"src/include/base.hip.hpp" did not exist on "8a4b59785b4f5ba48468d53618ca270c5da599a7"
Unverified Commit e8d2887c authored by jakpiase's avatar jakpiase Committed by GitHub
Browse files

Rewrite pool2d fwd (#1462)



* added pool2d fwd

* add tests

* add reviewers changes

* Revert "Merge remote-tracking branch 'origin/develop' into jakpiase/pool2d_fwd_new"

This reverts commit 6b2ba7ff8960b0a6ddbe30d8dac53eeb55a8597e, reversing
changes made to 22c82bea0caf3e0f29399100c1bb67b8003fc042.

* Revert "add reviewers changes"

This reverts commit 22c82bea0caf3e0f29399100c1bb67b8003fc042.

* added reviewers comments

* revert some old files

* add reviewers requests

---------
Co-authored-by: default avatarAdam Osewski <19374865+aosewski@users.noreply.github.com>
parent 2a261afc
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_pool_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto InOutRank = 4;
static constexpr auto WindowRank = 2;
static constexpr auto MaxOp = ck::ReduceTensorOp::MAX;
static constexpr auto AvgOp = ck::ReduceTensorOp::AVG;
#ifdef CK_ENABLE_FP16
// FP16
void add_device_pool2d_fwd_nhwc_f16_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, F16, F16, I32, NHWC, NHWC, MaxOp, false>>>&);
void add_device_pool2d_fwd_nhwc_f16_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, F16, F16, I32, NHWC, NHWC, AvgOp, false>>>&);
// FP16 - return index
void add_device_pool2d_fwd_nhwc_index_f16_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, F16, F16, I32, NHWC, NHWC, MaxOp, true>>>&);
#endif
#ifdef CK_ENABLE_BF16
// BF16
void add_device_pool2d_fwd_nhwc_bf16_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, BF16, BF16, I32, NHWC, NHWC, MaxOp, false>>>&);
void add_device_pool2d_fwd_nhwc_bf16_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, BF16, BF16, I32, NHWC, NHWC, AvgOp, false>>>&);
// BF16 - return index
void add_device_pool2d_fwd_nhwc_index_bf16_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, BF16, BF16, I32, NHWC, NHWC, MaxOp, true>>>&);
#endif
#ifdef CK_ENABLE_FP32
// FP32
void add_device_pool2d_fwd_nhwc_f32_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, F32, F32, I32, NHWC, NHWC, MaxOp, false>>>&);
void add_device_pool2d_fwd_nhwc_f32_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, F32, F32, I32, NHWC, NHWC, AvgOp, false>>>&);
// FP32 - return index
void add_device_pool2d_fwd_nhwc_index_f32_instances(
std::vector<std::unique_ptr<
DevicePoolFwd<InOutRank, WindowRank, F32, F32, I32, NHWC, NHWC, MaxOp, true>>>&);
#endif
template <typename InDataType,
typename OutDataType,
typename IndexDataType,
typename InLayout,
typename OutLayout,
ck::ReduceTensorOp ReduceOpId,
bool OutputIndex>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DevicePoolFwd<InOutRank,
WindowRank,
InDataType,
OutDataType,
IndexDataType,
InLayout,
OutLayout,
ReduceOpId,
OutputIndex>>
{
using DeviceOp = DevicePoolFwd<InOutRank,
WindowRank,
InDataType,
OutDataType,
IndexDataType,
InLayout,
OutLayout,
ReduceOpId,
OutputIndex>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<InLayout, NHWC> && is_same_v<OutLayout, NHWC>)
{
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<InDataType, F16> && is_same_v<OutDataType, F16> &&
is_same_v<IndexDataType, I32>)
{
if constexpr(OutputIndex && ReduceOpId == MaxOp)
{
add_device_pool2d_fwd_nhwc_index_f16_instances(op_ptrs);
}
else
{
add_device_pool2d_fwd_nhwc_f16_instances(op_ptrs);
}
}
#endif
#ifdef CK_ENABLE_BF16
else if constexpr(is_same_v<InDataType, BF16> && is_same_v<OutDataType, BF16> &&
is_same_v<IndexDataType, I32>)
{
if constexpr(OutputIndex && ReduceOpId == MaxOp)
{
add_device_pool2d_fwd_nhwc_index_bf16_instances(op_ptrs);
}
else
{
add_device_pool2d_fwd_nhwc_bf16_instances(op_ptrs);
}
}
#endif
#ifdef CK_ENABLE_FP32
else if constexpr(is_same_v<InDataType, F32> && is_same_v<OutDataType, F32> &&
is_same_v<IndexDataType, I32>)
{
if constexpr(OutputIndex && ReduceOpId == MaxOp)
{
add_device_pool2d_fwd_nhwc_index_f32_instances(op_ptrs);
}
else
{
add_device_pool2d_fwd_nhwc_f32_instances(op_ptrs);
}
}
#endif
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
set(DEVICE_POOL2D_FWD_INSTANCES)
list(APPEND DEVICE_POOL2D_FWD_INSTANCES device_avg_pool2d_fwd_nhwc_f16_instance.cpp
device_max_pool2d_fwd_nhwc_f16_instance.cpp
device_avg_pool2d_fwd_nhwc_f32_instance.cpp
device_max_pool2d_fwd_nhwc_f32_instance.cpp
device_avg_pool2d_fwd_nhwc_bf16_instance.cpp
device_max_pool2d_fwd_nhwc_bf16_instance.cpp)
add_instance_library(device_pool2d_fwd_instance ${DEVICE_POOL2D_FWD_INSTANCES})
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "pool2d_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
void add_device_pool2d_fwd_nhwc_bf16_instances(
std::vector<
std::unique_ptr<DevicePoolFwd<4, 2, BF16, BF16, I32, NHWC, NHWC, ReduceOpId, false>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<BF16, BF16, I32, F32, ReduceOpId, false>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "pool2d_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
void add_device_pool2d_fwd_nhwc_f16_instances(
std::vector<std::unique_ptr<DevicePoolFwd<4, 2, F16, F16, I32, NHWC, NHWC, ReduceOpId, false>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<F16, F16, I32, F32, ReduceOpId, false>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "pool2d_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
void add_device_pool2d_fwd_nhwc_f32_instances(
std::vector<std::unique_ptr<DevicePoolFwd<4, 2, F32, F32, I32, NHWC, NHWC, ReduceOpId, false>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<F32, F32, I32, F32, ReduceOpId, false>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "pool2d_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
void add_device_pool2d_fwd_nhwc_bf16_instances(
std::vector<
std::unique_ptr<DevicePoolFwd<4, 2, BF16, BF16, I32, NHWC, NHWC, ReduceOpId, false>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<BF16, BF16, I32, F32, ReduceOpId, false>{});
}
void add_device_pool2d_fwd_nhwc_index_bf16_instances(
std::vector<
std::unique_ptr<DevicePoolFwd<4, 2, BF16, BF16, I32, NHWC, NHWC, ReduceOpId, true>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<BF16, BF16, I32, F32, ReduceOpId, true>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "pool2d_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
void add_device_pool2d_fwd_nhwc_f16_instances(
std::vector<std::unique_ptr<DevicePoolFwd<4, 2, F16, F16, I32, NHWC, NHWC, ReduceOpId, false>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<F16, F16, I32, F32, ReduceOpId, false>{});
}
void add_device_pool2d_fwd_nhwc_index_f16_instances(
std::vector<std::unique_ptr<DevicePoolFwd<4, 2, F16, F16, I32, NHWC, NHWC, ReduceOpId, true>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<F16, F16, I32, F32, ReduceOpId, true>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "pool2d_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
void add_device_pool2d_fwd_nhwc_f32_instances(
std::vector<std::unique_ptr<DevicePoolFwd<4, 2, F32, F32, I32, NHWC, NHWC, ReduceOpId, false>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<F32, F32, I32, F32, ReduceOpId, false>{});
}
void add_device_pool2d_fwd_nhwc_index_f32_instances(
std::vector<std::unique_ptr<DevicePoolFwd<4, 2, F32, F32, I32, NHWC, NHWC, ReduceOpId, true>>>&
instances)
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<F32, F32, I32, F32, ReduceOpId, true>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool2d_fwd_nhwc_nhwc.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using I32 = int32_t;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using NHWC = ck::tensor_layout::convolution::NHWC;
template <typename InDataType,
typename OutDataType,
typename IndexDataType,
typename ComputeDataType,
ReduceTensorOp ReduceOpId,
bool OutputIndex>
using device_pool2d_fwd_nhwc_instances =
// clang-format off
std::tuple <
DevicePool2dFwd_NHWC_NHWC<InDataType, OutDataType, IndexDataType, ComputeDataType, ReduceOpId, OutputIndex, 256, 256, 1, 1, 1, 1>,
DevicePool2dFwd_NHWC_NHWC<InDataType, OutDataType, IndexDataType, ComputeDataType, ReduceOpId, OutputIndex, 256, 256, 1, 2, 1, 2>,
DevicePool2dFwd_NHWC_NHWC<InDataType, OutDataType, IndexDataType, ComputeDataType, ReduceOpId, OutputIndex, 256, 256, 1, 4, 1, 4>
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/pool2d_fwd.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp"
namespace ck {
namespace profiler {
template <typename InDataType,
typename OutDataType,
typename ComputeDataType,
typename IndexDataType,
typename InLayout,
typename OutLayout,
ck::ReduceTensorOp ReduceOpId,
bool PropagateNan,
bool OutputIndex>
bool profile_pool2d_fwd_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
std::vector<index_t> in_length, // NCHW
std::vector<index_t> window_spatial_lengths,
std::vector<index_t> window_strides,
std::vector<index_t> window_dilations,
std::vector<index_t> input_left_pads,
std::vector<index_t> input_right_pads)
{
constexpr index_t InOutRank = 4;
constexpr index_t WindowRank = 2;
if(in_length.size() != InOutRank || window_spatial_lengths.size() != WindowRank ||
window_strides.size() != WindowRank || window_dilations.size() != WindowRank ||
input_left_pads.size() != WindowRank || input_right_pads.size() != WindowRank)
return false;
std::vector<index_t> out_length(InOutRank);
int N = in_length[0];
int C = in_length[1];
out_length[0] = N;
out_length[1] = C;
// Calculate Ho, Wo
for(int i = 2; i < InOutRank; ++i)
{
auto pad1 = input_left_pads[i - 2];
auto pad2 = input_right_pads[i - 2];
auto windows_size = window_spatial_lengths[i - 2];
auto windows_stride = window_strides[i - 2];
auto windows_dilation = window_dilations[i - 2];
auto eff = (windows_size - 1) * windows_dilation + 1;
out_length[i] = (in_length[i] + pad1 + pad2 - eff) / windows_stride + 1;
}
int Hi = in_length[2];
int Wi = in_length[3];
int Ho = out_length[2];
int Wo = out_length[3];
auto f_host_tensor_descriptor =
[](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W) {
using namespace ck::literals;
return HostTensorDescriptor({N_, C_, H, W}, {C_ * H * W, 1_uz, W * C_, C_});
};
Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi));
Tensor<OutDataType> out_n_c_ho_wo_host(f_host_tensor_descriptor(N, C, Ho, Wo));
Tensor<IndexDataType> out_indices_n_c_ho_wo_host(f_host_tensor_descriptor(N, C, Ho, Wo));
Tensor<OutDataType> out_n_c_ho_wo_device(f_host_tensor_descriptor(N, C, Ho, Wo));
Tensor<IndexDataType> out_indices_n_c_ho_wo_device(f_host_tensor_descriptor(N, C, Ho, Wo));
switch(init_method)
{
case 0: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{}); break;
case 1: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}); break;
default: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{-0.5, 0.5});
}
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) *
out_n_c_ho_wo_device.mDesc.GetElementSpaceSize());
DeviceMem out_indices_device_buf(sizeof(IndexDataType) *
out_indices_n_c_ho_wo_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
// add device normalization instances
using DeviceOp = ck::tensor_operation::device::DevicePoolFwd<InOutRank,
WindowRank,
InDataType,
OutDataType,
IndexDataType,
InLayout,
OutLayout,
ReduceOpId,
OutputIndex>;
// get device op instances
const auto instance_ptrs =
ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << instance_ptrs.size() << " instances" << std::endl;
std::string best_instance_name;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
if(do_verification)
{
using ReferenceInstance = ck::tensor_operation::host::ReferencePoolingFwd<InOutRank,
WindowRank,
InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
ReduceOpId,
PropagateNan,
OutputIndex>;
ReferenceInstance ref;
auto ref_argument = ref.MakeArgument(in_n_c_hi_wi,
out_n_c_ho_wo_host,
out_indices_n_c_ho_wo_host,
window_spatial_lengths,
window_strides,
window_dilations,
input_left_pads,
input_right_pads);
auto ref_invoker = ref.MakeInvoker();
ref_invoker.Run(ref_argument);
}
int num_kernel = 0;
for(auto& inst_ptr : instance_ptrs)
{
auto argument_ptr = inst_ptr->MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
static_cast<IndexDataType*>(out_indices_device_buf.GetDeviceBuffer()),
in_length,
window_spatial_lengths,
out_length,
{C * Hi * Wi, 1, Wi * C, C},
{C * Ho * Wo, 1, Wo * C, C},
{C * Ho * Wo, 1, Wo * C, C},
window_strides,
window_dilations,
input_left_pads,
input_right_pads,
{2, 3});
if(inst_ptr->IsSupportedArgument(argument_ptr.get()))
{
++num_kernel;
}
else
{
if(time_kernel)
{
std::cout << inst_ptr->GetTypeString() << " skipped due to unsupported argument: ";
LogRange(std::cout << "input lengths = ", in_length, ", ") << std::endl;
}
continue;
}
auto invoker_ptr = inst_ptr->MakeInvokerPointer();
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t num_bytes = in_n_c_hi_wi.mDesc.GetElementSize() * sizeof(InDataType) +
out_n_c_ho_wo_host.mDesc.GetElementSize() * sizeof(OutDataType);
if constexpr(OutputIndex)
num_bytes += out_indices_n_c_ho_wo_host.mDesc.GetElementSize() * sizeof(IndexDataType);
float gb_per_sec = num_bytes / 1.E6 / avg_time;
if(time_kernel)
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << gb_per_sec << " GB/s, "
<< inst_ptr->GetTypeString() << std::endl;
if(avg_time < best_avg_time)
{
best_instance_name = inst_ptr->GetTypeString();
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
out_device_buf.FromDevice(out_n_c_ho_wo_device.mData.data());
bool pass = ck::utils::check_err(out_n_c_ho_wo_device.mData,
out_n_c_ho_wo_host.mData,
"Error: Incorrect results",
1e-3,
1e-3);
if constexpr(OutputIndex)
{
out_indices_device_buf.FromDevice(out_indices_n_c_ho_wo_device.mData.data());
pass = pass && ck::utils::check_err(out_indices_n_c_ho_wo_device,
out_indices_n_c_ho_wo_host);
}
if(do_log)
{
LogRangeAsType<float>(std::cout << "in_n_c_hi_wi : ", in_n_c_hi_wi.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "out_n_c_ho_wo_host : ", out_n_c_ho_wo_host.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "out_n_c_ho_wo_device : ", out_n_c_ho_wo_device.mData, ",")
<< std::endl;
if constexpr(OutputIndex)
LogRangeAsType<float>(std::cout << "out_indices_n_c_ho_wo_device : ",
out_indices_n_c_ho_wo_device.mData,
",")
<< std::endl;
}
if(!pass)
{
std::cout << inst_ptr->GetTypeString() << " failed verification: ";
LogRange(std::cout << "lengths = [", in_length, ", ") << "]." << std::endl;
return false;
}
else
{
if(time_kernel)
std::cout << "pass" << std::endl;
}
}
}
if(time_kernel)
{
LogRange(std::cout << "length = ", in_length, ",") << std::endl;
std::cout << "best perf = " << best_avg_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_instance_name << std::endl;
}
if(num_kernel == 0)
{
std::cout << "Error: No kernel is applicable" << std::endl;
return false;
}
return true;
}
} // namespace profiler
} // namespace ck
...@@ -9,6 +9,7 @@ set(PROFILER_SOURCES ...@@ -9,6 +9,7 @@ set(PROFILER_SOURCES
profile_layernorm_bwd_gamma_beta.cpp profile_layernorm_bwd_gamma_beta.cpp
profile_groupnorm_bwd_gamma_beta.cpp profile_groupnorm_bwd_gamma_beta.cpp
profile_layernorm_fwd.cpp profile_layernorm_fwd.cpp
profile_max_pool2d_fwd.cpp
profile_max_pool3d_fwd.cpp profile_max_pool3d_fwd.cpp
profile_avg_pool3d_bwd.cpp profile_avg_pool3d_bwd.cpp
profile_max_pool3d_bwd.cpp profile_max_pool3d_bwd.cpp
...@@ -98,6 +99,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_bwd_ga ...@@ -98,6 +99,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_bwd_ga
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_softmax_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_softmax_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_reduce_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_pool2d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_pool3d_fwd_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_pool3d_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_avg_pool3d_bwd_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_avg_pool3d_bwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_max_pool_bwd_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_max_pool_bwd_instance)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include <unordered_map>
#include "profiler/data_type_enum.hpp"
#include "profiler/profile_pool2d_fwd_impl.hpp"
#include "profiler_operation_registry.hpp"
using ck::index_t;
struct maxPoolFwdArgParser
{
std::unordered_map<std::string, std::vector<int>> long_opts = {{"length", {}},
{"wsize", {}},
{"wstride", {}},
{"wdilation", {}},
{"pad1", {}},
{"pad2", {}}};
bool parse_opt(int argc, char* argv[], const std::string& key, int i)
{
if(std::string("--") + key == argv[i])
{
int pos = i;
while(++i < argc && argv[i][0] != '-') {}
int end = i;
for(int j = pos + 1; j < end; j++)
{
long_opts[key].push_back(std::stoi(argv[j]));
}
return true;
}
return false;
}
void operator()(int argc, char* argv[])
{
for(auto& kv : long_opts)
{
for(int i = 1; i < argc; i++)
{
if(parse_opt(argc, argv, kv.first, i))
break;
}
}
}
};
void print_help_max_pool2d_fwd()
{
std::cout << "arg1: data type (0: fp16; 1: fp32; 5: bf16)\n"
<< "arg2: verification (0: no; 1: yes)\n"
<< "arg3: initialization (0: no init; 1: integer value; 2: decimal value)\n"
<< "arg4: print tensor value (0: no; 1: yes)\n"
<< "arg5: time kernel (0=no, 1=yes)\n"
<< "arg6: return index (0=no, 1=yes)\n"
<< "--length: input tensor length for NCHW(e.g, --length 2 32 30 30) \n"
<< "--wsize: window size for YX (e.g, --wsize 2 2) \n"
<< "--wstride: window stride for HW (e.g, --wstride 2 2) \n"
<< "--wdilation: window dilation for HW (e.g, --wdilation 1 1) \n"
<< "--pad1: left side of padding in HW (e.g, --pad1 1 1) \n"
<< "--pad2: right side of padding in HW (e.g, --pad2 1 1) \n"
<< "eg: ckProfiler max_pool2d_fwd 0 1 2 0 1 0 --length 2 32 30 30 --wsize 2 2"
"--wstride 2 2 --wdilation 1 1 --pad1 1 1 --pad2 1 1"
<< std::endl;
}
int profile_max_pool2d_fwd(int argc, char* argv[])
{
ck::DataTypeEnum data_type = ck::DataTypeEnum::Half;
bool do_verification = true;
int init_method = 0;
bool do_log = false;
bool time_kernel = true;
bool return_index = false;
std::vector<index_t> in_length = {2, 32, 30, 30};
std::vector<index_t> wsize = {2, 2};
std::vector<index_t> wstride = {2, 2};
std::vector<index_t> wdilation = {1, 1};
std::vector<index_t> pad1 = {1, 1};
std::vector<index_t> pad2 = {1, 1};
if(argc != 2 && argc != 28)
{
print_help_max_pool2d_fwd();
return 0;
}
else if(argc == 28)
{
data_type = static_cast<ck::DataTypeEnum>(std::stoi(argv[2]));
do_verification = std::stoi(argv[3]);
init_method = std::stoi(argv[4]);
do_log = std::stoi(argv[5]);
time_kernel = std::stoi(argv[6]);
return_index = std::stoi(argv[7]);
// parse the long options
maxPoolFwdArgParser arg_parser;
arg_parser(argc, argv);
in_length = arg_parser.long_opts["length"];
wsize = arg_parser.long_opts["wsize"];
wstride = arg_parser.long_opts["wstride"];
wdilation = arg_parser.long_opts["wdilation"];
pad1 = arg_parser.long_opts["pad1"];
pad2 = arg_parser.long_opts["pad2"];
}
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F32 = float;
using I32 = int32_t;
using NHWC = ck::tensor_layout::convolution::NHWC;
constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
if(data_type == ck::DataTypeEnum::Half)
{
if(return_index)
{
ck::profiler::
profile_pool2d_fwd_impl<F16, F16, F16, I32, NHWC, NHWC, ReduceOpId, false, true>(
do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
else
{
ck::profiler::
profile_pool2d_fwd_impl<F16, F16, F16, I32, NHWC, NHWC, ReduceOpId, false, false>(
do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
}
else if(data_type == ck::DataTypeEnum::BFloat16)
{
if(return_index)
{
ck::profiler::
profile_pool2d_fwd_impl<BF16, BF16, BF16, I32, NHWC, NHWC, ReduceOpId, false, true>(
do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
else
{
ck::profiler::profile_pool2d_fwd_impl<BF16,
BF16,
BF16,
I32,
NHWC,
NHWC,
ReduceOpId,
false,
false>(do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
}
else if(data_type == ck::DataTypeEnum::Float)
{
if(return_index)
{
ck::profiler::
profile_pool2d_fwd_impl<F32, F32, F32, I32, NHWC, NHWC, ReduceOpId, false, true>(
do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
else
{
ck::profiler::
profile_pool2d_fwd_impl<F32, F32, F32, I32, NHWC, NHWC, ReduceOpId, false, false>(
do_verification,
init_method,
do_log,
time_kernel,
in_length,
wsize,
wstride,
wdilation,
pad1,
pad2);
}
}
else
{
throw std::runtime_error("not implemented yet");
}
return 0;
}
REGISTER_PROFILER_OPERATION("max_pool2d_fwd", "max_pool2d fwd", profile_max_pool2d_fwd);
...@@ -4,13 +4,19 @@ add_gtest_executable(test_avg_pool3d_bwd test_avg_pool3d_bwd.cpp) ...@@ -4,13 +4,19 @@ add_gtest_executable(test_avg_pool3d_bwd test_avg_pool3d_bwd.cpp)
add_gtest_executable(test_max_pool3d_bwd test_max_pool3d_bwd.cpp) add_gtest_executable(test_max_pool3d_bwd test_max_pool3d_bwd.cpp)
add_gtest_executable(test_avg_pool3d_fwd test_avg_pool3d_fwd.cpp) add_gtest_executable(test_avg_pool3d_fwd test_avg_pool3d_fwd.cpp)
add_gtest_executable(test_max_pool3d_fwd test_max_pool3d_fwd.cpp) add_gtest_executable(test_max_pool3d_fwd test_max_pool3d_fwd.cpp)
add_gtest_executable(test_avg_pool2d_fwd test_avg_pool2d_fwd.cpp)
add_gtest_executable(test_max_pool2d_fwd test_max_pool2d_fwd.cpp)
target_link_libraries(test_avg_pool3d_bwd PRIVATE utility device_avg_pool3d_bwd_instance) target_link_libraries(test_avg_pool3d_bwd PRIVATE utility device_avg_pool3d_bwd_instance)
target_link_libraries(test_max_pool3d_bwd PRIVATE utility device_max_pool_bwd_instance) target_link_libraries(test_max_pool3d_bwd PRIVATE utility device_max_pool_bwd_instance)
target_link_libraries(test_avg_pool3d_fwd PRIVATE utility device_pool3d_fwd_instance) target_link_libraries(test_avg_pool3d_fwd PRIVATE utility device_pool3d_fwd_instance)
target_link_libraries(test_max_pool3d_fwd PRIVATE utility device_pool3d_fwd_instance) target_link_libraries(test_max_pool3d_fwd PRIVATE utility device_pool3d_fwd_instance)
target_link_libraries(test_avg_pool2d_fwd PRIVATE utility device_pool2d_fwd_instance)
target_link_libraries(test_max_pool2d_fwd PRIVATE utility device_pool2d_fwd_instance)
add_dependencies(test_pool test_avg_pool3d_bwd) add_dependencies(test_pool test_avg_pool3d_bwd)
add_dependencies(test_pool test_max_pool3d_bwd) add_dependencies(test_pool test_max_pool3d_bwd)
add_dependencies(test_pool test_avg_pool3d_fwd) add_dependencies(test_pool test_avg_pool3d_fwd)
add_dependencies(test_pool test_max_pool3d_fwd) add_dependencies(test_pool test_max_pool3d_fwd)
add_dependencies(test_pool test_avg_pool2d_fwd)
add_dependencies(test_pool test_max_pool2d_fwd)
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_pool2d_fwd_impl.hpp"
#include "test_pool_fwd_common.hpp"
template <typename Tuple>
class TestAvgPool2dFwd : public ::testing::Test
{
protected:
using InDataType = std::tuple_element_t<0, Tuple>;
using OutDataType = std::tuple_element_t<1, Tuple>;
using ComputeDataType = std::tuple_element_t<2, Tuple>;
using IndexDataType = std::tuple_element_t<3, Tuple>;
std::vector<PoolingParam> params;
void Run()
{
for(auto param : params)
{
// avg pool
bool success =
ck::profiler::profile_pool2d_fwd_impl<InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::NHWC,
ck::ReduceTensorOp::AVG,
false,
false>(true,
2,
false,
false,
param.length_,
param.window_spatial_lengths_,
param.window_strides_,
param.window_dilations_,
param.input_left_pads_,
param.input_right_pads_);
EXPECT_TRUE(success);
}
}
};
using KernelTypes = std::conditional_t<
CK_ENABLE_FP16 && CK_ENABLE_BF16,
::testing::Types<std::tuple<F16, F16, F32, I32>,
std::tuple<F16, F16, F32, I32>,
std::tuple<BF16, BF16, F32, I32>,
std::tuple<BF16, BF16, F32, I32>,
std::tuple<F32, F32, F32, I32>,
std::tuple<F32, F32, F32, I32>>,
::testing::Types<std::tuple<F32, F32, F32, I32>, std::tuple<F32, F32, F32, I32>>>;
TYPED_TEST_SUITE(TestAvgPool2dFwd, KernelTypes);
TYPED_TEST(TestAvgPool2dFwd, Test_Pool)
{
// length, window_length, window_stride, window_dilation, left_pad, right_pad
this->params = {{{1, 1, 1, 1}, {1, 1}, {1, 1}, {1, 1}, {0, 0}, {0, 0}},
{{2, 16, 64, 64}, {64, 64}, {1, 1}, {1, 1}, {0, 0}, {0, 0}},
{{2, 16, 64, 64}, {4, 4}, {4, 4}, {2, 2}, {0, 0}, {0, 0}},
{{2, 32, 30, 30}, {2, 2}, {2, 2}, {1, 1}, {1, 1}, {1, 1}}};
this->Run();
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_pool2d_fwd_impl.hpp"
#include "test_pool_fwd_common.hpp"
template <typename Tuple>
class TestMaxPool2dFwd : public ::testing::Test
{
protected:
using InDataType = std::tuple_element_t<0, Tuple>;
using OutDataType = std::tuple_element_t<1, Tuple>;
using ComputeDataType = std::tuple_element_t<2, Tuple>;
using IndexDataType = std::tuple_element_t<3, Tuple>;
static constexpr bool ReturnIndex = std::tuple_element_t<4, Tuple>::value;
std::vector<PoolingParam> params;
void Run()
{
for(auto param : params)
{
// max pool
bool success =
ck::profiler::profile_pool2d_fwd_impl<InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::NHWC,
ck::ReduceTensorOp::MAX,
false,
ReturnIndex>(true,
2,
false,
false,
param.length_,
param.window_spatial_lengths_,
param.window_strides_,
param.window_dilations_,
param.input_left_pads_,
param.input_right_pads_);
EXPECT_TRUE(success);
}
}
};
using true_t = std::integral_constant<bool, true>;
using false_t = std::integral_constant<bool, false>;
using KernelTypes = std::conditional_t<CK_ENABLE_FP16 && CK_ENABLE_BF16,
::testing::Types<std::tuple<F16, F16, F32, I32, true_t>,
std::tuple<F16, F16, F32, I32, false_t>,
std::tuple<BF16, BF16, F32, I32, true_t>,
std::tuple<BF16, BF16, F32, I32, false_t>,
std::tuple<F32, F32, F32, I32, true_t>,
std::tuple<F32, F32, F32, I32, false_t>>,
::testing::Types<std::tuple<F32, F32, F32, I32, true_t>,
std::tuple<F32, F32, F32, I32, false_t>>>;
TYPED_TEST_SUITE(TestMaxPool2dFwd, KernelTypes);
TYPED_TEST(TestMaxPool2dFwd, Test_Pool)
{
// length, window_length, window_stride, window_dilation, left_pad, right_pad
this->params = {{{1, 1, 1, 1}, {1, 1}, {1, 1}, {1, 1}, {0, 0}, {0, 0}},
{{2, 16, 64, 64}, {64, 64}, {1, 1}, {1, 1}, {0, 0}, {0, 0}},
{{2, 16, 64, 64}, {4, 4}, {4, 4}, {2, 2}, {0, 0}, {0, 0}},
{{2, 32, 30, 30}, {2, 2}, {2, 2}, {1, 1}, {1, 1}, {1, 1}}};
this->Run();
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment