fp16_int4_b_scale_example
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
std
::
mt19937
gen
(
11939
);
std
::
uniform_int_distribution
<
int
>
dis
(
0
,
15
);
problem_size
.
M
=
128
*
(
dis
(
gen
)
+
1
);
problem_size
.
N
=
128
*
(
dis
(
gen
)
+
1
);
problem_size
.
K
=
256
*
(
dis
(
gen
)
+
2
);
problem_size
.
batch_count
=
2
;
if
(
argc
==
4
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
>=
7
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
problem_size
.
M
=
std
::
stoi
(
argv
[
4
]);
problem_size
.
N
=
std
::
stoi
(
argv
[
5
]);
problem_size
.
K
=
std
::
stoi
(
argv
[
6
]);
if
(
argc
>=
8
)
{
problem_size
.
batch_count
=
std
::
stoi
(
argv
[
7
]);
}
if
(
argc
>=
9
)
{
problem_size
.
KBatch
=
std
::
stoi
(
argv
[
8
]);
}
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
exit
(
0
);
}
problem_size
.
stride_A
=
problem_size
.
K
;
problem_size
.
stride_B
=
problem_size
.
K
;
problem_size
.
stride_C
=
problem_size
.
N
;
problem_size
.
batch_stride_A
=
problem_size
.
M
*
problem_size
.
K
;
problem_size
.
batch_stride_B
=
problem_size
.
K
*
problem_size
.
N
;
problem_size
.
batch_stride_C
=
problem_size
.
M
*
problem_size
.
N
;
return
run_batched_gemm
(
problem_size
,
config
);
}
example/30_grouped_conv_fwd_multiple_d/run_grouped_conv_fwd_bias_relu_add_example.inc
View file @
f23a2e2a
...
@@ -32,6 +32,56 @@ using BiasLayout = typename LayoutSettingSelector<NDimSpatial>::BiasLayout;
...
@@ -32,6 +32,56 @@ using BiasLayout = typename LayoutSettingSelector<NDimSpatial>::BiasLayout;
template
<
ck
::
index_t
NDimSpatial
>
template
<
ck
::
index_t
NDimSpatial
>
using
ResidualLayout
=
typename
LayoutSettingSelector
<
NDimSpatial
>::
ResidualLayout
;
using
ResidualLayout
=
typename
LayoutSettingSelector
<
NDimSpatial
>::
ResidualLayout
;
#if defined(CK_USE_AMD_MFMA_GFX950)
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceConvFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
InputLayout
<
NDimSpatial
>
,
WeightLayout
<
NDimSpatial
>
,
ck
::
Tuple
<
BiasLayout
<
NDimSpatial
>
,
ResidualLayout
<
NDimSpatial
>>
,
OutputLayout
<
NDimSpatial
>
,
InKernelDataType
,
WeiKernelDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
BiasKernelDataType
,
ResidualKernelDataType
>
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
64
,
// KPerBlock
16
,
// AK1
16
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
4
,
// ABlockTransferSrcScalarPerVector
4
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
4
,
// BBlockTransferSrcScalarPerVector
4
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
;
#else // defined(CK_USE_AMD_MFMA_GFX950)
template
<
ck
::
index_t
NDimSpatial
>
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceConvFwdInstance
=
using
DeviceConvFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
...
@@ -80,6 +130,7 @@ using DeviceConvFwdInstance =
...
@@ -80,6 +130,7 @@ using DeviceConvFwdInstance =
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
S
<
1
,
16
,
1
,
16
>
,
4
>
;
4
>
;
#endif // defined(CK_USE_AMD_MFMA_GFX950)
template
<
ck
::
index_t
NDimSpatial
>
template
<
ck
::
index_t
NDimSpatial
>
using
HostConvFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
using
HostConvFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
...
...
example/31_batched_gemm_gemm/CMakeLists.txt
View file @
f23a2e2a
...
@@ -5,6 +5,6 @@ if(USE_BITINT_EXTENSION_INT4)
...
@@ -5,6 +5,6 @@ if(USE_BITINT_EXTENSION_INT4)
add_example_executable
(
example_batched_gemm_gemm_xdl_int4 batched_gemm_gemm_xdl_int4.cpp
)
add_example_executable
(
example_batched_gemm_gemm_xdl_int4 batched_gemm_gemm_xdl_int4.cpp
)
endif
(
USE_BITINT_EXTENSION_INT4
)
endif
(
USE_BITINT_EXTENSION_INT4
)
if
(
NOT GPU_TARGETS MATCHES
"gfx94"
AND NOT GPU_TARGETS MATCHES
"gfx1"
)
if
(
NOT GPU_TARGETS MATCHES
"gfx94"
AND NOT GPU_TARGETS MATCHES
"gfx95"
AND NOT GPU_TARGETS MATCHES
"gfx1"
)
add_example_executable
(
example_batched_gemm_gemm_xdl_int8 batched_gemm_gemm_xdl_int8.cpp
)
add_example_executable
(
example_batched_gemm_gemm_xdl_int8 batched_gemm_gemm_xdl_int8.cpp
)
endif
()
endif
()
example/41_grouped_conv_conv_fwd/CMakeLists.txt
View file @
f23a2e2a
...
@@ -5,6 +5,6 @@ if(USE_BITINT_EXTENSION_INT4)
...
@@ -5,6 +5,6 @@ if(USE_BITINT_EXTENSION_INT4)
add_example_executable
(
example_grouped_conv_conv_fwd_xdl_int4 grouped_conv_conv_fwd_xdl_int4.cpp
)
add_example_executable
(
example_grouped_conv_conv_fwd_xdl_int4 grouped_conv_conv_fwd_xdl_int4.cpp
)
endif
(
USE_BITINT_EXTENSION_INT4
)
endif
(
USE_BITINT_EXTENSION_INT4
)
if
(
NOT GPU_TARGETS MATCHES
"gfx94"
AND NOT GPU_TARGETS MATCHES
"gfx1"
)
if
(
NOT GPU_TARGETS MATCHES
"gfx94"
AND NOT GPU_TARGETS MATCHES
"gfx95"
AND NOT GPU_TARGETS MATCHES
"gfx1"
)
add_example_executable
(
example_grouped_conv_conv_fwd_xdl_int8 grouped_conv_conv_fwd_xdl_int8.cpp
)
add_example_executable
(
example_grouped_conv_conv_fwd_xdl_int8 grouped_conv_conv_fwd_xdl_int8.cpp
)
endif
()
endif
()
example/62_convnd_activ/binary/CMakeLists.txt
View file @
f23a2e2a
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
gfx950
)
set
(
target 0
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
...
...
example/62_convnd_activ/convinvscale/CMakeLists.txt
View file @
f23a2e2a
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
gfx950
)
set
(
target 0
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
...
...
Prev
1
2
3
4
5
6
…
17
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment