Unverified Commit e8d2887c authored by jakpiase's avatar jakpiase Committed by GitHub
Browse files

Rewrite pool2d fwd (#1462)



* added pool2d fwd

* add tests

* add reviewers changes

* Revert "Merge remote-tracking branch 'origin/develop' into jakpiase/pool2d_fwd_new"

This reverts commit 6b2ba7ff8960b0a6ddbe30d8dac53eeb55a8597e, reversing
changes made to 22c82bea0caf3e0f29399100c1bb67b8003fc042.

* Revert "add reviewers changes"

This reverts commit 22c82bea0caf3e0f29399100c1bb67b8003fc042.

* added reviewers comments

* revert some old files

* add reviewers requests

---------
Co-authored-by: default avatarAdam Osewski <19374865+aosewski@users.noreply.github.com>
parent 2a261afc
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
#include "ck/tensor_operation/gpu/device/impl/device_pool3d_fwd_ndhwc_ndhwc.hpp" #include <iostream>
#include <sstream>
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/device_pool_fwd.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_2d_reduction_threadwise.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -16,95 +27,359 @@ template <typename InDataType, ...@@ -16,95 +27,359 @@ template <typename InDataType,
ck::ReduceTensorOp ReduceOpId, ck::ReduceTensorOp ReduceOpId,
bool OutputIndex, bool OutputIndex,
ck::index_t BlockSize, ck::index_t BlockSize,
ck::index_t ReduceMThreadClusterSize, ck::index_t MThreadClusterSize,
ck::index_t ReduceKThreadClusterSize, ck::index_t KThreadClusterSize,
ck::index_t ReduceMThreadSliceSize, ck::index_t MThreadSliceSize,
ck::index_t ReduceKThreadSliceSize, ck::index_t KThreadSliceSize,
ck::index_t InSrcOutDstVectorSize> ck::index_t InSrcOutDstVectorSize>
struct DevicePool2dFwd_NHWC_NHWC : public DevicePool3dFwd_NDHWC_NDHWC<InDataType, struct DevicePool2dFwd_NHWC_NHWC : public DevicePoolFwd<4,
OutDataType, 2,
IndexDataType, InDataType,
ComputeDataType, OutDataType,
ReduceOpId, IndexDataType,
OutputIndex, tensor_layout::convolution::NHWC,
BlockSize, tensor_layout::convolution::NHWC,
ReduceMThreadClusterSize, ReduceOpId,
ReduceKThreadClusterSize, OutputIndex>
ReduceMThreadSliceSize,
ReduceKThreadSliceSize,
InSrcOutDstVectorSize>
{ {
using DevicePool3D = DevicePool3dFwd_NDHWC_NDHWC<InDataType, static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr index_t InOutRank = 4;
static constexpr index_t WindowRank = 2;
using ReduceOperation = typename reduce_binary_operator<ReduceOpId>::opType;
using InElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::InElementwiseOperation;
using AccElementwiseOperation =
typename reduce_unary_operator<ReduceOpId, true, true>::AccElementwiseOperation;
static constexpr ck::index_t M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr ck::index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
static auto MakeABGridDescriptor_A_M_K_B_M(std::vector<ck::index_t> input_nchw_lengths,
std::vector<ck::index_t> output_nchw_lengths,
std::vector<ck::index_t> input_nchw_stride,
std::vector<ck::index_t> output_nchw_stride,
std::vector<ck::index_t> window_spatial_yx_lengths,
std::vector<ck::index_t> window_yx_strides,
std::vector<ck::index_t> window_yx_dilations,
std::vector<ck::index_t> input_left_hw_pads,
std::vector<ck::index_t> input_right_hw_pads)
{
const index_t N = input_nchw_lengths[0];
const index_t C = input_nchw_lengths[1];
const index_t Hi = input_nchw_lengths[2];
const index_t Wi = input_nchw_lengths[3];
const index_t Ho = output_nchw_lengths[2];
const index_t Wo = output_nchw_lengths[3];
const index_t Y = window_spatial_yx_lengths[0];
const index_t X = window_spatial_yx_lengths[1];
const index_t WindowStrideH = window_yx_strides[0];
const index_t WindowStrideW = window_yx_strides[1];
const index_t WindowDilationH = window_yx_dilations[0];
const index_t WindowDilationW = window_yx_dilations[1];
const index_t InLeftPadH = input_left_hw_pads[0];
const index_t InLeftPadW = input_left_hw_pads[1];
const index_t InRightPadH = input_right_hw_pads[0];
const index_t InRightPadW = input_right_hw_pads[1];
const index_t MRaw = N * Ho * Wo * C;
const index_t MPad = math::integer_least_multiple(MRaw, M_BlockTileSize) - MRaw;
const index_t KRaw = Y * X;
const index_t KPad = math::integer_least_multiple(KRaw, K_BlockTileSize) - KRaw;
// A[ReduceM, ReduceK]
const index_t Ni_stride = input_nchw_stride[0];
const index_t Ci_stride = input_nchw_stride[1];
const index_t Hi_stride = input_nchw_stride[2];
const index_t Wi_stride = input_nchw_stride[3];
const auto in_grid_desc_n_hi_wi_c = make_naive_tensor_descriptor(
make_tuple(N, Hi, Wi, C), make_tuple(Ni_stride, Hi_stride, Wi_stride, Ci_stride));
const auto in_grid_desc_n_hip_wip_c = transform_tensor_descriptor(
in_grid_desc_n_hi_wi_c,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_grid_desc_n_y_ho_x_wo_c = transform_tensor_descriptor(
in_grid_desc_n_hip_wip_c,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(Y, Ho), make_tuple(WindowDilationH, WindowStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(WindowDilationW, WindowStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_grid_desc_reducemraw_reducekraw =
transform_tensor_descriptor(in_grid_desc_n_y_ho_x_wo_c,
make_tuple(make_merge_transform(make_tuple(N, Ho, Wo, C)),
make_merge_transform(make_tuple(Y, X))),
make_tuple(Sequence<0, 2, 4, 5>{}, Sequence<1, 3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_grid_desc_reducem_reducek = transform_tensor_descriptor(
in_grid_desc_reducemraw_reducekraw,
make_tuple(make_right_pad_transform(MRaw, MPad), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
// B[ReduceM]
const index_t No_stride = output_nchw_stride[0];
const index_t Co_stride = output_nchw_stride[1];
const index_t Ho_stride = output_nchw_stride[2];
const index_t Wo_stride = output_nchw_stride[3];
const auto out_grid_desc_n_ho_wo_c = make_naive_tensor_descriptor(
make_tuple(N, Hi, Wi, C), make_tuple(No_stride, Ho_stride, Wo_stride, Co_stride));
const auto out_grid_desc_reducemraw =
transform_tensor_descriptor(out_grid_desc_n_ho_wo_c,
make_tuple(make_merge_transform(make_tuple(N, Ho, Wo, C))),
make_tuple(Sequence<0, 1, 2, 3>{}),
make_tuple(Sequence<0>{}));
const auto out_grid_desc_reducem =
transform_tensor_descriptor(out_grid_desc_reducemraw,
make_tuple(make_right_pad_transform(MRaw, MPad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
return make_tuple(in_grid_desc_reducem_reducek, out_grid_desc_reducem);
}
using ABGridDescs =
decltype(MakeABGridDescriptor_A_M_K_B_M({}, {}, {}, {}, {}, {}, {}, {}, {}));
using AGridDesc_M_K = remove_cvref_t<decltype(ABGridDescs{}[I0])>;
using BGridDesc_M = remove_cvref_t<decltype(ABGridDescs{}[I1])>;
struct Argument : public BaseArgument
{
Argument(const InDataType* p_in_dev,
OutDataType* p_out_dev,
IndexDataType* p_out_indices_dev,
std::vector<ck::index_t>& input_nchw_lengths,
std::vector<ck::index_t>& output_nchw_lengths,
std::vector<ck::index_t>& input_nchw_stride,
std::vector<ck::index_t>& output_nchw_stride,
std::vector<ck::index_t>&, // indices_nchw_stride
std::vector<ck::index_t>& window_spatial_yx_lengths,
std::vector<ck::index_t>& window_yx_strides,
std::vector<ck::index_t>& window_yx_dilations,
std::vector<ck::index_t>& input_left_hw_pads,
std::vector<ck::index_t>& input_right_hw_pads)
: p_in_dev_{p_in_dev},
p_out_dev_{p_out_dev},
p_out_indices_dev_{p_out_indices_dev},
a_grid_desc_m_k_{},
b_grid_desc_m_{},
input_nchw_lengths_{input_nchw_lengths},
output_nchw_lengths_{output_nchw_lengths},
input_nchw_stride_{input_nchw_stride},
output_nchw_stride_{output_nchw_stride}
{
const auto descs = MakeABGridDescriptor_A_M_K_B_M(input_nchw_lengths,
output_nchw_lengths,
input_nchw_stride,
output_nchw_stride,
window_spatial_yx_lengths,
window_yx_strides,
window_yx_dilations,
input_left_hw_pads,
input_right_hw_pads);
a_grid_desc_m_k_ = descs[I0];
b_grid_desc_m_ = descs[I1];
int32_t reduceLength = window_spatial_yx_lengths[0] * window_spatial_yx_lengths[1];
std::tie(in_element_op_, acc_element_op_) =
reduce_unary_operator<ReduceOpId, true, true>::GetElementwiseOperator(reduceLength);
}
const InDataType* p_in_dev_;
OutDataType* p_out_dev_;
IndexDataType* p_out_indices_dev_;
AGridDesc_M_K a_grid_desc_m_k_;
BGridDesc_M b_grid_desc_m_;
InElementwiseOperation in_element_op_;
AccElementwiseOperation acc_element_op_;
// for checking vector load/store
std::vector<ck::index_t> input_nchw_lengths_;
std::vector<ck::index_t> output_nchw_lengths_;
std::vector<ck::index_t> input_nchw_stride_;
std::vector<ck::index_t> output_nchw_stride_;
};
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
// for NHWC, the dim C is the fastest dimension, and is not reduced.
// Hence, it is in M dimension for reduction kernel.
static constexpr index_t InSrcOutDstVectorDim = 0; // 0: M, 1: K
using gridwise_reduce =
GridwiseReduction_mk_to_m_threadwise<InDataType,
OutDataType, OutDataType,
IndexDataType,
ComputeDataType, ComputeDataType,
ReduceOpId, IndexDataType,
OutputIndex, AGridDesc_M_K,
BGridDesc_M,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
InMemoryDataOperationEnum::Set,
false, // propagate_nan
BlockSize, BlockSize,
ReduceMThreadClusterSize, MThreadSliceSize,
ReduceKThreadClusterSize, KThreadSliceSize,
ReduceMThreadSliceSize, InSrcOutDstVectorDim,
ReduceKThreadSliceSize, InSrcOutDstVectorSize,
InSrcOutDstVectorSize>; InSrcOutDstVectorSize>;
std::unique_ptr<BaseArgument> const auto kernel =
kernel_reduce_threadwise<gridwise_reduce,
OutputIndex,
true, // pooling need to return global index
false, // don't have index input
InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
AGridDesc_M_K,
BGridDesc_M,
InElementwiseOperation,
AccElementwiseOperation>;
ck::index_t M = arg.a_grid_desc_m_k_.GetLength(I0);
const index_t grid_size = (M / M_BlockTileSize);
return launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.a_grid_desc_m_k_,
arg.b_grid_desc_m_,
arg.in_element_op_,
arg.acc_element_op_,
float(1),
arg.p_in_dev_,
nullptr,
float(0),
arg.p_out_dev_,
arg.p_out_indices_dev_);
}
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
const Argument* pArg = dynamic_cast<const Argument*>(p_arg);
// C should be fastest dimension
if(pArg->input_nchw_stride_[1] != 1)
return false;
for(int i = 0; i < InOutRank; ++i)
{
if(pArg->input_nchw_stride_[i] == 1 &&
pArg->input_nchw_lengths_[i] % InSrcOutDstVectorSize != 0)
return false;
if(pArg->output_nchw_stride_[i] == 1 &&
pArg->output_nchw_lengths_[i] % InSrcOutDstVectorSize != 0)
return false;
}
return true;
}
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in_dev, MakeArgumentPointer(const void* p_in_dev,
void* p_out_dev, void* p_out_dev,
void* p_out_indices_dev, void* p_out_indices_dev,
std::vector<ck::index_t> input_lengths, std::vector<ck::index_t> input_nchw_lengths,
std::vector<ck::index_t> window_lengths, std::vector<ck::index_t> window_yx_lengths,
std::vector<ck::index_t> output_lengths, std::vector<ck::index_t> output_nchw_lengths,
std::vector<ck::index_t> input_stride, std::vector<ck::index_t> input_nchw_stride,
std::vector<ck::index_t> output_stride, std::vector<ck::index_t> output_nchw_stride,
std::vector<ck::index_t> indices_stride, std::vector<ck::index_t> indices_nchw_stride,
std::vector<ck::index_t> window_strides, std::vector<ck::index_t> window_yx_strides,
std::vector<ck::index_t> window_dilations, std::vector<ck::index_t> window_yx_dilations,
std::vector<ck::index_t> input_left_pads, std::vector<ck::index_t> input_left_hw_pads,
std::vector<ck::index_t> input_right_pads, std::vector<ck::index_t> input_right_hw_pads,
std::vector<ck::index_t> pooling_dims) override std::vector<ck::index_t> pooling_dims) override
{ {
static constexpr index_t InOutRank = 4; if(input_nchw_lengths.size() != InOutRank || window_yx_lengths.size() != WindowRank ||
static constexpr index_t WindowRank = 2; input_nchw_lengths.size() != InOutRank || window_yx_strides.size() != WindowRank ||
window_yx_dilations.size() != WindowRank || input_left_hw_pads.size() != WindowRank ||
if(input_lengths.size() != InOutRank || window_lengths.size() != WindowRank || input_right_hw_pads.size() != WindowRank)
input_lengths.size() != InOutRank || window_strides.size() != WindowRank ||
window_dilations.size() != WindowRank || input_left_pads.size() != WindowRank ||
input_right_pads.size() != WindowRank)
throw std::runtime_error("dimension is incorrect"); throw std::runtime_error("dimension is incorrect");
if(pooling_dims != std::vector<ck::index_t>{2, 3}) if(pooling_dims != std::vector<ck::index_t>{2, 3})
throw std::runtime_error("pooling_dims only support {2, 3} in pool2d so far"); throw std::runtime_error("pooling_dims only support {2, 3} in pool2d so far");
// NCHW to NCDHW if(output_nchw_stride != indices_nchw_stride)
input_lengths.insert(input_lengths.begin() + 2, 1); throw std::runtime_error(
output_lengths.insert(output_lengths.begin() + 2, 1); "output_nchw_stride need to be equal to indices_nchw_stride for now");
input_stride.insert(input_stride.begin() + 2, 0);
output_stride.insert(output_stride.begin() + 2, 0); return std::make_unique<Argument>(static_cast<const InDataType*>(p_in_dev),
indices_stride.insert(indices_stride.begin() + 2, 0); static_cast<OutDataType*>(p_out_dev),
static_cast<IndexDataType*>(p_out_indices_dev),
// YX to ZYX input_nchw_lengths,
window_lengths.insert(window_lengths.begin(), 1); output_nchw_lengths,
window_strides.insert(window_strides.begin(), 0); input_nchw_stride,
window_dilations.insert(window_dilations.begin(), 0); output_nchw_stride,
input_left_pads.insert(input_left_pads.begin(), 0); indices_nchw_stride,
input_right_pads.insert(input_right_pads.begin(), 0); window_yx_lengths,
window_yx_strides,
pooling_dims = {2, 3, 4}; window_yx_dilations,
input_left_hw_pads,
return DevicePool3D::MakeArgumentPointer(p_in_dev, input_right_hw_pads);
p_out_dev, }
p_out_indices_dev,
input_lengths, std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
window_lengths, {
output_lengths, return std::make_unique<Invoker>(Invoker{});
input_stride, }
output_stride,
indices_stride, std::string GetTypeString() const override
window_strides, {
window_dilations, auto str = std::stringstream();
input_left_pads,
input_right_pads, // clang-format off
pooling_dims); str << "DevicePool2dFwd_NHWC_NHWC<" << BlockSize << ",";
str << "M_C" << MThreadClusterSize << "_S" << MThreadSliceSize << ",";
str << "K_C" << KThreadClusterSize << "_S" << KThreadSliceSize << ",";
str <<"InSrcOutDstVectorSize_" << InSrcOutDstVectorSize << ">";
// clang-format on
return str.str();
} }
}; };
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_pool_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto InOutRank = 4;
static constexpr auto WindowRank = 2;
static constexpr auto MaxOp = ck::ReduceTensorOp::MAX;
static constexpr auto AvgOp = ck::ReduceTensorOp::AVG;
#ifdef CK_ENABLE_FP16
// FP16
void add_device_pool2d_fwd_nhwc_f16_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, F16, F16, I32, NHWC, NHWC, MaxOp, false>>>&);
void add_device_pool2d_fwd_nhwc_f16_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, F16, F16, I32, NHWC, NHWC, AvgOp, false>>>&);
// FP16 - return index
void add_device_pool2d_fwd_nhwc_index_f16_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, F16, F16, I32, NHWC, NHWC, MaxOp, true>>>&);
#endif
#ifdef CK_ENABLE_BF16
// BF16
void add_device_pool2d_fwd_nhwc_bf16_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, BF16, BF16, I32, NHWC, NHWC, MaxOp, false>>>&);
void add_device_pool2d_fwd_nhwc_bf16_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, BF16, BF16, I32, NHWC, NHWC, AvgOp, false>>>&);
// BF16 - return index
void add_device_pool2d_fwd_nhwc_index_bf16_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, BF16, BF16, I32, NHWC, NHWC, MaxOp, true>>>&);
#endif
#ifdef CK_ENABLE_FP32
// FP32
void add_device_pool2d_fwd_nhwc_f32_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, F32, F32, I32, NHWC, NHWC, MaxOp, false>>>&);
void add_device_pool2d_fwd_nhwc_f32_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, F32, F32, I32, NHWC, NHWC, AvgOp, false>>>&);
// FP32 - return index
void add_device_pool2d_fwd_nhwc_index_f32_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, F32, F32, I32, NHWC, NHWC, MaxOp, true>>>&);
#endif
template <typename InDataType,
typename OutDataType,
typename IndexDataType,
typename InLayout,
typename OutLayout,
ck::ReduceTensorOp ReduceOpId,
bool OutputIndex>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DevicePoolFwd<InOutRank,
WindowRank,
InDataType,
OutDataType,
IndexDataType,
InLayout,
OutLayout,
ReduceOpId,
OutputIndex>>
{
using DeviceOp = DevicePoolFwd<InOutRank,
WindowRank,
InDataType,
OutDataType,
IndexDataType,
InLayout,
OutLayout,
ReduceOpId,
OutputIndex>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<InLayout, NHWC> && is_same_v<OutLayout, NHWC>)
{
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, F16> && is_same_v<OutDataType, F16> &&
is_same_v<IndexDataType, I32>)
{
if constexpr(OutputIndex && ReduceOpId == MaxOp)
{
add_device_pool2d_fwd_nhwc_index_f16_instances(op_ptrs);
}
else
{
add_device_pool2d_fwd_nhwc_f16_instances(op_ptrs);
}
}
#endif
#ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<InDataType, BF16> && is_same_v<OutDataType, BF16> &&
is_same_v<IndexDataType, I32>)
{
if constexpr(OutputIndex && ReduceOpId == MaxOp)
{
add_device_pool2d_fwd_nhwc_index_bf16_instances(op_ptrs);
}
else
{
add_device_pool2d_fwd_nhwc_bf16_instances(op_ptrs);
}
}
#endif
#ifdef CK_ENABLE_FP32
else if constexpr(is_same_v<InDataType, F32> && is_same_v<OutDataType, F32> &&
is_same_v<IndexDataType, I32>)
{
if constexpr(OutputIndex && ReduceOpId == MaxOp)
{
add_device_pool2d_fwd_nhwc_index_f32_instances(op_ptrs);
}
else
{
add_device_pool2d_fwd_nhwc_f32_instances(op_ptrs);
}
}
#endif
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
set(DEVICE_POOL2D_FWD_INSTANCES)
list(APPEND DEVICE_POOL2D_FWD_INSTANCES device_avg_pool2d_fwd_nhwc_f16_instance.cpp
device_max_pool2d_fwd_nhwc_f16_instance.cpp
device_avg_pool2d_fwd_nhwc_f32_instance.cpp
device_max_pool2d_fwd_nhwc_f32_instance.cpp
device_avg_pool2d_fwd_nhwc_bf16_instance.cpp
device_max_pool2d_fwd_nhwc_bf16_instance.cpp)
add_instance_library(device_pool2d_fwd_instance ${DEVICE_POOL2D_FWD_INSTANCES})
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "pool2d_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
void add_device_pool2d_fwd_nhwc_bf16_instances(
std::vector<
std::unique_ptr<DevicePoolFwd<4, 2, BF16, BF16, I32, NHWC, NHWC, ReduceOpId, false>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<BF16, BF16, I32, F32, ReduceOpId, false>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "pool2d_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
void add_device_pool2d_fwd_nhwc_f16_instances(
std::vector<std::unique_ptr<DevicePoolFwd<4, 2, F16, F16, I32, NHWC, NHWC, ReduceOpId, false>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<F16, F16, I32, F32, ReduceOpId, false>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "pool2d_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
void add_device_pool2d_fwd_nhwc_f32_instances(
std::vector<std::unique_ptr<DevicePoolFwd<4, 2, F32, F32, I32, NHWC, NHWC, ReduceOpId, false>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<F32, F32, I32, F32, ReduceOpId, false>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "pool2d_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
void add_device_pool2d_fwd_nhwc_bf16_instances(
std::vector<
std::unique_ptr<DevicePoolFwd<4, 2, BF16, BF16, I32, NHWC, NHWC, ReduceOpId, false>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<BF16, BF16, I32, F32, ReduceOpId, false>{});
}
void add_device_pool2d_fwd_nhwc_index_bf16_instances(
std::vector<
std::unique_ptr<DevicePoolFwd<4, 2, BF16, BF16, I32, NHWC, NHWC, ReduceOpId, true>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<BF16, BF16, I32, F32, ReduceOpId, true>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "pool2d_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
void add_device_pool2d_fwd_nhwc_f16_instances(
std::vector<std::unique_ptr<DevicePoolFwd<4, 2, F16, F16, I32, NHWC, NHWC, ReduceOpId, false>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<F16, F16, I32, F32, ReduceOpId, false>{});
}
void add_device_pool2d_fwd_nhwc_index_f16_instances(
std::vector<std::unique_ptr<DevicePoolFwd<4, 2, F16, F16, I32, NHWC, NHWC, ReduceOpId, true>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<F16, F16, I32, F32, ReduceOpId, true>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "pool2d_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
void add_device_pool2d_fwd_nhwc_f32_instances(
std::vector<std::unique_ptr<DevicePoolFwd<4, 2, F32, F32, I32, NHWC, NHWC, ReduceOpId, false>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<F32, F32, I32, F32, ReduceOpId, false>{});
}
void add_device_pool2d_fwd_nhwc_index_f32_instances(
std::vector<std::unique_ptr<DevicePoolFwd<4, 2, F32, F32, I32, NHWC, NHWC, ReduceOpId, true>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<F32, F32, I32, F32, ReduceOpId, true>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool2d_fwd_nhwc_nhwc.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using I32 = int32_t;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using NHWC = ck::tensor_layout::convolution::NHWC;
template <typename InDataType,
typename OutDataType,
typename IndexDataType,
typename ComputeDataType,
ReduceTensorOp ReduceOpId,
bool OutputIndex>
using device_pool2d_fwd_nhwc_instances =
// clang-format off
std::tuple <
DevicePool2dFwd_NHWC_NHWC<InDataType, OutDataType, IndexDataType, ComputeDataType, ReduceOpId, OutputIndex, 256, 256, 1, 1, 1, 1>,
DevicePool2dFwd_NHWC_NHWC<InDataType, OutDataType, IndexDataType, ComputeDataType, ReduceOpId, OutputIndex, 256, 256, 1, 2, 1, 2>,
DevicePool2dFwd_NHWC_NHWC<InDataType, OutDataType, IndexDataType, ComputeDataType, ReduceOpId, OutputIndex, 256, 256, 1, 4, 1, 4>
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/pool2d_fwd.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp"
namespace ck {
namespace profiler {
template <typename InDataType,
typename OutDataType,
typename ComputeDataType,
typename IndexDataType,
typename InLayout,
typename OutLayout,
ck::ReduceTensorOp ReduceOpId,
bool PropagateNan,
bool OutputIndex>
bool profile_pool2d_fwd_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
std::vector<index_t> in_length, // NCHW
std::vector<index_t> window_spatial_lengths,
std::vector<index_t> window_strides,
std::vector<index_t> window_dilations,
std::vector<index_t> input_left_pads,
std::vector<index_t> input_right_pads)
{
constexpr index_t InOutRank = 4;
constexpr index_t WindowRank = 2;
if(in_length.size() != InOutRank || window_spatial_lengths.size() != WindowRank ||
window_strides.size() != WindowRank || window_dilations.size() != WindowRank ||
input_left_pads.size() != WindowRank || input_right_pads.size() != WindowRank)
return false;
std::vector<index_t> out_length(InOutRank);
int N = in_length[0];
int C = in_length[1];
out_length[0] = N;
out_length[1] = C;
// Calculate Ho, Wo
for(int i = 2; i < InOutRank; ++i)
{
auto pad1 = input_left_pads[i - 2];
auto pad2 = input_right_pads[i - 2];
auto windows_size = window_spatial_lengths[i - 2];
auto windows_stride = window_strides[i - 2];
auto windows_dilation = window_dilations[i - 2];
auto eff = (windows_size - 1) * windows_dilation + 1;
out_length[i] = (in_length[i] + pad1 + pad2 - eff) / windows_stride + 1;
}
int Hi = in_length[2];
int Wi = in_length[3];
int Ho = out_length[2];
int Wo = out_length[3];
auto f_host_tensor_descriptor =
[](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W) {
using namespace ck::literals;
return HostTensorDescriptor({N_, C_, H, W}, {C_ * H * W, 1_uz, W * C_, C_});
};
Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi));
Tensor<OutDataType> out_n_c_ho_wo_host(f_host_tensor_descriptor(N, C, Ho, Wo));
Tensor<IndexDataType> out_indices_n_c_ho_wo_host(f_host_tensor_descriptor(N, C, Ho, Wo));
Tensor<OutDataType> out_n_c_ho_wo_device(f_host_tensor_descriptor(N, C, Ho, Wo));
Tensor<IndexDataType> out_indices_n_c_ho_wo_device(f_host_tensor_descriptor(N, C, Ho, Wo));
switch(init_method)
{
case 0: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{}); break;
case 1: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}); break;
default: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{-0.5, 0.5});
}
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) *
out_n_c_ho_wo_device.mDesc.GetElementSpaceSize());
DeviceMem out_indices_device_buf(sizeof(IndexDataType) *
out_indices_n_c_ho_wo_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
// add device normalization instances
using DeviceOp = ck::tensor_operation::device::DevicePoolFwd<InOutRank,
WindowRank,
InDataType,
OutDataType,
IndexDataType,
InLayout,
OutLayout,
ReduceOpId,
OutputIndex>;
// get device op instances
const auto instance_ptrs =
ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << instance_ptrs.size() << " instances" << std::endl;
std::string best_instance_name;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
if(do_verification)
{
using ReferenceInstance = ck::tensor_operation::host::ReferencePoolingFwd<InOutRank,
WindowRank,
InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
ReduceOpId,
PropagateNan,
OutputIndex>;
ReferenceInstance ref;
auto ref_argument = ref.MakeArgument(in_n_c_hi_wi,
out_n_c_ho_wo_host,
out_indices_n_c_ho_wo_host,
window_spatial_lengths,
window_strides,
window_dilations,
input_left_pads,
input_right_pads);
auto ref_invoker = ref.MakeInvoker();
ref_invoker.Run(ref_argument);
}
int num_kernel = 0;
for(auto& inst_ptr : instance_ptrs)
{
auto argument_ptr = inst_ptr->MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
static_cast<IndexDataType*>(out_indices_device_buf.GetDeviceBuffer()),
in_length,
window_spatial_lengths,
out_length,
{C * Hi * Wi, 1, Wi * C, C},
{C * Ho * Wo, 1, Wo * C, C},
{C * Ho * Wo, 1, Wo * C, C},
window_strides,
window_dilations,
input_left_pads,
input_right_pads,
{2, 3});
if(inst_ptr->IsSupportedArgument(argument_ptr.get()))
{
++num_kernel;
}
else
{
if(time_kernel)
{
std::cout << inst_ptr->GetTypeString() << " skipped due to unsupported argument: ";
LogRange(std::cout << "input lengths = ", in_length, ", ") << std::endl;
}
continue;
}
auto invoker_ptr = inst_ptr->MakeInvokerPointer();
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t num_bytes = in_n_c_hi_wi.mDesc.GetElementSize() * sizeof(InDataType) +
out_n_c_ho_wo_host.mDesc.GetElementSize() * sizeof(OutDataType);
if constexpr(OutputIndex)
num_bytes += out_indices_n_c_ho_wo_host.mDesc.GetElementSize() * sizeof(IndexDataType);
float gb_per_sec = num_bytes / 1.E6 / avg_time;
if(time_kernel)
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << gb_per_sec << " GB/s, "
<< inst_ptr->GetTypeString() << std::endl;
if(avg_time < best_avg_time)
{
best_instance_name = inst_ptr->GetTypeString();
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
out_device_buf.FromDevice(out_n_c_ho_wo_device.mData.data());
bool pass = ck::utils::check_err(out_n_c_ho_wo_device.mData,
out_n_c_ho_wo_host.mData,
"Error: Incorrect results",
1e-3,
1e-3);
if constexpr(OutputIndex)
{
out_indices_device_buf.FromDevice(out_indices_n_c_ho_wo_device.mData.data());
pass = pass && ck::utils::check_err(out_indices_n_c_ho_wo_device,
out_indices_n_c_ho_wo_host);
}
if(do_log)
{
LogRangeAsType<float>(std::cout << "in_n_c_hi_wi : ", in_n_c_hi_wi.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "out_n_c_ho_wo_host : ", out_n_c_ho_wo_host.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "out_n_c_ho_wo_device : ", out_n_c_ho_wo_device.mData, ",")
<< std::endl;
if constexpr(OutputIndex)
LogRangeAsType<float>(std::cout << "out_indices_n_c_ho_wo_device : ",
out_indices_n_c_ho_wo_device.mData,
",")
<< std::endl;
}
if(!pass)
{
std::cout << inst_ptr->GetTypeString() << " failed verification: ";
LogRange(std::cout << "lengths = [", in_length, ", ") << "]." << std::endl;
return false;
}
else
{
if(time_kernel)
std::cout << "pass" << std::endl;
}
}
}
if(time_kernel)
{
LogRange(std::cout << "length = ", in_length, ",") << std::endl;
std::cout << "best perf = " << best_avg_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_instance_name << std::endl;
}
if(num_kernel == 0)
{
std::cout << "Error: No kernel is applicable" << std::endl;
return false;
}
return true;
}
} // namespace profiler
} // namespace ck
...@@ -9,6 +9,7 @@ set(PROFILER_SOURCES ...@@ -9,6 +9,7 @@ set(PROFILER_SOURCES
profile_layernorm_bwd_gamma_beta.cpp profile_layernorm_bwd_gamma_beta.cpp
profile_groupnorm_bwd_gamma_beta.cpp profile_groupnorm_bwd_gamma_beta.cpp
profile_layernorm_fwd.cpp profile_layernorm_fwd.cpp
profile_max_pool2d_fwd.cpp
profile_max_pool3d_fwd.cpp profile_max_pool3d_fwd.cpp
profile_avg_pool3d_bwd.cpp profile_avg_pool3d_bwd.cpp
profile_max_pool3d_bwd.cpp profile_max_pool3d_bwd.cpp
...@@ -98,6 +99,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_bwd_ga ...@@ -98,6 +99,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_bwd_ga
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_softmax_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_softmax_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_reduce_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_pool2d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_pool3d_fwd_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_pool3d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_avg_pool3d_bwd_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_avg_pool3d_bwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_max_pool_bwd_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_max_pool_bwd_instance)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include <unordered_map>
#include "profiler/data_type_enum.hpp"
#include "profiler/profile_pool2d_fwd_impl.hpp"
#include "profiler_operation_registry.hpp"
using ck::index_t;
struct maxPoolFwdArgParser
{
std::unordered_map<std::string, std::vector<int>> long_opts = {{"length", {}},
{"wsize", {}},
{"wstride", {}},
{"wdilation", {}},
{"pad1", {}},
{"pad2", {}}};
bool parse_opt(int argc, char* argv[], const std::string& key, int i)
{
if(std::string("--") + key == argv[i])
{
int pos = i;
while(++i < argc && argv[i][0] != '-') {}
int end = i;
for(int j = pos + 1; j < end; j++)
{
long_opts[key].push_back(std::stoi(argv[j]));
}
return true;
}
return false;
}
void operator()(int argc, char* argv[])
{
for(auto& kv : long_opts)
{
for(int i = 1; i < argc; i++)
{
if(parse_opt(argc, argv, kv.first, i))
break;
}
}
}
};
void print_help_max_pool2d_fwd()
{
std::cout << "arg1: data type (0: fp16; 1: fp32; 5: bf16)\n"
<< "arg2: verification (0: no; 1: yes)\n"
<< "arg3: initialization (0: no init; 1: integer value; 2: decimal value)\n"
<< "arg4: print tensor value (0: no; 1: yes)\n"
<< "arg5: time kernel (0=no, 1=yes)\n"
<< "arg6: return index (0=no, 1=yes)\n"
<< "--length: input tensor length for NCHW(e.g, --length 2 32 30 30) \n"
<< "--wsize: window size for YX (e.g, --wsize 2 2) \n"
<< "--wstride: window stride for HW (e.g, --wstride 2 2) \n"
<< "--wdilation: window dilation for HW (e.g, --wdilation 1 1) \n"
<< "--pad1: left side of padding in HW (e.g, --pad1 1 1) \n"
<< "--pad2: right side of padding in HW (e.g, --pad2 1 1) \n"
<< "eg: ckProfiler max_pool2d_fwd 0 1 2 0 1 0 --length 2 32 30 30 --wsize 2 2"
"--wstride 2 2 --wdilation 1 1 --pad1 1 1 --pad2 1 1"
<< std::endl;
}
int profile_max_pool2d_fwd(int argc, char* argv[])
{
ck::DataTypeEnum data_type = ck::DataTypeEnum::Half;
bool do_verification = true;
int init_method = 0;
bool do_log = false;
bool time_kernel = true;
bool return_index = false;
std::vector<index_t> in_length = {2, 32, 30, 30};
std::vector<index_t> wsize = {2, 2};
std::vector<index_t> wstride = {2, 2};
std::vector<index_t> wdilation = {1, 1};
std::vector<index_t> pad1 = {1, 1};
std::vector<index_t> pad2 = {1, 1};
if(argc != 2 && argc != 28)
{
print_help_max_pool2d_fwd();
return 0;
}
else if(argc == 28)
{
data_type = static_cast<ck::DataTypeEnum>(std::stoi(argv[2]));
do_verification = std::stoi(argv[3]);
init_method = std::stoi(argv[4]);
do_log = std::stoi(argv[5]);
time_kernel = std::stoi(argv[6]);
return_index = std::stoi(argv[7]);
// parse the long options
maxPoolFwdArgParser arg_parser;
arg_parser(argc, argv);
in_length = arg_parser.long_opts["length"];
wsize = arg_parser.long_opts["wsize"];
wstride = arg_parser.long_opts["wstride"];
wdilation = arg_parser.long_opts["wdilation"];
pad1 = arg_parser.long_opts["pad1"];
pad2 = arg_parser.long_opts["pad2"];
}
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using I32 = int32_t;
using NHWC = ck::tensor_layout::convolution::NHWC;
constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
if(data_type == ck::DataTypeEnum::Half)
{
if(return_index)
{
ck::profiler::
profile_pool2d_fwd_impl<F16, F16, F16, I32, NHWC, NHWC, ReduceOpId, false, true>(
do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
else
{
ck::profiler::
profile_pool2d_fwd_impl<F16, F16, F16, I32, NHWC, NHWC, ReduceOpId, false, false>(
do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
}
else if(data_type == ck::DataTypeEnum::BFloat16)
{
if(return_index)
{
ck::profiler::
profile_pool2d_fwd_impl<BF16, BF16, BF16, I32, NHWC, NHWC, ReduceOpId, false, true>(
do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
else
{
ck::profiler::profile_pool2d_fwd_impl<BF16,
BF16,
BF16,
I32,
NHWC,
NHWC,
ReduceOpId,
false,
false>(do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
}
else if(data_type == ck::DataTypeEnum::Float)
{
if(return_index)
{
ck::profiler::
profile_pool2d_fwd_impl<F32, F32, F32, I32, NHWC, NHWC, ReduceOpId, false, true>(
do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
else
{
ck::profiler::
profile_pool2d_fwd_impl<F32, F32, F32, I32, NHWC, NHWC, ReduceOpId, false, false>(
do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
}
else
{
throw std::runtime_error("not implemented yet");
}
return 0;
}
REGISTER_PROFILER_OPERATION("max_pool2d_fwd", "max_pool2d fwd", profile_max_pool2d_fwd);
...@@ -4,13 +4,19 @@ add_gtest_executable(test_avg_pool3d_bwd test_avg_pool3d_bwd.cpp) ...@@ -4,13 +4,19 @@ add_gtest_executable(test_avg_pool3d_bwd test_avg_pool3d_bwd.cpp)
add_gtest_executable(test_max_pool3d_bwd test_max_pool3d_bwd.cpp) add_gtest_executable(test_max_pool3d_bwd test_max_pool3d_bwd.cpp)
add_gtest_executable(test_avg_pool3d_fwd test_avg_pool3d_fwd.cpp) add_gtest_executable(test_avg_pool3d_fwd test_avg_pool3d_fwd.cpp)
add_gtest_executable(test_max_pool3d_fwd test_max_pool3d_fwd.cpp) add_gtest_executable(test_max_pool3d_fwd test_max_pool3d_fwd.cpp)
add_gtest_executable(test_avg_pool2d_fwd test_avg_pool2d_fwd.cpp)
add_gtest_executable(test_max_pool2d_fwd test_max_pool2d_fwd.cpp)
target_link_libraries(test_avg_pool3d_bwd PRIVATE utility device_avg_pool3d_bwd_instance) target_link_libraries(test_avg_pool3d_bwd PRIVATE utility device_avg_pool3d_bwd_instance)
target_link_libraries(test_max_pool3d_bwd PRIVATE utility device_max_pool_bwd_instance) target_link_libraries(test_max_pool3d_bwd PRIVATE utility device_max_pool_bwd_instance)
target_link_libraries(test_avg_pool3d_fwd PRIVATE utility device_pool3d_fwd_instance) target_link_libraries(test_avg_pool3d_fwd PRIVATE utility device_pool3d_fwd_instance)
target_link_libraries(test_max_pool3d_fwd PRIVATE utility device_pool3d_fwd_instance) target_link_libraries(test_max_pool3d_fwd PRIVATE utility device_pool3d_fwd_instance)
target_link_libraries(test_avg_pool2d_fwd PRIVATE utility device_pool2d_fwd_instance)
target_link_libraries(test_max_pool2d_fwd PRIVATE utility device_pool2d_fwd_instance)
add_dependencies(test_pool test_avg_pool3d_bwd) add_dependencies(test_pool test_avg_pool3d_bwd)
add_dependencies(test_pool test_max_pool3d_bwd) add_dependencies(test_pool test_max_pool3d_bwd)
add_dependencies(test_pool test_avg_pool3d_fwd) add_dependencies(test_pool test_avg_pool3d_fwd)
add_dependencies(test_pool test_max_pool3d_fwd) add_dependencies(test_pool test_max_pool3d_fwd)
add_dependencies(test_pool test_avg_pool2d_fwd)
add_dependencies(test_pool test_max_pool2d_fwd)
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_pool2d_fwd_impl.hpp"
#include "test_pool_fwd_common.hpp"
template <typename Tuple>
class TestAvgPool2dFwd : public ::testing::Test
{
protected:
using InDataType = std::tuple_element_t<0, Tuple>;
using OutDataType = std::tuple_element_t<1, Tuple>;
using ComputeDataType = std::tuple_element_t<2, Tuple>;
using IndexDataType = std::tuple_element_t<3, Tuple>;
std::vector<PoolingParam> params;
void Run()
{
for(auto param : params)
{
// avg pool
bool success =
ck::profiler::profile_pool2d_fwd_impl<InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::NHWC,
ck::ReduceTensorOp::AVG,
false,
false>(true,
2,
false,
false,
param.length_,
param.window_spatial_lengths_,
param.window_strides_,
param.window_dilations_,
param.input_left_pads_,
param.input_right_pads_);
EXPECT_TRUE(success);
}
}
};
using KernelTypes = std::conditional_t<
CK_ENABLE_FP16 && CK_ENABLE_BF16,
::testing::Types<std::tuple<F16, F16, F32, I32>,
std::tuple<F16, F16, F32, I32>,
std::tuple<BF16, BF16, F32, I32>,
std::tuple<BF16, BF16, F32, I32>,
std::tuple<F32, F32, F32, I32>,
std::tuple<F32, F32, F32, I32>>,
::testing::Types<std::tuple<F32, F32, F32, I32>, std::tuple<F32, F32, F32, I32>>>;
TYPED_TEST_SUITE(TestAvgPool2dFwd, KernelTypes);
TYPED_TEST(TestAvgPool2dFwd, Test_Pool)
{
// length, window_length, window_stride, window_dilation, left_pad, right_pad
this->params = {{{1, 1, 1, 1}, {1, 1}, {1, 1}, {1, 1}, {0, 0}, {0, 0}},
{{2, 16, 64, 64}, {64, 64}, {1, 1}, {1, 1}, {0, 0}, {0, 0}},
{{2, 16, 64, 64}, {4, 4}, {4, 4}, {2, 2}, {0, 0}, {0, 0}},
{{2, 32, 30, 30}, {2, 2}, {2, 2}, {1, 1}, {1, 1}, {1, 1}}};
this->Run();
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_pool2d_fwd_impl.hpp"
#include "test_pool_fwd_common.hpp"
template <typename Tuple>
class TestMaxPool2dFwd : public ::testing::Test
{
protected:
using InDataType = std::tuple_element_t<0, Tuple>;
using OutDataType = std::tuple_element_t<1, Tuple>;
using ComputeDataType = std::tuple_element_t<2, Tuple>;
using IndexDataType = std::tuple_element_t<3, Tuple>;
static constexpr bool ReturnIndex = std::tuple_element_t<4, Tuple>::value;
std::vector<PoolingParam> params;
void Run()
{
for(auto param : params)
{
// max pool
bool success =
ck::profiler::profile_pool2d_fwd_impl<InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::NHWC,
ck::ReduceTensorOp::MAX,
false,
ReturnIndex>(true,
2,
false,
false,
param.length_,
param.window_spatial_lengths_,
param.window_strides_,
param.window_dilations_,
param.input_left_pads_,
param.input_right_pads_);
EXPECT_TRUE(success);
}
}
};
using true_t = std::integral_constant<bool, true>;
using false_t = std::integral_constant<bool, false>;
using KernelTypes = std::conditional_t<CK_ENABLE_FP16 && CK_ENABLE_BF16,
::testing::Types<std::tuple<F16, F16, F32, I32, true_t>,
std::tuple<F16, F16, F32, I32, false_t>,
std::tuple<BF16, BF16, F32, I32, true_t>,
std::tuple<BF16, BF16, F32, I32, false_t>,
std::tuple<F32, F32, F32, I32, true_t>,
std::tuple<F32, F32, F32, I32, false_t>>,
::testing::Types<std::tuple<F32, F32, F32, I32, true_t>,
std::tuple<F32, F32, F32, I32, false_t>>>;
TYPED_TEST_SUITE(TestMaxPool2dFwd, KernelTypes);
TYPED_TEST(TestMaxPool2dFwd, Test_Pool)
{
// length, window_length, window_stride, window_dilation, left_pad, right_pad
this->params = {{{1, 1, 1, 1}, {1, 1}, {1, 1}, {1, 1}, {0, 0}, {0, 0}},
{{2, 16, 64, 64}, {64, 64}, {1, 1}, {1, 1}, {0, 0}, {0, 0}},
{{2, 16, 64, 64}, {4, 4}, {4, 4}, {2, 2}, {0, 0}, {0, 0}},
{{2, 32, 30, 30}, {2, 2}, {2, 2}, {1, 1}, {1, 1}, {1, 1}}};
this->Run();
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment