Commit ec6b000c authored by aska-0096's avatar aska-0096
Browse files

Merge branch 'develop' of https://github.com/ROCm/composable_kernel into update_cka8w8

parents f3bbfe3e e4dfe4d8
rocm-docs-core==1.8.4 rocm-docs-core==1.8.5
sphinxcontrib-bibtex==2.6.3 sphinxcontrib-bibtex==2.6.3
...@@ -103,7 +103,7 @@ requests==2.32.3 ...@@ -103,7 +103,7 @@ requests==2.32.3
# via # via
# pygithub # pygithub
# sphinx # sphinx
rocm-docs-core==1.8.4 rocm-docs-core==1.8.5
# via -r requirements.in # via -r requirements.in
six==1.16.0 six==1.16.0
# via pybtex # via pybtex
......
...@@ -83,3 +83,7 @@ add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp16_fp8) ...@@ -83,3 +83,7 @@ add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp16_fp8)
add_custom_target(example_gemm_wmma) add_custom_target(example_gemm_wmma)
add_example_executable(example_gemm_wmma_fp16 gemm_wmma_fp16.cpp) add_example_executable(example_gemm_wmma_fp16 gemm_wmma_fp16.cpp)
add_example_dependencies(example_gemm_wmma example_gemm_wmma_fp16) add_example_dependencies(example_gemm_wmma example_gemm_wmma_fp16)
add_example_executable(example_gemm_wmma_bf16 gemm_wmma_bf16.cpp)
add_example_dependencies(example_gemm_wmma example_gemm_wmma_bf16)
add_example_executable(example_gemm_wmma_int8 gemm_wmma_int8.cpp)
add_example_dependencies(example_gemm_wmma example_gemm_wmma_int8)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp"
using ADataType = ck::bhalf_t;
using BDataType = ck::bhalf_t;
using AccDataType = float;
using CShuffleDataType = float;
using CDataType = ck::bhalf_t;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmWmma_CShuffle
< ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
CShuffleDataType,
AElementOp,
BElementOp,
CElementOp,
GemmDefault,
1, // Prefetch stage
128, // BlockSize
64, // MPerBlock
128, // NPerBlock
64, // KPerBlock
2, // K1
16, // MPerWmma
16, // NPerWmma
2, // M-Repeat // M-PerWmma / M-Repeat = M-Wave
4, // N-Repeat // N-PerWmma / N-Repeat = N-Wave
S<4, 32, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
2,
2,
true,
S<4, 32, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
2,
2,
true,
1, // C shuffle (M Repeat) Per store
1, // C shuffle (N Repeat) Per store
S<1, 32, 1, 4>,
8>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
using ReferenceGemmInstanceGPU = ck::tensor_operation::device::ReferenceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
#include "run_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp"
using ADataType = int8_t;
using BDataType = int8_t;
using AccDataType = int32_t;
using CShuffleDataType = int32_t;
using CDataType = int8_t;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmWmma_CShuffle
< ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
CShuffleDataType,
AElementOp,
BElementOp,
CElementOp,
GemmDefault,
1, // Prefetch stage
128, // BlockSize
64, // MPerBlock
128, // NPerBlock
64, // KPerBlock
2, // K1
16, // MPerWmma
16, // NPerWmma
2, // M-Repeat // M-PerWmma / M-Repeat = M-Wave
4, // N-Repeat // N-PerWmma / N-Repeat = N-Wave
S<4, 32, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
2,
2,
true,
S<4, 32, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
2,
2,
true,
1, // C shuffle (M Repeat) Per store
1, // C shuffle (N Repeat) Per store
S<1, 32, 1, 4>,
8>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
using ReferenceGemmInstanceGPU = ck::tensor_operation::device::ReferenceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
#include "run_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
...@@ -9,6 +9,12 @@ add_example_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_fp16) ...@@ -9,6 +9,12 @@ add_example_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_fp16)
add_example_executable(example_batched_gemm_xdl_bf16 batched_gemm_xdl_bf16.cpp) add_example_executable(example_batched_gemm_xdl_bf16 batched_gemm_xdl_bf16.cpp)
add_example_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_bf16) add_example_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_bf16)
add_example_executable(example_batched_gemm_xdl_bf16_v3 batched_gemm_xdl_bf16_v3.cpp)
add_example_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_bf16_v3)
add_example_executable(example_batched_gemm_xdl_fp8_rowwise_v3 batched_gemm_xdl_fp8_rowwise_v3.cpp)
add_example_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_fp8_rowwise_v3)
add_example_executable(example_batched_gemm_xdl_int8 batched_gemm_xdl_int8.cpp) add_example_executable(example_batched_gemm_xdl_int8 batched_gemm_xdl_int8.cpp)
add_example_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_int8) add_example_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_int8)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_multiple_d_xdl_cshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = BF16;
using BDataType = BF16;
using AccDataType = F32;
using CShuffleDataType = BF16;
using DsDataType = ck::Tuple<>;
using EDataType = BF16;
using ALayout = Row;
using BLayout = Col;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmMultiD_Xdl_CShuffle_V3<
ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AccDataType,
CShuffleDataType,
AElementOp,
BElementOp,
CDEElementOp,
GemmDefault,
256, // BlockSize
256, // MPerBlock
128, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXDL
32, // NPerXDL
4, // MXdlPerWave
2, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
S<8>, // CDEShuffleBlockTransferScalarPerVectors
ck::BlockGemmPipelineScheduler::Intrawave, // BlockGemmPipelineScheduler
ck::BlockGemmPipelineVersion::v3 // BlockGemmPipelineVersion
>;
#include "run_batched_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_batched_gemm_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_multiple_d_xdl_cshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/utility/literals.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F8 = ck::f8_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using MultiplyMultiply = ck::tensor_operation::element_wise::MultiplyMultiply;
using ADataType = F8;
using BDataType = F8;
using AccDataType = F32;
using CShuffleDataType = F32;
using D0DataType = F32;
using D1DataType = F32;
using DsDataType = ck::Tuple<D0DataType, D1DataType>;
using EDataType = BF16;
using ALayout = Row;
using BLayout = Col;
using D0Layout = Row;
using D1Layout = Col;
using DsLayout = ck::Tuple<D0Layout, D1Layout>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = MultiplyMultiply;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmMultiD_Xdl_CShuffle_V3<
ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AccDataType,
CShuffleDataType,
AElementOp,
BElementOp,
CDEElementOp,
GemmDefault,
256, // BlockSize
256, // MPerBlock
128, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXDL
32, // NPerXDL
4, // MXdlPerWave
2, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
S<8, 8, 1>, // CDEShuffleBlockTransferScalarPerVectors
ck::BlockGemmPipelineScheduler::Interwave, // BlockGemmPipelineScheduler
ck::BlockGemmPipelineVersion::v1, // BlockGemmPipelineVersion
F8 // ComputeTypeA
>;
#include "run_batched_gemm_example_rowwise.inc"
int main(int argc, char* argv[]) { return !run_batched_gemm_rowwise_example(argc, argv); }
...@@ -210,17 +210,9 @@ bool run_batched_gemm_example(int argc, char* argv[]) ...@@ -210,17 +210,9 @@ bool run_batched_gemm_example(int argc, char* argv[])
problem_size.M = 256 * (dis(gen) + 1); problem_size.M = 256 * (dis(gen) + 1);
problem_size.N = 128 * (dis(gen) + 1); problem_size.N = 128 * (dis(gen) + 1);
problem_size.K = 64 * (dis(gen) + 2); problem_size.K = 128 * (dis(gen) + 2);
problem_size.stride_A = problem_size.K; problem_size.batch_count = 2;
problem_size.stride_B = problem_size.K;
problem_size.stride_C = problem_size.N;
problem_size.batch_stride_A = problem_size.M * problem_size.K;
problem_size.batch_stride_B = problem_size.K * problem_size.N;
problem_size.batch_stride_C = problem_size.M * problem_size.N;
problem_size.batch_count = 16;
if(argc == 4) if(argc == 4)
{ {
...@@ -228,13 +220,37 @@ bool run_batched_gemm_example(int argc, char* argv[]) ...@@ -228,13 +220,37 @@ bool run_batched_gemm_example(int argc, char* argv[])
config.init_method = std::stoi(argv[2]); config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]); config.time_kernel = std::stoi(argv[3]);
} }
else if(argc == 8)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
problem_size.M = std::stoi(argv[4]);
problem_size.N = std::stoi(argv[5]);
problem_size.K = std::stoi(argv[6]);
problem_size.batch_count = std::stoi(argv[7]);
}
else else
{ {
printf("arg1: verification (0=no, 1=yes)\n"); printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"); printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n"); printf("arg3: time kernel (0=n0, 1=yes)\n");
printf("optinal\n");
printf("arg4-7: M = %d N = %d K = %d Batch = %d\n",
problem_size.M,
problem_size.N,
problem_size.K,
problem_size.batch_count);
exit(0); exit(0);
} }
problem_size.stride_A = problem_size.K;
problem_size.stride_B = problem_size.K;
problem_size.stride_C = problem_size.N;
problem_size.batch_stride_A = problem_size.M * problem_size.K;
problem_size.batch_stride_B = problem_size.K * problem_size.N;
problem_size.batch_stride_C = problem_size.M * problem_size.N;
return run_batched_gemm(problem_size, config); return run_batched_gemm(problem_size, config);
} }
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <random>
#pragma once
struct ProblemSize final
{
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t stride_A = K;
ck::index_t stride_B = K;
ck::index_t stride_C = N;
ck::index_t stride_D0 = 0;
ck::index_t stride_D1 = 0;
ck::index_t batch_stride_A = M * K;
ck::index_t batch_stride_B = K * N;
ck::index_t batch_stride_C = M * N;
ck::index_t batch_stride_D0 = N;
ck::index_t batch_stride_D1 = M;
ck::index_t batch_count = 16;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
};
bool run_batched_gemm_rowwise(const ProblemSize& problem_size, const ExecutionConfig& config)
{
using namespace ck::literals;
auto& [M,
N,
K,
stride_A,
stride_B,
stride_C,
stride_D0,
stride_D1,
batch_stride_A,
batch_stride_B,
batch_stride_C,
batch_stride_D0,
batch_stride_D1,
batch_count] = problem_size;
// GEMM shape
auto f_host_tensor_descriptor = [](std::size_t batch_count_,
std::size_t row,
std::size_t col,
std::size_t stride,
std::size_t batch_stride,
auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({batch_count_, row, col}, {batch_stride, stride, 1_uz});
}
else
{
return HostTensorDescriptor({batch_count_, row, col}, {batch_stride, 1_uz, stride});
}
};
Tensor<ADataType> a_g_m_k(
f_host_tensor_descriptor(batch_count, M, K, stride_A, batch_stride_A, ALayout{}));
Tensor<BDataType> b_g_k_n(
f_host_tensor_descriptor(batch_count, K, N, stride_B, batch_stride_B, BLayout{}));
Tensor<D0DataType> d0_g_m_n(
f_host_tensor_descriptor(batch_count, M, N, stride_D0, batch_stride_D0, D0Layout{}));
Tensor<D1DataType> d1_g_m_n(
f_host_tensor_descriptor(batch_count, M, N, stride_D1, batch_stride_D1, D1Layout{}));
Tensor<EDataType> e_g_m_n_device_result(
f_host_tensor_descriptor(batch_count, M, N, stride_C, batch_stride_C, ELayout{}));
std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
std::cout << "b_g_k_n: " << b_g_k_n.mDesc << std::endl;
std::cout << "d0_g_m_n: " << d0_g_m_n.mDesc << std::endl;
std::cout << "d1_g_m_n: " << d1_g_m_n.mDesc << std::endl;
std::cout << "e_g_m_n: " << e_g_m_n_device_result.mDesc << std::endl;
switch(config.init_method)
{
case 0: break;
case 1:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_g_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_g_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
}
d0_g_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{0.0, 1.0});
d1_g_m_n.GenerateTensorValue(GeneratorTensor_3<D1DataType>{0.0, 1.0});
DeviceMem a_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_g_k_n.mDesc.GetElementSpaceSize());
DeviceMem d0_device_buf(sizeof(D0DataType) * d0_g_m_n.mDesc.GetElementSpaceSize());
DeviceMem d1_device_buf(sizeof(D1DataType) * d1_g_m_n.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(EDataType) * e_g_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_g_m_k.mData.data());
b_device_buf.ToDevice(b_g_k_n.mData.data());
d0_device_buf.ToDevice(d0_g_m_n.mData.data());
d1_device_buf.ToDevice(d1_g_m_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
// do GEMM
auto argument =
gemm.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
{d0_device_buf.GetDeviceBuffer(), d1_device_buf.GetDeviceBuffer()},
c_device_buf.GetDeviceBuffer(),
M,
N,
K,
batch_count,
stride_A,
stride_B,
{stride_D0, stride_D1},
stride_C,
batch_stride_A,
batch_stride_B,
{batch_stride_D0, batch_stride_D1},
batch_stride_C,
a_element_op,
b_element_op,
cde_element_op);
if(!gemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
invoker.Run(argument, StreamConfig{nullptr, false});
bool pass = true;
if(config.do_verification)
{
c_device_buf.FromDevice(e_g_m_n_device_result.mData.data());
Tensor<CShuffleDataType> c_g_m_n({batch_count, M, N});
using ReferenceBatchedGemmInstance =
ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
BDataType,
CShuffleDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_batched_gemm = ReferenceBatchedGemmInstance{};
auto ref_invoker = ref_batched_gemm.MakeInvoker();
Tensor<EDataType> e_g_m_n_host_result(
f_host_tensor_descriptor(batch_count, M, N, stride_C, batch_stride_C, ELayout{}));
auto ref_argument = ref_batched_gemm.MakeArgument(
a_g_m_k, b_g_k_n, c_g_m_n, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(int b = 0; b < batch_count; ++b)
{
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_g_m_n_host_result(b, m, n),
c_g_m_n(b, m, n),
d0_g_m_n(b, m, n),
d1_g_m_n(b, m, n));
}
}
}
pass = ck::utils::check_err(
e_g_m_n_device_result, e_g_m_n_host_result, "Error: Incorrect results c");
}
if(config.time_kernel)
{
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
std::size_t flop = std::size_t(2) * batch_count * M * N * K;
std::size_t num_btype = sizeof(ADataType) * batch_count * M * K +
sizeof(BDataType) * batch_count * K * N +
sizeof(EDataType) * batch_count * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm.GetTypeString() << std::endl;
}
return pass ? 0 : 1;
}
bool run_batched_gemm_rowwise_example(int argc, char* argv[])
{
ProblemSize problem_size;
ExecutionConfig config;
std::mt19937 gen(11939);
std::uniform_int_distribution<int> dis(0, 15);
problem_size.M = 256 * (dis(gen) + 1);
problem_size.N = 128 * (dis(gen) + 1);
problem_size.K = 128 * (dis(gen) + 2);
problem_size.batch_count = 2;
if(argc == 4)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
}
else if(argc == 8)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
problem_size.M = std::stoi(argv[4]);
problem_size.N = std::stoi(argv[5]);
problem_size.K = std::stoi(argv[6]);
problem_size.batch_count = std::stoi(argv[7]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n");
printf("optinal\n");
printf("arg4-7: M = %d N = %d K = %d Batch = %d\n",
problem_size.M,
problem_size.N,
problem_size.K,
problem_size.batch_count);
exit(0);
}
problem_size.stride_A = problem_size.K;
problem_size.stride_B = problem_size.K;
problem_size.stride_C = problem_size.N;
problem_size.stride_D0 = 0;
problem_size.stride_D1 = 0;
problem_size.batch_stride_A = problem_size.M * problem_size.K;
problem_size.batch_stride_B = problem_size.K * problem_size.N;
problem_size.batch_stride_C = problem_size.M * problem_size.N;
problem_size.batch_stride_D0 = problem_size.N;
problem_size.batch_stride_D1 = problem_size.M;
return run_batched_gemm_rowwise(problem_size, config);
}
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
...@@ -53,6 +53,47 @@ struct DeviceBatchedGemmMultiD : public BaseOperator ...@@ -53,6 +53,47 @@ struct DeviceBatchedGemmMultiD : public BaseOperator
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0; virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
}; };
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation>
struct DeviceBatchedGemmV2MultiD : public BaseOperator
{
static constexpr index_t NumDTensor = DsDataType::Size();
static_assert(DsLayout::Size() == DsDataType::Size(), "wrong! inconsisiten NumDTensor");
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
const std::array<const void*, NumDTensor>& p_ds,
void* p_e,
index_t M,
index_t N,
index_t K,
index_t Batch,
index_t StrideA,
index_t StrideB,
const std::array<ck::index_t, NumDTensor>& StrideDs,
index_t StrideE,
index_t BatchStrideA,
index_t BatchStrideB,
const std::array<ck::index_t, NumDTensor>& BatchStrideDs,
index_t BatchStrideE,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
...@@ -13,6 +13,11 @@ namespace ck { ...@@ -13,6 +13,11 @@ namespace ck {
defined(__gfx1103__) || defined(__gfx11_generic__) defined(__gfx1103__) || defined(__gfx11_generic__)
#define __gfx11__ #define __gfx11__
#endif #endif
#if defined(__gfx1200__) || defined(__gfx1201__) || defined(__gfx12_generic__)
#define __gfx12__
#endif
/********************************WAVE32 MODE***********************************************/ /********************************WAVE32 MODE***********************************************/
// src: fp16, dst: fp32 // src: fp16, dst: fp32
...@@ -99,7 +104,7 @@ struct intrin_wmma_bf16_16x16x16_bf16_w32<16, 16, Opsel> ...@@ -99,7 +104,7 @@ struct intrin_wmma_bf16_16x16x16_bf16_w32<16, 16, Opsel>
// opsel usage // opsel usage
// false: D0.[0:15] = result // false: D0.[0:15] = result
// true : D0.[16:31]= result // true : D0.[16:31]= result
#if defined(__gfx11__) #if defined(__gfx11__) || defined(__gfx12__)
reg_c.template AsType<bhalf16_t>()(Number<0>{}) = reg_c.template AsType<bhalf16_t>()(Number<0>{}) =
__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32( __builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32(
reg_a, reg_b, reg_c.template AsType<bhalf16_t>()[Number<0>{}], Opsel); reg_a, reg_b, reg_c.template AsType<bhalf16_t>()[Number<0>{}], Opsel);
...@@ -261,10 +266,6 @@ struct intrin_wmma_i32_16x16x16_iu8_w64<16, 16, neg_a, neg_b, clamp> ...@@ -261,10 +266,6 @@ struct intrin_wmma_i32_16x16x16_iu8_w64<16, 16, neg_a, neg_b, clamp>
// gfx12 // gfx12
/********************************WAVE32 MODE***********************************************/ /********************************WAVE32 MODE***********************************************/
#if defined(__gfx1200__) || defined(__gfx1201__) || defined(__gfx12_generic__)
#define __gfx12__
#endif
// src: fp16, dst: fp32 // src: fp16, dst: fp32
template <index_t MPerWave, index_t NPerWave> template <index_t MPerWave, index_t NPerWave>
struct intrin_wmma_f32_16x16x16_f16_w32_gfx12; struct intrin_wmma_f32_16x16x16_f16_w32_gfx12;
......
...@@ -180,6 +180,58 @@ struct DeviceOperationInstanceFactory< ...@@ -180,6 +180,58 @@ struct DeviceOperationInstanceFactory<
} }
} }
#endif #endif
#ifdef CK_ENABLE_BF16
if constexpr(is_same_v<ADataType, ck::bhalf_t> && is_same_v<BDataType, ck::bhalf_t> &&
is_same_v<CDataType, ck::bhalf_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_wmma_bf16_bf16_bf16_mk_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_wmma_bf16_bf16_bf16_mk_nk_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_wmma_bf16_bf16_bf16_km_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_wmma_bf16_bf16_bf16_km_nk_mn_instances(op_ptrs);
}
}
#endif
#ifdef CK_ENABLE_INT8
if constexpr(is_same_v<ADataType, int8_t> && is_same_v<BDataType, int8_t> &&
is_same_v<CDataType, int8_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_wmma_int8_int8_int8_mk_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_wmma_int8_int8_int8_mk_nk_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_wmma_int8_int8_int8_km_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_wmma_int8_int8_int8_km_nk_mn_instances(op_ptrs);
}
}
#endif
#endif #endif
#ifdef CK_USE_XDL #ifdef CK_USE_XDL
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_multiple_d_xdl_cshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
#ifdef CK_ENABLE_BF16
void add_device_batched_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_default_instances(
std::vector<std::unique_ptr<DeviceBatchedGemmV2MultiD<Row,
Col,
Empty_Tuple,
Row,
BF16,
BF16,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_batched_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v1_default_instances(
std::vector<std::unique_ptr<DeviceBatchedGemmV2MultiD<Row,
Col,
Empty_Tuple,
Row,
BF16,
BF16,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_batched_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v2_default_instances(
std::vector<std::unique_ptr<DeviceBatchedGemmV2MultiD<Row,
Col,
Empty_Tuple,
Row,
BF16,
BF16,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
#ifdef CK_ENABLE_FP8
void add_device_batched_gemm_xdl_universal_f8_f8_bf16_mk_nk_mn_comp_default_instances(
std::vector<std::unique_ptr<DeviceBatchedGemmV2MultiD<Row,
Col,
Empty_Tuple,
Row,
F8,
F8,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_batched_gemm_xdl_universal_f8_f8_bf16_mk_nk_mn_mem_v1_default_instances(
std::vector<std::unique_ptr<DeviceBatchedGemmV2MultiD<Row,
Col,
Empty_Tuple,
Row,
F8,
F8,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_batched_gemm_xdl_universal_f8_f8_bf16_mk_nk_mn_mem_v2_default_instances(
std::vector<std::unique_ptr<DeviceBatchedGemmV2MultiD<Row,
Col,
Empty_Tuple,
Row,
F8,
F8,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
#endif
template <typename ADataType,
typename BDataType,
typename DsDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename DsLayout,
typename CLayout>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceBatchedGemmV2MultiD<
ALayout,
BLayout,
DsLayout,
CLayout,
ADataType,
BDataType,
DsDataType,
CDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
{
using DeviceOp = DeviceBatchedGemmV2MultiD<ALayout,
BLayout,
DsLayout,
CLayout,
ADataType,
BDataType,
DsDataType,
CDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
#ifdef CK_ENABLE_BF16
if constexpr(is_same_v<ADataType, bhalf_t> && is_same_v<BDataType, bhalf_t> &&
is_same_v<CDataType, bhalf_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_batched_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_comp_default_instances(
op_ptrs);
add_device_batched_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v1_default_instances(
op_ptrs);
add_device_batched_gemm_xdl_universal_bf16_bf16_bf16_mk_nk_mn_mem_v2_default_instances(
op_ptrs);
}
}
#endif
#ifdef CK_ENABLE_FP8
if constexpr(is_same_v<ADataType, f8_t> && is_same_v<BDataType, f8_t> &&
is_same_v<CDataType, bhalf_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_batched_gemm_xdl_universal_f8_f8_bf16_mk_nk_mn_comp_default_instances(
op_ptrs);
add_device_batched_gemm_xdl_universal_f8_f8_bf16_mk_nk_mn_mem_v1_default_instances(
op_ptrs);
add_device_batched_gemm_xdl_universal_f8_f8_bf16_mk_nk_mn_mem_v2_default_instances(
op_ptrs);
}
}
#endif
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -28,6 +28,46 @@ void add_device_gemm_wmma_f16_f16_f16_mk_nk_mn_instances( ...@@ -28,6 +28,46 @@ void add_device_gemm_wmma_f16_f16_f16_mk_nk_mn_instances(
DeviceGemm<Row, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>& DeviceGemm<Row, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances); instances);
void add_device_gemm_wmma_bf16_bf16_bf16_km_kn_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Col, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_wmma_bf16_bf16_bf16_km_nk_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Col, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_wmma_bf16_bf16_bf16_mk_kn_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_wmma_bf16_bf16_bf16_mk_nk_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Row, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_wmma_int8_int8_int8_km_kn_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Col, Row, Row, int8_t, int8_t, int8_t, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_wmma_int8_int8_int8_km_nk_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Col, Col, Row, int8_t, int8_t, int8_t, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_wmma_int8_int8_int8_mk_kn_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Row, Row, Row, int8_t, int8_t, int8_t, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_gemm_wmma_int8_int8_int8_mk_nk_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Row, Col, Row, int8_t, int8_t, int8_t, PassThrough, PassThrough, PassThrough>>>&
instances);
} // namespace instance } // namespace instance
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
......
...@@ -206,7 +206,7 @@ typename std::enable_if< ...@@ -206,7 +206,7 @@ typename std::enable_if<
check_err(const Range& out, check_err(const Range& out,
const RefRange& ref, const RefRange& ref,
const std::string& msg = "Error: Incorrect results!", const std::string& msg = "Error: Incorrect results!",
double rtol = 1e-3, double rtol = 1e-1,
double atol = 1e-3) double atol = 1e-3)
{ {
if(out.size() != ref.size()) if(out.size() != ref.size())
......
...@@ -81,6 +81,12 @@ function(add_instance_library INSTANCE_NAME) ...@@ -81,6 +81,12 @@ function(add_instance_library INSTANCE_NAME)
list(REMOVE_ITEM ARGN "${source}") list(REMOVE_ITEM ARGN "${source}")
endif() endif()
endforeach() endforeach()
foreach(source IN LISTS ARGN)
if(NOT INST_TARGETS MATCHES "gfx94" AND source MATCHES "batched_gemm_xdl_universal" AND source MATCHES "_f8_")
message("removing batched_gemm_universal_f8 instance ${source} ")
list(REMOVE_ITEM ARGN "${source}")
endif()
endforeach()
endif() endif()
#only continue if there are some source files left on the list #only continue if there are some source files left on the list
if(ARGN) if(ARGN)
...@@ -102,6 +108,9 @@ function(add_instance_library INSTANCE_NAME) ...@@ -102,6 +108,9 @@ function(add_instance_library INSTANCE_NAME)
if(source MATCHES "gemm_multiply_multiply_f8") if(source MATCHES "gemm_multiply_multiply_f8")
list(REMOVE_ITEM INST_TARGETS gfx900 gfx906 gfx906:xnack- gfx908:xnack- gfx908:xnack+ gfx90a:xnack+ gfx90a:xnack- gfx908 gfx90a gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201 gfx10.3-generic gfx11-generic gfx12-generic) list(REMOVE_ITEM INST_TARGETS gfx900 gfx906 gfx906:xnack- gfx908:xnack- gfx908:xnack+ gfx90a:xnack+ gfx90a:xnack- gfx908 gfx90a gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201 gfx10.3-generic gfx11-generic gfx12-generic)
endif() endif()
if(source MATCHES "bached_gemm_multiply_multiply_f8")
list(REMOVE_ITEM INST_TARGETS gfx900 gfx906 gfx906:xnack- gfx908:xnack- gfx908:xnack+ gfx90a:xnack+ gfx90a:xnack- gfx908 gfx90a gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201 gfx10.3-generic gfx11-generic gfx12-generic)
endif()
endif() endif()
set(offload_targets) set(offload_targets)
foreach(target IN LISTS INST_TARGETS) foreach(target IN LISTS INST_TARGETS)
......
...@@ -2,9 +2,7 @@ set(GEMM_INSTANCES) ...@@ -2,9 +2,7 @@ set(GEMM_INSTANCES)
list(APPEND GEMM_INSTANCES device_gemm_xdl_f64_f64_f64_mk_kn_mn_instance.cpp list(APPEND GEMM_INSTANCES device_gemm_xdl_f64_f64_f64_mk_kn_mn_instance.cpp
device_gemm_xdl_f64_f64_f64_mk_nk_mn_instance.cpp device_gemm_xdl_f64_f64_f64_mk_nk_mn_instance.cpp
device_gemm_xdl_f64_f64_f64_km_kn_mn_instance.cpp device_gemm_xdl_f64_f64_f64_km_kn_mn_instance.cpp
device_gemm_xdl_f64_f64_f64_km_nk_mn_instance.cpp) device_gemm_xdl_f64_f64_f64_km_nk_mn_instance.cpp
list(APPEND GEMM_INSTANCES
device_gemm_xdl_f32_f32_f32_mk_kn_mn_instance.cpp device_gemm_xdl_f32_f32_f32_mk_kn_mn_instance.cpp
device_gemm_xdl_f32_f32_f32_mk_nk_mn_instance.cpp device_gemm_xdl_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_xdl_f32_f32_f32_km_kn_mn_instance.cpp device_gemm_xdl_f32_f32_f32_km_kn_mn_instance.cpp
...@@ -21,9 +19,6 @@ list(APPEND GEMM_INSTANCES ...@@ -21,9 +19,6 @@ list(APPEND GEMM_INSTANCES
device_gemm_dl_f32_f32_f32_mk_nk_mn_instance.cpp device_gemm_dl_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_dl_f32_f32_f32_km_kn_mn_instance.cpp device_gemm_dl_f32_f32_f32_km_kn_mn_instance.cpp
device_gemm_dl_f32_f32_f32_km_nk_mn_instance.cpp device_gemm_dl_f32_f32_f32_km_nk_mn_instance.cpp
)
list(APPEND GEMM_INSTANCES
device_gemm_dl_f16_f16_f16_mk_kn_mn_instance.cpp device_gemm_dl_f16_f16_f16_mk_kn_mn_instance.cpp
device_gemm_dl_f16_f16_f16_mk_kn_mn_irregular_instance.cpp device_gemm_dl_f16_f16_f16_mk_kn_mn_irregular_instance.cpp
device_gemm_dl_f16_f16_f16_mk_nk_mn_instance.cpp device_gemm_dl_f16_f16_f16_mk_nk_mn_instance.cpp
...@@ -78,9 +73,6 @@ list(APPEND GEMM_INSTANCES ...@@ -78,9 +73,6 @@ list(APPEND GEMM_INSTANCES
device_gemm_xdl_f16_f16_f16/mk_nk_mn_irregular_default_pipeline_v1_instance.cpp device_gemm_xdl_f16_f16_f16/mk_nk_mn_irregular_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_irregular_default_pipeline_v2_instance.cpp device_gemm_xdl_f16_f16_f16/mk_nk_mn_irregular_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_irregular_interwave_pipeline_v1_instance.cpp device_gemm_xdl_f16_f16_f16/mk_nk_mn_irregular_interwave_pipeline_v1_instance.cpp
)
list(APPEND GEMM_INSTANCES
device_gemm_dl_i8_i8_i8_mk_kn_mn_instance.cpp device_gemm_dl_i8_i8_i8_mk_kn_mn_instance.cpp
device_gemm_dl_i8_i8_i8_mk_kn_mn_irregular_instance.cpp device_gemm_dl_i8_i8_i8_mk_kn_mn_irregular_instance.cpp
device_gemm_dl_i8_i8_i8_mk_nk_mn_instance.cpp device_gemm_dl_i8_i8_i8_mk_nk_mn_instance.cpp
...@@ -92,15 +84,11 @@ list(APPEND GEMM_INSTANCES ...@@ -92,15 +84,11 @@ list(APPEND GEMM_INSTANCES
device_gemm_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instance.cpp device_gemm_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instance.cpp device_gemm_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instance.cpp device_gemm_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instance.cpp) device_gemm_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instance.cpp
list(APPEND GEMM_INSTANCES
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_kn_mn_instance.cpp device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_nk_mn_instance.cpp device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_kn_mn_instance.cpp device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_nk_mn_instance.cpp) device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_nk_mn_instance.cpp
list(APPEND GEMM_INSTANCES
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_default_instance.cpp device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_default_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_interwave_default_instance.cpp device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v1_interwave_default_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_default_instance.cpp device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_default_instance.cpp
...@@ -109,14 +97,19 @@ list(APPEND GEMM_INSTANCES ...@@ -109,14 +97,19 @@ list(APPEND GEMM_INSTANCES
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_padded_instance.cpp device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_v2_padded_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_nk_mn_instance.cpp device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_km_kn_mn_instance.cpp device_gemm_xdl_c_shuffle_fp8_fp8_fp8_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_km_nk_mn_instance.cpp) device_gemm_xdl_c_shuffle_fp8_fp8_fp8_km_nk_mn_instance.cpp
list(APPEND GEMM_INSTANCES
device_gemm_wmma_f16_f16_f16_mk_kn_mn_instance.cpp device_gemm_wmma_f16_f16_f16_mk_kn_mn_instance.cpp
device_gemm_wmma_f16_f16_f16_mk_nk_mn_instance.cpp device_gemm_wmma_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_wmma_f16_f16_f16_km_kn_mn_instance.cpp device_gemm_wmma_f16_f16_f16_km_kn_mn_instance.cpp
device_gemm_wmma_f16_f16_f16_km_nk_mn_instance.cpp) device_gemm_wmma_f16_f16_f16_km_nk_mn_instance.cpp
device_gemm_wmma_bf16_bf16_bf16_mk_kn_mn_instance.cpp
device_gemm_wmma_bf16_bf16_bf16_mk_nk_mn_instance.cpp
device_gemm_wmma_bf16_bf16_bf16_km_kn_mn_instance.cpp
device_gemm_wmma_bf16_bf16_bf16_km_nk_mn_instance.cpp
device_gemm_wmma_int8_int8_int8_mk_kn_mn_instance.cpp
device_gemm_wmma_int8_int8_int8_mk_nk_mn_instance.cpp
device_gemm_wmma_int8_int8_int8_km_kn_mn_instance.cpp
device_gemm_wmma_int8_int8_int8_km_nk_mn_instance.cpp)
add_instance_library(device_gemm_instance ${GEMM_INSTANCES}) add_instance_library(device_gemm_instance ${GEMM_INSTANCES})
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using BF16 = ck::bhalf_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// Compilation parameters for a[k, m] * b[k, n] = c[m, n]
using device_gemm_wmma_bf16_bf16_bf16_km_kn_mn_instances = std::tuple<
// clang-format off
//######################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumPrefetch| Block| MPer| NPer| KPer| K1| MPer| NPer| M| N| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CShuffleBlockTransfer| CShuffleBlockTransfer|
//######################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise|Specialization| | Size| Block| Block| Block| | WMMA| WMMA| Repeat| Repeat| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MRepeat| MRepeat| ClusterLengths| ScalarPerVector|
//######################| | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerStore| PerStore| MBlock_MPerBlock| |
//######################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| |
/* Prefetch 2, consume enormous vgpr resource*/
// 8 Waves
DeviceGemmWmma_CShuffle< Col, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 256, 128, 128, 32, 8, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
// 4 Waves
DeviceGemmWmma_CShuffle< Col, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 128, 128, 64, 64, 8, 16, 16, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
// 2 Waves
DeviceGemmWmma_CShuffle< Col, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 64, 64, 32, 32, 8, 16, 16, 4, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
// 1 Wave
DeviceGemmWmma_CShuffle< Col, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 2, 32, 16, 16, 32, 8, 16, 16, 1, 1, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 16, 1, 2>, 8>,
/* Prefetch 1, prefer larger KPerBlock value for better latency hiding*/
// 8 Waves
DeviceGemmWmma_CShuffle< Col, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 256, 64, 8, 16, 16, 4, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmWmma_CShuffle< Col, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmWmma_CShuffle< Col, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 128, 160, 64, 8, 16, 16, 2, 5, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 64, 1, 4>, 8>,
// 4 Waves
DeviceGemmWmma_CShuffle< Col, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 128, 128, 32, 8, 16, 16, 4, 4, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Col, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 256, 64, 64, 8, 16, 16, 8, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Col, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 256, 64, 8, 16, 16, 2, 8, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Col, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 128, 64, 80, 64, 8, 16, 16, 1, 5, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 64, 1, 2>, 8>,
// 2 Waves
DeviceGemmWmma_CShuffle< Col, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 16, 64, 64, 8, 16, 16, 1, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Col, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 32, 64, 8, 16, 16, 4, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGemmWmma_CShuffle< Col, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 32, 64, 64, 8, 16, 16, 2, 2, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 16, 1, 4>, 8>,
// 1 Wave
DeviceGemmWmma_CShuffle< Col, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 32, 16, 32, 64, 8, 16, 16, 1, 2, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 16, 1, 2>, 8>,
DeviceGemmWmma_CShuffle< Col, Row, Row, BF16, BF16, BF16, F32, BF16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 32, 16, 16, 64, 8, 16, 16, 1, 1, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<2, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 16, 1, 2>, 8>
// clang-format on
>;
void add_device_gemm_wmma_bf16_bf16_bf16_km_kn_mn_instances(
std::vector<std::unique_ptr<
DeviceGemm<Col, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(instances, device_gemm_wmma_bf16_bf16_bf16_km_kn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment