Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
e6bb1dd7
Unverified
Commit
e6bb1dd7
authored
Jul 19, 2024
by
Po Yen Chen
Committed by
GitHub
Jul 19, 2024
Browse files
Merge branch 'develop' into feature/check-window-lengths
parents
9d6a3704
ab250afd
Changes
317
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
837 additions
and
60 deletions
+837
-60
example/15_grouped_gemm/grouped_gemm_multiple_d_xdl_fp16.cpp
example/15_grouped_gemm/grouped_gemm_multiple_d_xdl_fp16.cpp
+3
-2
example/26_contraction/README.md
example/26_contraction/README.md
+0
-11
example/29_batched_gemm_bias_e_permute/batched_gemm_bias_e_permute_wmma_fp16.cpp
..._bias_e_permute/batched_gemm_bias_e_permute_wmma_fp16.cpp
+2
-2
example/30_grouped_conv_fwd_multiple_d/README.md
example/30_grouped_conv_fwd_multiple_d/README.md
+0
-12
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_wmma_fp16.cpp
...d_multiple_d/grouped_conv_fwd_bias_relu_add_wmma_fp16.cpp
+12
-1
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_wmma_int8.cpp
...d_multiple_d/grouped_conv_fwd_bias_relu_add_wmma_int8.cpp
+12
-1
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_lower_triangle_scale_softmax_gemm_permute_wmma_fp16.cpp
...m_lower_triangle_scale_softmax_gemm_permute_wmma_fp16.cpp
+12
-1
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_permute_wmma_fp16.cpp
...emm/batched_gemm_scale_softmax_gemm_permute_wmma_fp16.cpp
+12
-1
example/32_batched_gemm_scale_softmax_gemm/cross_attention_forward_wmma_fp16.cpp
..._scale_softmax_gemm/cross_attention_forward_wmma_fp16.cpp
+15
-4
example/32_batched_gemm_scale_softmax_gemm/grouped_query_attention_forward_wmma_fp16.cpp
...oftmax_gemm/grouped_query_attention_forward_wmma_fp16.cpp
+12
-1
example/32_batched_gemm_scale_softmax_gemm/multi_query_attention_forward_wmma_fp16.cpp
..._softmax_gemm/multi_query_attention_forward_wmma_fp16.cpp
+12
-1
example/32_batched_gemm_scale_softmax_gemm/self_attention_forward_wmma_fp16.cpp
...m_scale_softmax_gemm/self_attention_forward_wmma_fp16.cpp
+15
-4
example/38_grouped_conv_bwd_data_multiple_d/grouped_conv_bwd_data_wmma_fp16.cpp
...v_bwd_data_multiple_d/grouped_conv_bwd_data_wmma_fp16.cpp
+12
-1
example/46_gemm_add_multiply/README.md
example/46_gemm_add_multiply/README.md
+0
-16
example/59_grouped_gemm_multi_ABD/CMakeLists.txt
example/59_grouped_gemm_multi_ABD/CMakeLists.txt
+2
-2
example/61_contraction_multi_ABD/contraction_multi_ABD_xdl_fp8.cpp
...1_contraction_multi_ABD/contraction_multi_ABD_xdl_fp8.cpp
+314
-0
example/62_convnd_activ/CMakeLists.txt
example/62_convnd_activ/CMakeLists.txt
+3
-0
example/62_convnd_activ/convinvscale/CMakeLists.txt
example/62_convnd_activ/convinvscale/CMakeLists.txt
+10
-0
example/62_convnd_activ/convinvscale/convnd_fwd_convinvscale_common.hpp
...vnd_activ/convinvscale/convnd_fwd_convinvscale_common.hpp
+301
-0
example/62_convnd_activ/convinvscale/convnd_fwd_xdl_convinvscale_fp8.cpp
...nd_activ/convinvscale/convnd_fwd_xdl_convinvscale_fp8.cpp
+88
-0
No files found.
Too many changes to show.
To preserve performance only
317 of 317+
files are displayed.
Plain diff
Email patch
example/15_grouped_gemm/grouped_gemm_multiple_d_xdl_fp16.cpp
View file @
e6bb1dd7
...
@@ -63,7 +63,7 @@ using DeviceGemmInstance =
...
@@ -63,7 +63,7 @@ using DeviceGemmInstance =
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
;
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
S
<
4
,
4
,
4
>
>
;
// clang-format on
// clang-format on
struct
ProblemSize
final
struct
ProblemSize
final
...
@@ -92,9 +92,10 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
...
@@ -92,9 +92,10 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
auto
group_count
=
problem_size
.
group_count
;
auto
group_count
=
problem_size
.
group_count
;
using
KernelArguments
=
ck
::
tensor_operation
::
device
::
GroupedGemmTileLoopKernelArguments
<
NumDs
>
;
using
KernelArguments
=
ck
::
tensor_operation
::
device
::
GroupedGemmTileLoopKernelArguments
<
NumDs
>
;
using
GemmDesc
=
ck
::
tensor_operation
::
device
::
GemmDesc
;
// GEMM shape
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
std
::
vector
<
GemmDesc
>
gemm_descs
;
std
::
vector
<
KernelArguments
>
ggemm_kargs
;
std
::
vector
<
KernelArguments
>
ggemm_kargs
;
std
::
vector
<
void
*>
p_Cs
;
std
::
vector
<
void
*>
p_Cs
;
std
::
vector
<
const
void
*>
p_As
;
std
::
vector
<
const
void
*>
p_As
;
...
...
example/26_contraction/README.md
View file @
e6bb1dd7
...
@@ -7,14 +7,3 @@
...
@@ -7,14 +7,3 @@
#arg3: time kernel (0=no, 1=yes)
#arg3: time kernel (0=no, 1=yes)
./bin/example_contraction_bilinear_xdl_fp32 1 1 1
./bin/example_contraction_bilinear_xdl_fp32 1 1 1
```
```
Result (MI100 @ dynammic freq, 46TFlops peak FP32)
```
a_ms_ks: dim 4, lengths {30, 128, 32, 64}, strides {524288, 4096, 128, 1}
b_ks_ns: dim 4, lengths {32, 64, 32, 64}, strides {128, 1, 524288, 4096}
c_ms_ns: dim 4, lengths {30, 128, 32, 64}, strides {524288, 4096, 128, 1}
launch_and_time_kernel: grid_dim {240, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 0.843286 ms, 38.1985 TFlops, 94.5014 GB/s, DeviceContractionMultipleD_Xdl_CShuffle<256, 256, 128, 16, 4, 4>
```
example/29_batched_gemm_bias_e_permute/batched_gemm_bias_e_permute_wmma_fp16.cpp
View file @
e6bb1dd7
...
@@ -83,14 +83,14 @@ using DeviceOpInstanceKKNN =
...
@@ -83,14 +83,14 @@ using DeviceOpInstanceKKNN =
2
,
2
,
4
,
4
,
4
,
4
,
tru
e
,
fals
e
,
S
<
4
,
32
,
1
>
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
4
,
4
,
4
,
4
,
tru
e
,
fals
e
,
1
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
S
<
1
,
64
,
1
,
2
>
,
...
...
example/30_grouped_conv_fwd_multiple_d/README.md
View file @
e6bb1dd7
...
@@ -16,15 +16,3 @@ Following arguments (depending on number of spatial dims):
...
@@ -16,15 +16,3 @@ Following arguments (depending on number of spatial dims):
./bin/example_grouped_conv_fwd_bias_relu_add_xdl_fp16 1 1 1
./bin/example_grouped_conv_fwd_bias_relu_add_xdl_fp16 1 1 1
```
```
Result (MI100)
```
in: dim 5, lengths {1, 128, 192, 71, 71}, strides {192, 967872, 1, 13632, 192}
wei: dim 5, lengths {1, 256, 192, 3, 3}, strides {442368, 1728, 1, 576, 192}
bias: dim 5, lengths {1, 128, 256, 36, 36}, strides {256, 0, 1, 0, 0}
residual: dim 5, lengths {1, 128, 256, 36, 36}, strides {256, 0, 1, 0, 0}
out: dim 5, lengths {1, 128, 256, 36, 36}, strides {256, 331776, 1, 9216, 256}
launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 1.55981 ms, 94.0927 TFlops, 213.868 GB/s, DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<256, 128, 256, 16, Default>
```
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_wmma_fp16.cpp
View file @
e6bb1dd7
...
@@ -2,6 +2,7 @@
...
@@ -2,6 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common_wmma.hpp"
#include "common_wmma.hpp"
#include "ck/host_utility/device_prop.hpp"
// kernel data types
// kernel data types
using
InKernelDataType
=
FP16
;
using
InKernelDataType
=
FP16
;
...
@@ -23,4 +24,14 @@ using OutElementOp = ck::tensor_operation::element_wise::AddReluAdd;
...
@@ -23,4 +24,14 @@ using OutElementOp = ck::tensor_operation::element_wise::AddReluAdd;
#include "run_grouped_conv_fwd_bias_relu_add_wmma_example.inc"
#include "run_grouped_conv_fwd_bias_relu_add_wmma_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_fwd_bias_relu_add_example
(
argc
,
argv
);
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
is_supported
=
ck
::
is_gfx11_supported
();
if
(
!
is_supported
)
{
std
::
cout
<<
"WARNING: wmma example not supported on the platform "
<<
ck
::
get_device_name
()
<<
std
::
endl
;
return
0
;
}
return
!
run_grouped_conv_fwd_bias_relu_add_example
(
argc
,
argv
);
}
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_bias_relu_add_wmma_int8.cpp
View file @
e6bb1dd7
...
@@ -2,6 +2,7 @@
...
@@ -2,6 +2,7 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common_wmma.hpp"
#include "common_wmma.hpp"
#include "ck/host_utility/device_prop.hpp"
// kernel data types
// kernel data types
using
InKernelDataType
=
I8
;
using
InKernelDataType
=
I8
;
...
@@ -23,4 +24,14 @@ using OutElementOp = ck::tensor_operation::element_wise::AddReluAdd;
...
@@ -23,4 +24,14 @@ using OutElementOp = ck::tensor_operation::element_wise::AddReluAdd;
#include "run_grouped_conv_fwd_bias_relu_add_wmma_example.inc"
#include "run_grouped_conv_fwd_bias_relu_add_wmma_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_fwd_bias_relu_add_example
(
argc
,
argv
);
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
is_supported
=
ck
::
is_gfx11_supported
();
if
(
!
is_supported
)
{
std
::
cout
<<
"WARNING: wmma example not supported on the platform "
<<
ck
::
get_device_name
()
<<
std
::
endl
;
return
0
;
}
return
!
run_grouped_conv_fwd_bias_relu_add_example
(
argc
,
argv
);
}
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_lower_triangle_scale_softmax_gemm_permute_wmma_fp16.cpp
View file @
e6bb1dd7
...
@@ -27,6 +27,7 @@ Gemm + Softmax + Gemm fused operation. Computes C_g_m_n = Softmax(A_g_m_k * B0_g
...
@@ -27,6 +27,7 @@ Gemm + Softmax + Gemm fused operation. Computes C_g_m_n = Softmax(A_g_m_k * B0_g
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/host_utility/device_prop.hpp"
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
@@ -163,4 +164,14 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<
...
@@ -163,4 +164,14 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<
#include "run_batched_gemm_scale_softmax_gemm_permute_wmma.inc"
#include "run_batched_gemm_scale_softmax_gemm_permute_wmma.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run
(
argc
,
argv
);
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
is_supported
=
ck
::
is_gfx11_supported
();
if
(
!
is_supported
)
{
std
::
cout
<<
"WARNING: wmma example not supported on the platform "
<<
ck
::
get_device_name
()
<<
std
::
endl
;
return
0
;
}
return
run
(
argc
,
argv
);
}
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_permute_wmma_fp16.cpp
View file @
e6bb1dd7
...
@@ -27,6 +27,7 @@ Gemm + Softmax + Gemm fused operation. Computes C_g_m_n = Softmax(A_g_m_k * B0_g
...
@@ -27,6 +27,7 @@ Gemm + Softmax + Gemm fused operation. Computes C_g_m_n = Softmax(A_g_m_k * B0_g
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/host_utility/device_prop.hpp"
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
@@ -285,4 +286,14 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<
...
@@ -285,4 +286,14 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<
#include "run_batched_gemm_scale_softmax_gemm_permute_wmma.inc"
#include "run_batched_gemm_scale_softmax_gemm_permute_wmma.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run
(
argc
,
argv
);
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
is_supported
=
ck
::
is_gfx11_supported
();
if
(
!
is_supported
)
{
std
::
cout
<<
"WARNING: wmma example not supported on the platform "
<<
ck
::
get_device_name
()
<<
std
::
endl
;
return
0
;
}
return
run
(
argc
,
argv
);
}
example/32_batched_gemm_scale_softmax_gemm/cross_attention_forward_wmma_fp16.cpp
View file @
e6bb1dd7
...
@@ -27,6 +27,7 @@ Gemm + Softmax + Gemm fused operation. Computes C_g_m_n = Softmax(A_g_m_k * B0_g
...
@@ -27,6 +27,7 @@ Gemm + Softmax + Gemm fused operation. Computes C_g_m_n = Softmax(A_g_m_k * B0_g
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/host_utility/device_prop.hpp"
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
@@ -71,7 +72,7 @@ static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecial
...
@@ -71,7 +72,7 @@ static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecial
#define CK_MHA_USE_WAVE_1
#define CK_MHA_USE_WAVE_1
#define CK_MHA_USE_WAVE_2
#define CK_MHA_USE_WAVE_2
#define CK_MHA_USE_WAVE_4
#define CK_MHA_USE_WAVE_4
#define CK_MHA_USE_WAVE_8
//
#define CK_MHA_USE_WAVE_8
using
DeviceMHAFactory
=
using
DeviceMHAFactory
=
std
::
tuple
<
std
::
tuple
<
#ifdef CK_MHA_USE_WAVE_1
#ifdef CK_MHA_USE_WAVE_1
...
@@ -277,10 +278,10 @@ using DeviceMHAFactory =
...
@@ -277,10 +278,10 @@ using DeviceMHAFactory =
S
<
2
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
1
,
false
,
S
<
2
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
1
,
false
,
// CShuffleBlockTransfer MN
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
8
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
8
,
MaskingSpec
>
,
MaskingSpec
>
#endif
#endif
#ifdef CK_MHA_USE_WAVE_8
#ifdef CK_MHA_USE_WAVE_8
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
,
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
...
@@ -351,4 +352,14 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<
...
@@ -351,4 +352,14 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<
#include "run_cross_attention_wmma.inc"
#include "run_cross_attention_wmma.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run
(
argc
,
argv
);
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
is_supported
=
ck
::
is_gfx11_supported
();
if
(
!
is_supported
)
{
std
::
cout
<<
"WARNING: wmma example not supported on the platform "
<<
ck
::
get_device_name
()
<<
std
::
endl
;
return
0
;
}
return
run
(
argc
,
argv
);
}
example/32_batched_gemm_scale_softmax_gemm/grouped_query_attention_forward_wmma_fp16.cpp
View file @
e6bb1dd7
...
@@ -28,6 +28,7 @@ Example is GQA-4
...
@@ -28,6 +28,7 @@ Example is GQA-4
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/host_utility/device_prop.hpp"
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
@@ -299,4 +300,14 @@ using ReferenceGemm1Instance =
...
@@ -299,4 +300,14 @@ using ReferenceGemm1Instance =
#include "run_grouped_query_attention_forward_wmma.inc"
#include "run_grouped_query_attention_forward_wmma.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run
(
argc
,
argv
);
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
is_supported
=
ck
::
is_gfx11_supported
();
if
(
!
is_supported
)
{
std
::
cout
<<
"WARNING: wmma example not supported on the platform "
<<
ck
::
get_device_name
()
<<
std
::
endl
;
return
0
;
}
return
run
(
argc
,
argv
);
}
example/32_batched_gemm_scale_softmax_gemm/multi_query_attention_forward_wmma_fp16.cpp
View file @
e6bb1dd7
...
@@ -26,6 +26,7 @@ Shazeer, Noam. “Fast Transformer Decoding: One Write-Head Is All You Need.”
...
@@ -26,6 +26,7 @@ Shazeer, Noam. “Fast Transformer Decoding: One Write-Head Is All You Need.”
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/host_utility/device_prop.hpp"
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
@@ -284,4 +285,14 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm_
...
@@ -284,4 +285,14 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm_
#include "run_multi_query_attention_forward_wmma.inc"
#include "run_multi_query_attention_forward_wmma.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run
(
argc
,
argv
);
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
is_supported
=
ck
::
is_gfx11_supported
();
if
(
!
is_supported
)
{
std
::
cout
<<
"WARNING: wmma example not supported on the platform "
<<
ck
::
get_device_name
()
<<
std
::
endl
;
return
0
;
}
return
run
(
argc
,
argv
);
}
example/32_batched_gemm_scale_softmax_gemm/self_attention_forward_wmma_fp16.cpp
View file @
e6bb1dd7
...
@@ -27,6 +27,7 @@ Gemm + Softmax + Gemm fused operation. Computes C_g_m_n = Softmax(A_g_m_k * B0_g
...
@@ -27,6 +27,7 @@ Gemm + Softmax + Gemm fused operation. Computes C_g_m_n = Softmax(A_g_m_k * B0_g
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/host_utility/device_prop.hpp"
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
@@ -71,7 +72,7 @@ static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecial
...
@@ -71,7 +72,7 @@ static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecial
#define CK_MHA_USE_WAVE_1
#define CK_MHA_USE_WAVE_1
#define CK_MHA_USE_WAVE_2
#define CK_MHA_USE_WAVE_2
#define CK_MHA_USE_WAVE_4
#define CK_MHA_USE_WAVE_4
#define CK_MHA_USE_WAVE_8
//
#define CK_MHA_USE_WAVE_8
using
DeviceMHAFactory
=
using
DeviceMHAFactory
=
std
::
tuple
<
std
::
tuple
<
#ifdef CK_MHA_USE_WAVE_1
#ifdef CK_MHA_USE_WAVE_1
...
@@ -277,10 +278,10 @@ using DeviceMHAFactory =
...
@@ -277,10 +278,10 @@ using DeviceMHAFactory =
S
<
2
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
1
,
false
,
S
<
2
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
1
,
false
,
// CShuffleBlockTransfer MN
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
8
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
8
,
MaskingSpec
>
,
MaskingSpec
>
#endif
#endif
#ifdef CK_MHA_USE_WAVE_8
#ifdef CK_MHA_USE_WAVE_8
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
,
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
...
@@ -329,4 +330,14 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<
...
@@ -329,4 +330,14 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<
#include "run_self_attention_wmma.inc"
#include "run_self_attention_wmma.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run
(
argc
,
argv
);
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
is_supported
=
ck
::
is_gfx11_supported
();
if
(
!
is_supported
)
{
std
::
cout
<<
"WARNING: wmma example not supported on the platform "
<<
ck
::
get_device_name
()
<<
std
::
endl
;
return
0
;
}
return
run
(
argc
,
argv
);
}
example/38_grouped_conv_bwd_data_multiple_d/grouped_conv_bwd_data_wmma_fp16.cpp
View file @
e6bb1dd7
...
@@ -3,6 +3,7 @@
...
@@ -3,6 +3,7 @@
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_wmma_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_wmma_cshuffle.hpp"
#include "common.hpp"
#include "common.hpp"
#include "ck/host_utility/device_prop.hpp"
using
OutDataType
=
FP16
;
using
OutDataType
=
FP16
;
using
WeiDataType
=
FP16
;
using
WeiDataType
=
FP16
;
...
@@ -31,4 +32,14 @@ using DeviceConvInstance = ck::tensor_operation::device::DeviceGroupedConvBwdDat
...
@@ -31,4 +32,14 @@ using DeviceConvInstance = ck::tensor_operation::device::DeviceGroupedConvBwdDat
#include "run_grouped_conv_bwd_data_example.inc"
#include "run_grouped_conv_bwd_data_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_grouped_conv_bwd_data_example
(
argc
,
argv
);
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
is_supported
=
ck
::
is_gfx11_supported
();
if
(
!
is_supported
)
{
std
::
cout
<<
"WARNING: wmma example not supported on the platform "
<<
ck
::
get_device_name
()
<<
std
::
endl
;
return
0
;
}
return
run_grouped_conv_bwd_data_example
(
argc
,
argv
);
}
example/46_gemm_add_multiply/README.md
View file @
e6bb1dd7
...
@@ -8,19 +8,3 @@
...
@@ -8,19 +8,3 @@
#arg4 to 11: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD0, StrideD1, StrideE"
#arg4 to 11: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD0, StrideD1, StrideE"
./bin/example_gemm_add_multiply_dl_fp16 1 1 1
./bin/example_gemm_add_multiply_dl_fp16 1 1 1
```
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
a_m_k: dim 2, lengths {3840, 4096}, strides {4096, 1}
b_k_n: dim 2, lengths {4096, 4096}, strides {4096, 1}
d0_m_n: dim 2, lengths {3840, 4096}, strides {0, 1}
d1_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
e_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
arg.a_grid_desc_k0_m0_m1_k1_{2048, 3840, 2}
arg.b_grid_desc_k0_n0_n1_k1_{2048, 4096, 2}
arg.e_grid_desc_m_n_{ 3840, 4096}
launch_and_time_kernel: grid_dim {960, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 3.99904 ms, 32.22 TFlops, 31.9913 GB/s, DeviceGemmMultipleD_Dl<256, 128, 128, 16, 2, 4, 4, 1>
```
example/59_grouped_gemm_multi_ABD/CMakeLists.txt
View file @
e6bb1dd7
add_custom_target
(
example_grouped_gemm_xdl_multi_abd
)
add_custom_target
(
example_grouped_gemm_xdl_multi_abd
)
add_example_executable
(
example_grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16 grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16.cpp
)
add_example_executable
(
example_grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16 grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16.cpp
)
add_example_dependencies
(
example_grouped_gemm_xdl example_grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16
)
add_example_dependencies
(
example_grouped_gemm_xdl
_multi_abd
example_grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16
)
add_example_executable
(
example_grouped_gemm_multi_abd_xdl_fixed_nk_bias_bf16_i8 grouped_gemm_multi_abd_xdl_fixed_nk_bias_bf16_i8.cpp
)
add_example_executable
(
example_grouped_gemm_multi_abd_xdl_fixed_nk_bias_bf16_i8 grouped_gemm_multi_abd_xdl_fixed_nk_bias_bf16_i8.cpp
)
add_example_dependencies
(
example_grouped_gemm_xdl example_grouped_gemm_multi_abd_xdl_fixed_nk_bias_bf16_i8
)
add_example_dependencies
(
example_grouped_gemm_xdl
_multi_abd
example_grouped_gemm_multi_abd_xdl_fixed_nk_bias_bf16_i8
)
example/61_contraction_multi_ABD/contraction_multi_ABD_xdl_fp8.cpp
0 → 100644
View file @
e6bb1dd7
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_contraction.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/numeric.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F8
=
ck
::
f8_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
A0DataType
=
F8
;
using
A1DataType
=
F32
;
using
B0DataType
=
F8
;
using
B1DataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
EDataType
=
F16
;
using
ComputeDataType
=
F8
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
2
;
struct
Multiply
{
__host__
__device__
constexpr
void
operator
()(
ck
::
f8_t
&
a
,
const
ck
::
f8_t
&
a0
,
const
float
&
a1
)
const
{
a
=
ck
::
type_convert
<
ck
::
half_t
>
(
ck
::
type_convert
<
float
>
(
a0
)
*
a1
);
}
};
using
AElementOp
=
Multiply
;
using
BElementOp
=
Multiply
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceContractionMultipleABD_Xdl_CShuffle
<
NumDimM
,
NumDimN
,
NumDimK
,
ck
::
Tuple
<
A0DataType
,
A1DataType
>
,
ck
::
Tuple
<
B0DataType
,
B1DataType
>
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<>
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// A0[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a0_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a0_ms_ks_strides
{
128
*
32
*
64
,
32
*
64
,
64
,
1
};
// A1[M1, K1] -> A1[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a1_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a1_ms_ks_strides
{
0
,
64
,
1
,
0
};
// B0[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b0_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b0_ns_ks_strides
{
64
*
32
*
64
,
32
*
64
,
64
,
1
};
// B1[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b1_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b1_ns_ks_strides
{
64
*
32
*
64
,
32
*
64
,
64
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
128
*
32
*
64
,
32
*
64
,
64
,
1
};
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
exit
(
0
);
}
Tensor
<
A0DataType
>
a0_ms_ks
(
a0_ms_ks_lengths
,
a0_ms_ks_strides
);
Tensor
<
A1DataType
>
a1_ms_ks
(
a1_ms_ks_lengths
,
a1_ms_ks_strides
);
Tensor
<
B0DataType
>
b0_ns_ks
(
b0_ns_ks_lengths
,
b0_ns_ks_strides
);
Tensor
<
B1DataType
>
b1_ns_ks
(
b1_ns_ks_lengths
,
b1_ns_ks_strides
);
Tensor
<
EDataType
>
e_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
Tensor
<
EDataType
>
e_ms_ns_device_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
std
::
cout
<<
"a0_ms_ks: "
<<
a0_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a1_ms_ks: "
<<
a1_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_ns_ks: "
<<
b0_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_ns_ks: "
<<
b1_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_ms_ns: "
<<
e_ms_ns_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a0_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
A0DataType
>
{
-
5
,
5
});
a1_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
A1DataType
>
{
-
5
,
5
});
b0_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
5
,
5
});
b1_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
5
,
5
});
break
;
default:
a0_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
a1_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
A1DataType
>
{
0.0
,
1.0
});
b0_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
-
0.5
,
0.5
});
b1_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
break
;
}
DeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
a0_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a1_device_buf
(
sizeof
(
A1DataType
)
*
a1_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
b0_ns_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b1_device_buf
(
sizeof
(
B1DataType
)
*
b1_ns_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_ms_ns_device_result
.
mDesc
.
GetElementSpaceSize
());
a0_device_buf
.
ToDevice
(
a0_ms_ks
.
mData
.
data
());
a1_device_buf
.
ToDevice
(
a1_ms_ks
.
mData
.
data
());
b0_device_buf
.
ToDevice
(
b0_ns_ks
.
mData
.
data
());
b1_device_buf
.
ToDevice
(
b1_ns_ks
.
mData
.
data
());
// set zero
e_device_buf
.
SetZero
();
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
std
::
array
<
const
void
*
,
2
>
{
a0_device_buf
.
GetDeviceBuffer
(),
a1_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
2
>
{
b0_device_buf
.
GetDeviceBuffer
(),
b1_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
0
>
{},
e_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
2
>
{
a0_ms_ks_lengths
,
a1_ms_ks_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
2
>
{
a0_ms_ks_strides
,
a1_ms_ks_strides
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
2
>
{
b0_ns_ks_lengths
,
b1_ns_ks_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
2
>
{
b0_ns_ks_strides
,
b1_ns_ks_strides
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
0
>
{},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
0
>
{},
e_ms_ns_lengths
,
e_ms_ns_strides
,
a_element_op
,
b_element_op
,
PassThrough
{});
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_contraction with the specified compilation parameters does "
"not support this problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
if
(
time_kernel
)
{
ck
::
index_t
M
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
(),
NumDimM
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
N
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
NumDimN
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
K
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
a0_ms_ks_lengths
.
begin
()
+
NumDimM
,
NumDimK
,
1
,
std
::
multiplies
<>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
}
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
Tensor
<
A0DataType
>
a_ms_ks
(
a0_ms_ks_lengths
,
a0_ms_ks_strides
);
for
(
size_t
m0
=
0
;
m0
<
a_ms_ks
.
mDesc
.
GetLengths
()[
0
];
++
m0
)
{
for
(
size_t
m1
=
0
;
m1
<
a_ms_ks
.
mDesc
.
GetLengths
()[
1
];
++
m1
)
{
for
(
size_t
k0
=
0
;
k0
<
a_ms_ks
.
mDesc
.
GetLengths
()[
2
];
++
k0
)
{
for
(
size_t
k1
=
0
;
k1
<
a_ms_ks
.
mDesc
.
GetLengths
()[
3
];
++
k1
)
{
a_element_op
(
a_ms_ks
(
m0
,
m1
,
k0
,
k1
),
a0_ms_ks
(
m0
,
m1
,
k0
,
k1
),
a1_ms_ks
(
m0
,
m1
,
k0
,
k1
));
}
}
}
}
Tensor
<
B0DataType
>
b_ns_ks
(
b0_ns_ks_lengths
,
b0_ns_ks_strides
);
for
(
size_t
n0
=
0
;
n0
<
b_ns_ks
.
mDesc
.
GetLengths
()[
0
];
++
n0
)
{
for
(
size_t
n1
=
0
;
n1
<
b_ns_ks
.
mDesc
.
GetLengths
()[
1
];
++
n1
)
{
for
(
size_t
k0
=
0
;
k0
<
b_ns_ks
.
mDesc
.
GetLengths
()[
2
];
++
k0
)
{
for
(
size_t
k1
=
0
;
k1
<
b_ns_ks
.
mDesc
.
GetLengths
()[
3
];
++
k1
)
{
b_element_op
(
b_ns_ks
(
n0
,
n1
,
k0
,
k1
),
b0_ns_ks
(
n0
,
n1
,
k0
,
k1
),
b1_ns_ks
(
n0
,
n1
,
k0
,
k1
));
}
}
}
}
using
ReferenceOpInstance
=
ck
::
tensor_operation
::
host
::
ReferenceContraction_M2_N2_K2
<
NumDimM
,
NumDimN
,
NumDimK
,
A0DataType
,
B0DataType
,
CShuffleDataType
,
AccDataType
,
ComputeDataType
,
PassThrough
,
PassThrough
>
;
auto
ref_op
=
ReferenceOpInstance
{};
auto
ref_invoker
=
ref_op
.
MakeInvoker
();
Tensor
<
float
>
empty_tensor
(
std
::
vector
<
ck
::
index_t
>
{},
std
::
vector
<
ck
::
index_t
>
{});
auto
ref_argument
=
ref_op
.
MakeArgument
(
a_ms_ks
,
b_ns_ks
,
c_ms_ns_host_result
,
PassThrough
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
e_device_buf
.
FromDevice
(
e_ms_ns_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
e_ms_ns_device_result
,
e_ms_ns_host_result
)
?
0
:
1
;
}
return
0
;
}
example/62_convnd_activ/CMakeLists.txt
View file @
e6bb1dd7
add_subdirectory
(
binary
)
add_subdirectory
(
binary
)
add_subdirectory
(
convinvscale
)
add_subdirectory
(
convscale
)
add_subdirectory
(
convscale_relu
)
add_subdirectory
(
multi_AB
)
add_subdirectory
(
multi_AB
)
add_subdirectory
(
unary
)
add_subdirectory
(
unary
)
...
...
example/62_convnd_activ/convinvscale/CMakeLists.txt
0 → 100644
View file @
e6bb1dd7
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_custom_target
(
example_convnd_activ_xdl_convinvscale
)
add_example_executable
(
example_convnd_fwd_xdl_convinvscale_fp8 convnd_fwd_xdl_convinvscale_fp8.cpp
)
add_example_dependencies
(
example_convnd_activ_xdl_convinvscale example_convnd_fwd_xdl_convinvscale_fp8
)
set
(
target 1
)
endif
()
endforeach
()
\ No newline at end of file
example/62_convnd_activ/convinvscale/convnd_fwd_convinvscale_common.hpp
0 → 100644
View file @
e6bb1dd7
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ConvInvscale
=
ck
::
tensor_operation
::
element_wise
::
ConvInvscale
;
void
print_helper_msg
()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=no, 1=yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
}
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_rtol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1e-6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5e-2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
1e-1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
1.5e-1
;
// 57344 and 49152 are acceptable
}
else
{
return
1e-3
;
}
}
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_atol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1e-6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5e-2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
16.1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
8192.1
;
// 57344 and 49152 are acceptable
}
else
{
return
1e-3
;
}
}
template
<
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetFlops
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
,
const
std
::
size_t
&
ds_size
)
{
// G * N * C * <output spatial lengths product> * (2 * K * <filter spatial lengths product> +
// <number of scale factors>)
ck
::
index_t
G
=
weights_lengths
[
0
];
ck
::
index_t
N
=
output_lengths
[
1
];
ck
::
index_t
K
=
weights_lengths
[
1
];
ck
::
index_t
C
=
weights_lengths
[
2
];
return
G
*
N
*
C
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
output_lengths
),
NumNonSpatialDim
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
*
(
static_cast
<
std
::
size_t
>
(
2
)
*
K
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
weights_lengths
),
NumNonSpatialDim
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
+
ds_size
);
}
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
OutDataType
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
DeviceConvNDFwdInstance
>
bool
run_grouped_conv_fwd
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
)
{
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
CShuffleDataType
>
c
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_device
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_host
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
// random scale values
float
scale_in
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_wei
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_out
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
// initialize out_element_op for each iteration
const
auto
out_element_op
=
OutElementOp
{
scale_in
,
scale_wei
,
scale_out
};
// do Conv
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
);
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
ds_size
=
3
;
// 3 element-wise scale multipliers
std
::
size_t
flop
=
GetFlops
<
NDimSpatial
>
(
e_g_n_k_wos_lengths
,
b_g_k_c_xs_lengths
,
ds_size
);
std
::
size_t
num_btype
=
conv_param
.
GetInputByte
<
InDataType
>
()
+
conv_param
.
GetWeightByte
<
WeiDataType
>
()
+
sizeof
(
float
)
+
sizeof
(
float
)
+
sizeof
(
float
)
+
conv_param
.
GetOutputByte
<
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InDataType
,
WeiDataType
,
CShuffleDataType
,
InElementOp
,
WeiElementOp
,
PassThrough
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
wei
,
c
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
out_host
.
ForEach
([
&
](
auto
&
,
auto
idx
)
{
out_element_op
(
out_host
(
idx
),
c
(
idx
));
});
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
out_device
,
out_host
,
"Error: incorrect results!"
,
get_rtol
<
OutDataType
>
(),
get_atol
<
OutDataType
>
());
}
return
true
;
}
example/62_convnd_activ/convinvscale/convnd_fwd_xdl_convinvscale_fp8.cpp
0 → 100644
View file @
e6bb1dd7
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_convinvscale_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
f8_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
float
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
OutDataType
=
ck
::
f8_t
;
using
AComputeDataType
=
ck
::
f8_t
;
using
BComputeDataType
=
ck
::
f8_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
ConvInvscale
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
DsLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
DsLayout
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
AComputeDataType
,
BComputeDataType
>
;
#include "run_convnd_fwd_convinvscale_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_convnd_fwd_example
(
argc
,
argv
)
?
0
:
1
;
}
Prev
1
2
3
4
5
6
7
8
9
…
16
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment