Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
f1e53807
Unverified
Commit
f1e53807
authored
Feb 10, 2025
by
Illia Silin
Committed by
GitHub
Feb 10, 2025
Browse files
Merge branch 'develop' into ck_host_lib
parents
7450417d
d9f1ead3
Changes
877
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
812 additions
and
288 deletions
+812
-288
example/01_gemm/gemm_xdl_streamk.cpp
example/01_gemm/gemm_xdl_streamk.cpp
+0
-1
example/01_gemm/run_gemm_example.inc
example/01_gemm/run_gemm_example.inc
+2
-84
example/01_gemm/run_gemm_example_streamk_v2.inc
example/01_gemm/run_gemm_example_streamk_v2.inc
+40
-82
example/01_gemm/run_gemm_example_v2.inc
example/01_gemm/run_gemm_example_v2.inc
+1
-83
example/04_gemm_add_add_fastgelu/CMakeLists.txt
example/04_gemm_add_add_fastgelu/CMakeLists.txt
+1
-1
example/15_grouped_gemm/grouped_gemm_multiple_d_splitk_xdl_fp16.cpp
..._grouped_gemm/grouped_gemm_multiple_d_splitk_xdl_fp16.cpp
+6
-6
example/15_grouped_gemm/grouped_gemm_multiple_d_xdl_fp16.cpp
example/15_grouped_gemm/grouped_gemm_multiple_d_xdl_fp16.cpp
+5
-5
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_bias_fp16.cpp
...e/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_bias_fp16.cpp
+5
-5
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16.cpp
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16.cpp
+4
-4
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16_fp8.cpp
...le/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16_fp8.cpp
+4
-4
example/15_grouped_gemm/run_grouped_gemm_example.inc
example/15_grouped_gemm/run_grouped_gemm_example.inc
+21
-4
example/18_batched_gemm_reduce/CMakeLists.txt
example/18_batched_gemm_reduce/CMakeLists.txt
+1
-1
example/21_gemm_layernorm/gemm_xdl_layernorm_naive_single_kernel_fp16.cpp
...layernorm/gemm_xdl_layernorm_naive_single_kernel_fp16.cpp
+3
-3
example/24_batched_gemm/CMakeLists.txt
example/24_batched_gemm/CMakeLists.txt
+3
-0
example/24_batched_gemm/batched_gemm_xdl_bf16_v3.cpp
example/24_batched_gemm/batched_gemm_xdl_bf16_v3.cpp
+2
-2
example/24_batched_gemm/batched_gemm_xdl_fp16int4_b_scale_v3.cpp
.../24_batched_gemm/batched_gemm_xdl_fp16int4_b_scale_v3.cpp
+82
-0
example/24_batched_gemm/run_batched_gemm_example_fp16int4_b_scale.inc
...atched_gemm/run_batched_gemm_example_fp16int4_b_scale.inc
+578
-0
example/30_grouped_conv_fwd_multiple_d/run_grouped_conv_fwd_bias_relu_add_example.inc
...multiple_d/run_grouped_conv_fwd_bias_relu_add_example.inc
+51
-0
example/31_batched_gemm_gemm/CMakeLists.txt
example/31_batched_gemm_gemm/CMakeLists.txt
+1
-1
example/31_batched_gemm_gemm/run_batched_gemm_gemm_example.inc
...le/31_batched_gemm_gemm/run_batched_gemm_gemm_example.inc
+2
-2
No files found.
example/01_gemm/gemm_xdl_streamk.cpp
100644 → 100755
View file @
f1e53807
...
...
@@ -15,7 +15,6 @@ using F16 = ck::half_t;
using
ALayout
=
Row
;
using
BLayout
=
Row
;
// using BLayout = Col;
using
CLayout
=
Row
;
using
AElementOp
=
PassThrough
;
...
...
example/01_gemm/run_gemm_example.inc
View file @
f1e53807
...
...
@@ -5,88 +5,6 @@
#include "ck/tensor_operation/gpu/device/device_gemm_streamk.hpp"
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_rtol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1
e
-
6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5
e
-
2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
2
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
2
e
-
1
;
}
else
{
return
1
e
-
3
;
}
}
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_atol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1
e
-
6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5
e
-
2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
2
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
2
e
-
1
;
}
else
{
return
1
e
-
3
;
}
}
template
<
typename
ProblemType
>
bool
run_gemm
(
const
ProblemType
&
problem_size
,
const
ExecutionConfig
&
config
)
{
...
...
@@ -143,8 +61,8 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
switch
(
config
.
init_method
)
{
case
0
:
ck
::
utils
::
FillConstant
<
ADataType
>
{
static_cas
t
<
ADataType
>
(
1.
f
)}(
a_m_k
);
ck
::
utils
::
FillConstant
<
BDataType
>
{
static_cas
t
<
BDataType
>
(
1.
f
)}(
b_k_n
);
ck
::
utils
::
FillConstant
<
ADataType
>
{
ck
::
type_conver
t
<
ADataType
>
(
1.
f
)}(
a_m_k
);
ck
::
utils
::
FillConstant
<
BDataType
>
{
ck
::
type_conver
t
<
BDataType
>
(
1.
f
)}(
b_k_n
);
break
;
case
1
:
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
5.
f
,
5.
f
}(
a_m_k
);
...
...
example/01_gemm/run_gemm_example_streamk_v2.inc
View file @
f1e53807
...
...
@@ -3,88 +3,6 @@
#pragma once
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_rtol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1
e
-
6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5
e
-
2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
1
e
-
1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
1.5e-1
;
// 57344 and 49152 are acceptable
}
else
{
return
1
e
-
3
;
}
}
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_atol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1
e
-
6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5
e
-
2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
16.1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
8192.1
;
// 57344 and 49152 are acceptable
}
else
{
return
1
e
-
3
;
}
}
template
<
typename
ProblemType
>
bool
run_gemm
(
const
ProblemType
&
problem_size
,
const
ExecutionConfig
&
config
)
{
...
...
@@ -176,6 +94,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_ref_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
...
...
@@ -196,6 +115,8 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_device_ref_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_ref_result
.
mDesc
.
GetElementSpaceSize
());
a_m_k_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
...
...
@@ -240,6 +161,13 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
return
true
;
}
std
::
size_t
workspace_size
=
gemm
.
GetWorkSpaceSize
(
&
argument
);
if
(
workspace_size
!=
0
)
{
workspace
.
Realloc
(
workspace_size
);
gemm
.
SetWorkSpacePointer
(
&
argument
,
workspace
.
GetDeviceBuffer
());
}
bool
pass
=
true
;
if
((
config
.
do_verification
==
1
)
||
(
config
.
do_verification
==
3
))
{
...
...
@@ -271,6 +199,36 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
#endif
}
if
((
config
.
do_verification
==
2
)
||
(
config
.
do_verification
==
3
))
{
// GPU verification
auto
ref_gemm_gpu
=
ReferenceGemmInstanceGPU
{};
auto
ref_invoker_gpu
=
ref_gemm_gpu
.
MakeInvoker
();
auto
ref_argument_gpu
=
ref_gemm_gpu
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_device_ref_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
a_element_op
,
b_element_op
,
c_element_op
);
std
::
cout
<<
"Running verification on GPU."
<<
std
::
endl
;
ref_invoker_gpu
.
Run
(
ref_argument_gpu
,
StreamConfig
{});
c_m_n_device_ref_buf
.
FromDevice
(
c_m_n_device_ref_result
.
mData
.
data
());
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_device_ref_result
,
"Error: Incorrect results!"
,
get_rtol
<
CDataType
>
(),
get_atol
<
CDataType
>
());
}
if
(
config
.
time_kernel
)
{
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
...
...
example/01_gemm/run_gemm_example_v2.inc
View file @
f1e53807
...
...
@@ -3,88 +3,6 @@
#pragma once
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_rtol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1
e
-
6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5
e
-
2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
1
e
-
1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
1.5e-1
;
// 57344 and 49152 are acceptable
}
else
{
return
1
e
-
3
;
}
}
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_atol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1
e
-
6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5
e
-
2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
16.1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
8192.1
;
// 57344 and 49152 are acceptable
}
else
{
return
1
e
-
3
;
}
}
template
<
typename
ProblemType
>
bool
run_gemm
(
const
ProblemType
&
problem_size
,
const
ExecutionConfig
&
config
)
{
...
...
@@ -261,7 +179,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
if
(
config
.
time_kernel
)
{
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
,
0
,
5
,
10
,
true
,
4
});
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
,
0
,
5
0
,
10
0
,
true
,
4
});
std
::
size_t
flop
=
2_
uz
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
...
...
example/04_gemm_add_add_fastgelu/CMakeLists.txt
View file @
f1e53807
...
...
@@ -16,7 +16,7 @@ if(USE_BITINT_EXTENSION_INT4)
add_example_dependencies
(
example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_int4
)
endif
(
USE_BITINT_EXTENSION_INT4
)
list
(
APPEND gpu_list gfx90a gfx940 gfx941 gfx942
)
list
(
APPEND gpu_list gfx90a gfx940 gfx941 gfx942
gfx950
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
...
...
example/15_grouped_gemm/grouped_gemm_multiple_d_splitk_xdl_fp16.cpp
View file @
f1e53807
...
...
@@ -186,15 +186,15 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
for
(
int
j
=
0
;
j
<
NumDMatrices
;
++
j
)
{
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_3
<
A
DataType
>
{
0.0
,
1.0
});
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_3
<
D
DataType
>
{
0.0
,
1.0
});
}
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
ADataType
,
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
BDataType
,
1
>
{});
for
(
int
j
=
0
;
j
<
NumDMatrices
;
++
j
)
{
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
DDataType
,
0
>
{});
}
}
}
...
...
@@ -246,7 +246,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
,
a_element_op
,
b_element_op
,
cde_element_op
);
gemm
.
SetKBatchSize
(
argument
,
config
.
k_batch
);
gemm
.
SetKBatchSize
(
&
argument
,
config
.
k_batch
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
...
...
@@ -257,7 +257,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_workspace_dev
.
GetDeviceBuffer
());
DeviceMem
gemm_arg_dev_mem
(
gemm
.
GetDeviceKernelArgSize
(
&
argument
));
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_arg_dev_mem
.
GetDeviceBuffer
());
gemm
.
SetDeviceKernelArgs
(
&
argument
,
gemm_arg_dev_mem
.
GetDeviceBuffer
());
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
,
1
});
...
...
example/15_grouped_gemm/grouped_gemm_multiple_d_xdl_fp16.cpp
View file @
f1e53807
...
...
@@ -91,7 +91,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
{
auto
group_count
=
problem_size
.
group_count
;
using
KernelArguments
=
ck
::
tensor_operation
::
device
::
GroupedGemm
TileLoop
KernelArgument
s
<
NumDs
>
;
using
KernelArguments
=
ck
::
tensor_operation
::
device
::
GroupedGemmKernelArgument
<
NumDs
>
;
using
GemmDesc
=
ck
::
tensor_operation
::
device
::
GemmDesc
;
// GEMM shape
...
...
@@ -190,15 +190,15 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
for
(
int
j
=
0
;
j
<
NumDs
;
++
j
)
{
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_3
<
A
DataType
>
{
0.0
,
1.0
});
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_3
<
D
DataType
>
{
0.0
,
1.0
});
}
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
ADataType
,
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
BDataType
,
1
>
{});
for
(
int
j
=
0
;
j
<
NumDs
;
++
j
)
{
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
d_tensors
[
i
][
j
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
DDataType
,
0
>
{});
}
}
}
...
...
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_bias_fp16.cpp
View file @
f1e53807
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
...
...
@@ -167,11 +167,11 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
ADataType
,
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
BDataType
,
1
>
{});
}
d0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
d0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
D0DataType
,
1
>
{});
}
using
GroupedGemmKernelArgument
=
ck
::
tensor_operation
::
device
::
GroupedGemmKernelArgument
<
1
>
;
...
...
@@ -254,7 +254,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
gemm
.
GetDeviceKernelArgSize
(
&
argument
),
hipMemcpyHostToDevice
));
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_kernel_args_dev
.
GetDeviceBuffer
());
gemm
.
SetDeviceKernelArgs
(
&
argument
,
gemm_kernel_args_dev
.
GetDeviceBuffer
());
gemm
.
SetKBatch
(
argument
,
config
.
k_batch
);
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
...
...
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16.cpp
View file @
f1e53807
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
...
...
@@ -157,8 +157,8 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
ADataType
,
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
BDataType
,
1
>
{});
}
}
...
...
@@ -239,7 +239,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
"not support this GEMM problem"
);
}
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_arg_dev_mem
.
GetDeviceBuffer
());
gemm
.
SetDeviceKernelArgs
(
&
argument
,
gemm_arg_dev_mem
.
GetDeviceBuffer
());
gemm
.
SetKBatch
(
argument
,
config
.
k_batch
);
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
...
...
example/15_grouped_gemm/grouped_gemm_xdl_fixed_nk_fp16_fp8.cpp
View file @
f1e53807
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
...
...
@@ -158,8 +158,8 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
ADataType
,
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
BDataType
,
1
>
{});
}
}
...
...
@@ -240,7 +240,7 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
"not support this GEMM problem"
);
}
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_arg_dev_mem
.
GetDeviceBuffer
());
gemm
.
SetDeviceKernelArgs
(
&
argument
,
gemm_arg_dev_mem
.
GetDeviceBuffer
());
gemm
.
SetKBatch
(
argument
,
config
.
k_batch
);
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
...
...
example/15_grouped_gemm/run_grouped_gemm_example.inc
View file @
f1e53807
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
struct
ProblemSize
final
...
...
@@ -124,8 +127,8 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors
[
i
]
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default
:
a_tensors
[
i
]
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
]
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
a_tensors
[
i
]
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
ADataType
,
0
>
{});
b_tensors
[
i
]
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
BDataType
,
1
>
{});
}
}
...
...
@@ -168,9 +171,23 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
auto
argument
=
gemm
.
MakeArgument
(
p_a
,
p_b
,
p_Ds
,
p_c
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
);
DeviceMem
gemm_desc_workspace
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
std
::
size_t
workspace_size
=
gemm
.
GetWorkSpaceSize
(
&
argument
);
std
::
size_t
kargs_size
=
gemm
.
GetDeviceKernelArgSize
(
&
argument
);
DeviceMem
gemm_workspace
,
gemm_kargs
;
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_desc_workspace
.
GetDeviceBuffer
());
// The following is necessary since TwoStage kernel is using additional memory both
// for Workspace and kernel arguments.
if
(
kargs_size
>
0
)
{
gemm_kargs
.
Realloc
(
kargs_size
);
gemm
.
SetDeviceKernelArgs
(
&
argument
,
gemm_kargs
.
GetDeviceBuffer
());
}
if
(
workspace_size
>
0
&&
workspace_size
!=
kargs_size
)
{
gemm_workspace
.
Realloc
(
workspace_size
);
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_workspace
.
GetDeviceBuffer
());
}
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
...
...
example/18_batched_gemm_reduce/CMakeLists.txt
View file @
f1e53807
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
gfx950
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
...
...
example/21_gemm_layernorm/gemm_xdl_layernorm_naive_single_kernel_fp16.cpp
View file @
f1e53807
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
...
...
@@ -175,8 +175,8 @@ int main(int argc, char* argv[])
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
ADataType
,
0
>
{});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
BDataType
,
1
>
{});
}
c0_n_bias
.
GenerateTensorValue
(
GeneratorTensor_2
<
C0DataType
>
{
-
5
,
5
});
...
...
example/24_batched_gemm/CMakeLists.txt
View file @
f1e53807
...
...
@@ -22,3 +22,6 @@ if(USE_BITINT_EXTENSION_INT4)
add_example_executable
(
example_batched_gemm_xdl_int4 batched_gemm_xdl_int4.cpp
)
add_example_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_int4
)
endif
()
add_example_executable
(
example_batched_gemm_xdl_fp16int4_b_scale_v3 batched_gemm_xdl_fp16int4_b_scale_v3.cpp
)
add_example_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_fp16int4_b_scale_v3
)
example/24_batched_gemm/batched_gemm_xdl_bf16_v3.cpp
View file @
f1e53807
...
...
@@ -78,14 +78,14 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmMultiD
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
0
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
0
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
...
...
example/24_batched_gemm/batched_gemm_xdl_fp16int4_b_scale_v3.cpp
0 → 100644
View file @
f1e53807
#include <cstdlib>
#include <initializer_list>
#include <iostream>
#include <numeric>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_xdl_fpAintB_b_scale.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
BDataType
=
ck
::
pk_i4_t
;
using
BScaleDataType
=
ck
::
half_t
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
CDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
CLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
PermuteA
=
false
;
static
constexpr
bool
PermuteB
=
false
;
static
constexpr
ck
::
index_t
Scale_Block_N
=
1
;
static
constexpr
ck
::
index_t
Scale_Block_K
=
128
;
static
constexpr
ck
::
index_t
KPerBlock
=
256
;
// clang-format off
using
DeviceBatchedGemmV2Instance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemm_Xdl_CShuffleV3_BScale
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
BScaleDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
256
,
Scale_Block_N
,
Scale_Block_K
,
16
,
64
,
KPerBlock
,
8
,
32
,
16
,
16
,
1
,
1
,
S
<
32
,
8
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
32
,
32
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v3
,
CDataType
,
CDataType
,
PermuteA
,
PermuteB
>
;
// clang-format on
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
AccDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
#include "run_batched_gemm_example_fp16int4_b_scale.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_batched_gemm_fp16_int4_b_scale_example
(
argc
,
argv
);
}
example/24_batched_gemm/run_batched_gemm_example_fp16int4_b_scale.inc
0 → 100644
View file @
f1e53807
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include <random>
#pragma once
struct
ProblemSize
final
{
ck
::
index_t
M
=
128
;
ck
::
index_t
N
=
128
;
ck
::
index_t
K
=
384
;
ck
::
index_t
stride_A
=
K
;
ck
::
index_t
stride_B
=
K
;
ck
::
index_t
stride_C
=
N
;
ck
::
index_t
batch_stride_A
=
M
*
K
;
ck
::
index_t
batch_stride_B
=
K
*
N
;
ck
::
index_t
batch_stride_C
=
M
*
N
;
// Batched Gemm count
ck
::
index_t
batch_count
=
2
;
// Split K count
ck
::
index_t
KBatch
=
1
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
};
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_rtol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1
e
-
6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5
e
-
2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
1
e
-
1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
1.5e-1
;
// 57344 and 49152 are acceptable
}
else
{
return
1
e
-
3
;
}
}
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_atol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1
e
-
6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5
e
-
2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
16.1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
8192.1
;
// 57344 and 49152 are acceptable
}
else
{
return
1
e
-
3
;
}
}
bool
run_batched_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
using
namespace
ck
::
literals
;
auto
&
[
M
,
N
,
K
,
stride_A
,
stride_B
,
stride_C
,
batch_stride_A
,
batch_stride_B
,
batch_stride_C
,
batch_count
,
KBatch
]
=
problem_size
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count_
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
if
constexpr
(
std
::
is_same_v
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
HostTensorDescriptor
({
batch_count_
,
row
,
col
},
{
batch_stride
,
stride
,
1_
uz
});
}
else
{
return
HostTensorDescriptor
({
batch_count_
,
row
,
col
},
{
batch_stride
,
1_
uz
,
stride
});
}
};
ck
::
index_t
Scale_Stride_BN
=
(
K
+
Scale_Block_K
-
1
)
/
Scale_Block_K
;
ck
::
index_t
batch_BScale_Stride
=
((
K
+
Scale_Block_K
-
1
)
/
Scale_Block_K
)
*
((
N
+
Scale_Block_N
-
1
)
/
Scale_Block_N
);
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
batch_count
,
M
,
K
,
stride_A
,
batch_stride_A
,
ALayout
{}));
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
batch_count
,
K
,
N
,
stride_B
,
batch_stride_B
,
BLayout
{}));
Tensor
<
BDataType
>
b_g_k_n_permute
(
f_host_tensor_descriptor
(
batch_count
,
K
,
N
,
stride_B
,
batch_stride_B
,
BLayout
{}));
Tensor
<
BScaleDataType
>
b1_g_k_n
(
f_host_tensor_descriptor
(
batch_count
,
(
K
+
Scale_Block_K
-
1
)
/
Scale_Block_K
,
(
N
+
Scale_Block_N
-
1
)
/
Scale_Block_N
,
Scale_Stride_BN
,
batch_BScale_Stride
,
BLayout
{}));
switch
(
config
.
init_method
)
{
case
0
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{
1
});
b1_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
BScaleDataType
>
{
1
});
break
;
case
1
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
b1_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BScaleDataType
>
{
0
,
1.0
});
break
;
case
2
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
b1_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
BScaleDataType
>
{
1
});
break
;
case
3
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{
1
});
b1_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
BScaleDataType
>
{
1
});
break
;
case
4
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{
1
});
b1_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BScaleDataType
>
{
0
,
1.0
});
break
;
case
5
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
b1_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
BScaleDataType
>
{
1
});
break
;
default
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.5
,
0.5
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
b1_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BScaleDataType
>
{
0
,
1.0
});
}
Tensor
<
CDataType
>
c_g_m_n_host_result
(
f_host_tensor_descriptor
(
batch_count
,
M
,
N
,
stride_C
,
batch_stride_C
,
CLayout
{}));
Tensor
<
CDataType
>
c_g_m_n_device_result
(
f_host_tensor_descriptor
(
batch_count
,
M
,
N
,
stride_C
,
batch_stride_C
,
CLayout
{}));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_g_k_n: "
<<
b1_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_g_m_n: "
<<
c_g_m_n_host_result
.
mDesc
<<
std
::
endl
;
DeviceMem
a_g_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_g_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_g_k_n_permute
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b1_g_scale_device_buf
(
sizeof
(
BScaleDataType
)
*
b1_g_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_g_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_g_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
printf
(
"a_g_m_k size: %zu, b_g_k_n size: %zu, b1_g_k_n size: %zu, c_g_m_n size: %zu
\n
"
,
a_g_m_k
.
mDesc
.
GetElementSpaceSize
(),
b_g_k_n_permute
.
mDesc
.
GetElementSpaceSize
(),
b1_g_k_n
.
mDesc
.
GetElementSpaceSize
(),
c_g_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
// weight permute
if
constexpr
(
PermuteB
)
{
printf
(
"Permute B
\n
"
);
int
K1
=
KPerBlock
;
int
K0
=
K
/
KPerBlock
;
// int K0, N, K1
for
(
int
bs
=
0
;
bs
<
batch_count
;
bs
++
)
{
for
(
int
j
=
0
;
j
<
K0
;
j
++
)
{
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
for
(
int
jj
=
0
;
jj
<
K1
;
jj
++
)
{
b_g_k_n_permute
(
bs
*
batch_stride_B
+
j
*
N
*
K1
+
i
*
K1
+
jj
)
=
b_g_k_n
(
bs
*
batch_stride_B
+
i
*
K
+
(
j
*
K1
+
jj
));
}
}
}
}
}
else
{
b_g_k_n_permute
=
b_g_k_n
;
}
// vector pk_i4x4 permute
for
(
int
bs
=
0
;
bs
<
batch_count
;
bs
++
)
{
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
for
(
int
j
=
0
;
j
<
K
;
j
+=
8
)
{
int
input
[
8
];
for
(
int
k
=
0
;
k
<
4
;
k
++
)
{
int
i4x2
=
b_g_k_n_permute
(
bs
,
j
+
k
*
2
,
i
)
.
data
;
input
[
k
*
2
+
0
]
=
(
i4x2
>>
4
)
&
0xf
;
input
[
k
*
2
+
1
]
=
(
i4x2
>>
0
)
&
0xf
;
}
// permute 01234567->20643175
{
int
hi
=
input
[
2
];
int
lo
=
input
[
0
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_g_k_n_permute
(
bs
,
j
+
0
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
6
];
int
lo
=
input
[
4
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_g_k_n_permute
(
bs
,
j
+
2
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
3
];
int
lo
=
input
[
1
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_g_k_n_permute
(
bs
,
j
+
4
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
7
];
int
lo
=
input
[
5
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_g_k_n_permute
(
bs
,
j
+
6
,
i
)
=
i4x2
;
}
}
}
}
a_g_m_k_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b_g_k_n_device_buf
.
ToDevice
(
b_g_k_n_permute
.
mData
.
data
());
b1_g_scale_device_buf
.
ToDevice
(
b1_g_k_n
.
mData
.
data
());
DeviceMem
workspace
;
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceBatchedGemmV2Instance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
float
ave_time
=
0
;
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_g_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_g_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_g_m_n_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
stride_A
,
stride_B
,
stride_C
,
Scale_Stride_BN
,
batch_stride_A
,
batch_stride_B
,
batch_stride_C
,
batch_BScale_Stride
,
static_cast
<
BScaleDataType
*>
(
b1_g_scale_device_buf
.
GetDeviceBuffer
()),
batch_count
,
// batch count
KBatch
,
// split K count
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cerr
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
true
;
}
bool
pass
=
true
;
Tensor
<
float
>
b_g_k_n_dequant
({
batch_count
,
K
,
N
});
if
(
config
.
do_verification
)
{
float
v_b
=
0
;
for
(
int
bs
=
0
;
bs
<
batch_count
;
bs
++
)
{
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
for
(
int
k
=
0
;
k
<
K
;
k
++
)
{
ck
::
pk_i4_t
i4x2
=
b_g_k_n
(
bs
,
k
,
n
)
.
data
;
int8_t
i4
=
0
;
if
(
k
%
2
==
1
)
i4
=
(
i4x2
.
data
>>
0
)
&
0xf
;
else
i4
=
(
i4x2
.
data
>>
4
)
&
0xf
;
i4
=
i4
-
8
;
v_b
=
ck
::
type_convert
<
float
>
(
i4
);
b_g_k_n_dequant
(
bs
,
k
,
n
)
=
ck
::
type_convert
<
float
>
(
v_b
)
*
ck
::
type_convert
<
float
>
(
b1_g_k_n
(
bs
,
k
/
Scale_Block_K
,
n
/
Scale_Block_N
));
}
}
}
auto
ref_gemm
=
ReferenceBatchedGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_g_m_k
,
b_g_k_n_dequant
,
c_g_m_n_host_result
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
,
0
});
hip_check_error
(
hipDeviceSynchronize
());
c_g_m_n_device_buf
.
FromDevice
(
c_g_m_n_device_result
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
c_g_m_n_device_result
,
c_g_m_n_host_result
,
"Error: Incorrect results!"
,
get_rtol
<
CDataType
>
(),
get_atol
<
CDataType
>
());
}
if
(
config
.
time_kernel
)
{
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
std
::
size_t
flop
=
2_
uz
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
/
(
ck
::
is_same_v
<
ck
::
remove_cvref_t
<
BDataType
>
,
ck
::
pk_i4_t
>
?
2
:
1
)
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
#if 0
// print A matrix
printf
(
"A matrix:
\n
"
);
for
(
int
bs
=
0
;
bs
<
batch_count
;
bs
++
)
{
printf
(
"batch %d -> Address: %p
\n
"
,
bs
,
static_cast
<
void
*>
(
&
a_g_m_k
(
bs
,
0
,
0
)));
for
(
int
i
=
0
;
i
<
M
;
i
++
)
{
for
(
int
j
=
0
;
j
<
K
;
j
++
)
{
printf
(
"%.2f,"
,
static_cast
<
float
>
(
a_g_m_k
(
bs
,
i
,
j
)));
}
printf
(
"
\n
"
);
}
}
// print B matrix original
printf
(
"B matrix original:
\n
"
);
for
(
int
bs
=
0
;
bs
<
batch_count
;
bs
++
)
{
printf
(
"batch %d -> Address: %p
\n
"
,
bs
,
static_cast
<
void
*>
(
&
b_g_k_n
(
bs
,
0
,
0
)));
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
for
(
int
k
=
0
;
k
<
K
;
k
++
)
{
ck
::
pk_i4_t
i4x2
=
b_g_k_n
(
bs
,
k
,
n
)
.
data
;
int8_t
i4
=
0
;
if
(
k
%
2
==
1
)
i4
=
(
i4x2
.
data
>>
0
)
&
0xf
;
else
i4
=
(
i4x2
.
data
>>
4
)
&
0xf
;
i4
=
i4
-
8
;
printf
(
"%d,"
,
static_cast
<
int
>
(
i4
));
}
printf
(
"
\n
"
);
}
}
// print B matrix
printf
(
"B matrix:
\n
"
);
for
(
int
bs
=
0
;
bs
<
batch_count
;
bs
++
)
{
printf
(
"batch %d -> Address: %p
\n
"
,
bs
,
static_cast
<
void
*>
(
&
b_g_k_n_dequant
(
bs
,
0
,
0
)));
for
(
int
i
=
0
;
i
<
K
;
i
++
)
{
for
(
int
j
=
0
;
j
<
N
;
j
++
)
{
printf
(
"%.2f, "
,
static_cast
<
float
>
(
b_g_k_n_dequant
(
bs
,
i
,
j
)));
}
printf
(
"
\n
"
);
}
}
// print B scale matrix
printf
(
"B Scale matrix:
\n
"
);
for
(
int
bs
=
0
;
bs
<
batch_count
;
bs
++
)
{
printf
(
"batch %d -> Address: %p
\n
"
,
bs
,
static_cast
<
void
*>
(
&
b1_g_k_n
(
bs
,
0
,
0
)));
for
(
int
i
=
0
;
i
<
(
K
+
Scale_Block_K
-
1
)
/
Scale_Block_K
;
i
++
)
{
for
(
int
j
=
0
;
j
<
(
N
+
Scale_Block_N
-
1
)
/
Scale_Block_N
;
j
++
)
{
printf
(
"%.2f, "
,
static_cast
<
float
>
(
b1_g_k_n
(
bs
,
i
,
j
)));
}
printf
(
"
\n
"
);
}
}
// print C matrix
printf
(
"C matrix:
\n
"
);
for
(
int
bs
=
0
;
bs
<
batch_count
;
bs
++
)
{
printf
(
"batch %d -> Address: %p
\n
"
,
bs
,
static_cast
<
void
*>
(
&
c_g_m_n_device_result
(
bs
,
0
,
0
)));
for
(
int
i
=
0
;
i
<
M
;
i
++
)
{
for
(
int
j
=
0
;
j
<
N
;
j
++
)
{
printf
(
"%.2f, "
,
static_cast
<
float
>
(
c_g_m_n_device_result
(
bs
,
i
,
j
)));
}
printf
(
"
\n
"
);
}
}
printf
(
"C reference matrix:
\n
"
);
for
(
int
bs
=
0
;
bs
<
batch_count
;
bs
++
)
{
printf
(
"batch %d -> Address: %p
\n
"
,
bs
,
static_cast
<
void
*>
(
&
c_g_m_n_host_result
(
bs
,
0
,
0
)));
for
(
int
i
=
0
;
i
<
M
;
i
++
)
{
for
(
int
j
=
0
;
j
<
N
;
j
++
)
{
printf
(
"%.2f, "
,
static_cast
<
float
>
(
c_g_m_n_host_result
(
bs
,
i
,
j
)));
}
printf
(
"
\n
"
);
}
}
#endif
return
pass
;
}
bool
run_batched_gemm_fp16_int4_b_scale_example
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
std
::
mt19937
gen
(
11939
);
std
::
uniform_int_distribution
<
int
>
dis
(
0
,
15
);
problem_size
.
M
=
128
*
(
dis
(
gen
)
+
1
);
problem_size
.
N
=
128
*
(
dis
(
gen
)
+
1
);
problem_size
.
K
=
256
*
(
dis
(
gen
)
+
2
);
problem_size
.
batch_count
=
2
;
if
(
argc
==
4
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
>=
7
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
problem_size
.
M
=
std
::
stoi
(
argv
[
4
]);
problem_size
.
N
=
std
::
stoi
(
argv
[
5
]);
problem_size
.
K
=
std
::
stoi
(
argv
[
6
]);
if
(
argc
>=
8
)
{
problem_size
.
batch_count
=
std
::
stoi
(
argv
[
7
]);
}
if
(
argc
>=
9
)
{
problem_size
.
KBatch
=
std
::
stoi
(
argv
[
8
]);
}
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
exit
(
0
);
}
problem_size
.
stride_A
=
problem_size
.
K
;
problem_size
.
stride_B
=
problem_size
.
K
;
problem_size
.
stride_C
=
problem_size
.
N
;
problem_size
.
batch_stride_A
=
problem_size
.
M
*
problem_size
.
K
;
problem_size
.
batch_stride_B
=
problem_size
.
K
*
problem_size
.
N
;
problem_size
.
batch_stride_C
=
problem_size
.
M
*
problem_size
.
N
;
return
run_batched_gemm
(
problem_size
,
config
);
}
example/30_grouped_conv_fwd_multiple_d/run_grouped_conv_fwd_bias_relu_add_example.inc
View file @
f1e53807
...
...
@@ -32,6 +32,56 @@ using BiasLayout = typename LayoutSettingSelector<NDimSpatial>::BiasLayout;
template
<
ck
::
index_t
NDimSpatial
>
using
ResidualLayout
=
typename
LayoutSettingSelector
<
NDimSpatial
>::
ResidualLayout
;
#if defined(CK_USE_AMD_MFMA_GFX950)
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceConvFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
InputLayout
<
NDimSpatial
>
,
WeightLayout
<
NDimSpatial
>
,
ck
::
Tuple
<
BiasLayout
<
NDimSpatial
>
,
ResidualLayout
<
NDimSpatial
>>
,
OutputLayout
<
NDimSpatial
>
,
InKernelDataType
,
WeiKernelDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
BiasKernelDataType
,
ResidualKernelDataType
>
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
64
,
// KPerBlock
16
,
// AK1
16
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
4
,
// ABlockTransferSrcScalarPerVector
4
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
4
,
// BBlockTransferSrcScalarPerVector
4
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
;
#else // defined(CK_USE_AMD_MFMA_GFX950)
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceConvFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
...
...
@@ -80,6 +130,7 @@ using DeviceConvFwdInstance =
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
;
#endif // defined(CK_USE_AMD_MFMA_GFX950)
template
<
ck
::
index_t
NDimSpatial
>
using
HostConvFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
...
...
example/31_batched_gemm_gemm/CMakeLists.txt
View file @
f1e53807
...
...
@@ -5,6 +5,6 @@ if(USE_BITINT_EXTENSION_INT4)
add_example_executable
(
example_batched_gemm_gemm_xdl_int4 batched_gemm_gemm_xdl_int4.cpp
)
endif
(
USE_BITINT_EXTENSION_INT4
)
if
(
NOT GPU_TARGETS MATCHES
"gfx94"
AND NOT GPU_TARGETS MATCHES
"gfx1"
)
if
(
NOT GPU_TARGETS MATCHES
"gfx94"
AND NOT GPU_TARGETS MATCHES
"gfx95"
AND NOT GPU_TARGETS MATCHES
"gfx1"
)
add_example_executable
(
example_batched_gemm_gemm_xdl_int8 batched_gemm_gemm_xdl_int8.cpp
)
endif
()
example/31_batched_gemm_gemm/run_batched_gemm_gemm_example.inc
View file @
f1e53807
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -150,7 +150,7 @@ bool run_batched_gemm_gemm_example(int argc, char* argv[])
break
;
default
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
B0DataType
,
1
>
{});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
}
...
...
Prev
1
2
3
4
5
6
7
8
…
44
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment