Unverified Commit e6bb1dd7 authored by Po Yen Chen's avatar Po Yen Chen Committed by GitHub
Browse files

Merge branch 'develop' into feature/check-window-lengths

parents 9d6a3704 ab250afd
resources:
repositories:
- repository: pipelines_repo
type: github
endpoint: ROCm
name: ROCm/ROCm
variables:
- group: common
- template: /.azuredevops/variables-global.yml@pipelines_repo
trigger:
batch: true
branches:
include:
- develop
paths:
exclude:
- .github
- docs
- '.*.y*ml'
- '*.md'
- Jenkinsfile
- LICENSE
pr: none
jobs:
- template: ${{ variables.CI_COMPONENT_PATH }}/composable_kernel.yml@pipelines_repo
* @zjing14 @junliume @illsilin @carlushuang @aosewski @yigex * @junliume @illsilin @carlushuang @aosewski @poyenc @geyyer @bartekxk
# Documentation files # Documentation files
docs/* @ROCm/rocm-documentation docs/ @ROCm/rocm-documentation @junliume @illsilin @carlushuang @aosewski @poyenc @geyyer @bartekxk
*.md @ROCm/rocm-documentation *.md @ROCm/rocm-documentation @junliume @illsilin @carlushuang @aosewski @poyenc @geyyer @bartekxk
*.rst @ROCm/rocm-documentation *.rst @ROCm/rocm-documentation @junliume @illsilin @carlushuang @aosewski @poyenc @geyyer @bartekxk
.readthedocs.yaml @ROCm/rocm-documentation @junliume @illsilin @carlushuang @aosewski @poyenc @geyyer @bartekxk
# Header directory for Doxygen documentation # Header directory for Doxygen documentation
library/include/* @ROCm/rocm-documentation library/include/ @ROCm/rocm-documentation @junliume @illsilin @carlushuang @aosewski @poyenc @geyyer @bartekxk
File mode changed from 100644 to 100755
...@@ -15,4 +15,4 @@ python: ...@@ -15,4 +15,4 @@ python:
build: build:
os: ubuntu-22.04 os: ubuntu-22.04
tools: tools:
python: "3.8" python: "3.10"
# Changelog for Composable Kernel # Changelog for Composable Kernel
Full documentation for Composable Kernel is not yet available. Documentation for Composable Kernel available at [https://rocm.docs.amd.com/projects/composable_kernel/en/latest/](https://rocm.docs.amd.com/projects/composable_kernel/en/latest/).
## CK for ROCm 6.1.0 ## Composable Kernel 1.1.0 for ROCm 6.1.0
### Additions ### Additions
* Added generic instances for GEMM XDL operations (#1161) * Added generic instances for GEMM XDL operations (#1161)
* Added gamma and beta parameters for the layernorm and groupnorm bwd operations (#1133) * Added gamma and beta parameters for the layernorm and groupnorm bwd operations (#1133)
* Introduced wrapper sublibrary (limited functionality). (#1071, #1098, #1108, #1126) * Introduced wrapper sublibrary (limited functionality). (#1071, #1098, #1108, #1126)
* Added an option to vary the number of warm-up cycles and iterations for ckProfiler (#1124) * Added an option to vary the number of warm-up cycles and iterations for ckProfiler (#1124)
### Optimizations ### Optimizations
* New performance optimizations for GEMM operations on MI200 and MI300 architectures (#1135) * New performance optimizations for GEMM operations on MI200 and MI300 architectures (#1135)
### Fixes ### Fixes
* Reduced the build time for most GPU architectures (#1084) * Reduced the build time for most GPU architectures (#1084)
* Fixed some conversion issues for fp8 data type (#1099) * Fixed some conversion issues for fp8 data type (#1099)
### Changes ### Changes
None None
### Known issues ### Known issues
None None
## CK for ROCm 6.0.0 ## Composable Kernel 1.1.0 for ROCm 6.0.0
### Fixes ### Fixes
* Fixed a hazard associated with inline v_dot (#808)
* Fixed two bugs in grouped convolution backward data without K padding (#848 #876) * Fixed a hazard associated with inline v_dot (#808)
* Fixed two bugs in grouped convolution backward data without K padding (#848 #876)
### Optimizations ### Optimizations
None None
### Additions ### Additions
* Added an image to a column kernel (#867) * Added an image to a column kernel (#867)
* Added a column to an image kernel (#930) * Added a column to an image kernel (#930)
* Support for 3D grouped convolution on RDNA 3 GPUs (#935, #950, #985) * Support for 3D grouped convolution on RDNA 3 GPUs (#935, #950, #985)
...@@ -42,18 +50,22 @@ None ...@@ -42,18 +50,22 @@ None
* Support for Batched GEMM DL (#732) * Support for Batched GEMM DL (#732)
### Changes ### Changes
* Changed the grouped convolution API to maintain consistency with other convolution kernels (#817)
## CK 0.2.0 for ROCm 5.7.0 * Changed the grouped convolution API to maintain consistency with other convolution kernels (#817)
## Composable Kernel 0.2.0 for ROCm 5.7.0
### Fixes ### Fixes
* Fixed a bug in 6-dimensional kernels (#555) * Fixed a bug in 6-dimensional kernels (#555)
* Fixed a test case failure with grouped convolution backward weight (#524) * Fixed a test case failure with grouped convolution backward weight (#524)
### Optimizations ### Optimizations
* Improved the performance of the normalization kernel * Improved the performance of the normalization kernel
### Additions ### Additions
* New CMake flags: * New CMake flags:
* "DL_KERNELS"-* Must be set to "ON" in order to build the GEMM DL and batched_gemm_multi_d_dl instances * "DL_KERNELS"-* Must be set to "ON" in order to build the GEMM DL and batched_gemm_multi_d_dl instances
* "DTYPES" -- Can be set to any subset of "fp64;fp32;fp16;fp8;bf16;int8" to build an instance of the specified data types * "DTYPES" -- Can be set to any subset of "fp64;fp32;fp16;fp8;bf16;int8" to build an instance of the specified data types
...@@ -71,4 +83,5 @@ None ...@@ -71,4 +83,5 @@ None
* MaxPool and AvgPool forward (#815); MaxPool backward (#750) * MaxPool and AvgPool forward (#815); MaxPool backward (#750)
### Changes ### Changes
None None
...@@ -23,10 +23,10 @@ endif() ...@@ -23,10 +23,10 @@ endif()
set(version 1.1.0) set(version 1.1.0)
# Check support for CUDA/HIP in Cmake # Check support for CUDA/HIP in Cmake
project(composable_kernel VERSION ${version} LANGUAGES CXX) project(composable_kernel VERSION ${version} LANGUAGES CXX HIP)
include(CTest) include(CTest)
find_package(Python3 3.8 COMPONENTS Interpreter REQUIRED) find_package(Python3 3.6 COMPONENTS Interpreter REQUIRED)
list(APPEND CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake") list(APPEND CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake")
...@@ -111,13 +111,21 @@ message("checking which targets are supported") ...@@ -111,13 +111,21 @@ message("checking which targets are supported")
#These targets will be filtered and only supported ones will be used #These targets will be filtered and only supported ones will be used
#Setting GPU_TARGETS on command line will override this list #Setting GPU_TARGETS on command line will override this list
if(NOT PROFILER_ONLY) if(NOT PROFILER_ONLY)
if(NOT ENABLE_ASAN_PACKAGING)
#build CK for all supported targets
rocm_check_target_ids(DEFAULT_GPU_TARGETS rocm_check_target_ids(DEFAULT_GPU_TARGETS
TARGETS "gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx1100;gfx1101;gfx1102") TARGETS "gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201")
else()
#build CK only for xnack-supported targets
rocm_check_target_ids(DEFAULT_GPU_TARGETS
TARGETS "gfx908:xnack+;gfx90a:xnack+;gfx940:xnack+;gfx941:xnack+;gfx942:xnack+")
set(GPU_TARGETS "${DEFAULT_GPU_TARGETS}" CACHE STRING " " FORCE)
endif()
else() else()
add_definitions(-DPROFILER_ONLY) add_definitions(-DPROFILER_ONLY)
set(GPU_TARGETS "" CACHE STRING "" FORCE) set(GPU_TARGETS "" CACHE STRING "" FORCE)
if(GPU_TARGETS) if(GPU_TARGETS)
message(FATAL_ERROR "For PROFILE_ONLY build, please do not set GPU_TARGETS, use GPU_ARCH = gfx90, gfx94, gfx10, or gfx11") message(FATAL_ERROR "For PROFILE_ONLY build, please do not set GPU_TARGETS, use GPU_ARCH = gfx90, gfx94, gfx10, gfx11 or gfx12")
endif() endif()
if(GPU_ARCH MATCHES "gfx90") if(GPU_ARCH MATCHES "gfx90")
rocm_check_target_ids(DEFAULT_GPU_TARGETS TARGETS "gfx908;gfx90a") rocm_check_target_ids(DEFAULT_GPU_TARGETS TARGETS "gfx908;gfx90a")
...@@ -127,20 +135,20 @@ else() ...@@ -127,20 +135,20 @@ else()
rocm_check_target_ids(DEFAULT_GPU_TARGETS TARGETS "gfx1030") rocm_check_target_ids(DEFAULT_GPU_TARGETS TARGETS "gfx1030")
elseif(GPU_ARCH MATCHES "gfx11") elseif(GPU_ARCH MATCHES "gfx11")
rocm_check_target_ids(DEFAULT_GPU_TARGETS TARGETS "gfx1100;gfx1101;gfx1102") rocm_check_target_ids(DEFAULT_GPU_TARGETS TARGETS "gfx1100;gfx1101;gfx1102")
elseif(GPU_ARCH MATCHES "gfx12")
rocm_check_target_ids(DEFAULT_GPU_TARGETS TARGETS "gfx1200;gfx1201")
else() else()
message(FATAL_ERROR "For PROFILE_ONLY build, please specify GPU_ARCH as gfx90, gfx94, gfx10, or gfx11") message(FATAL_ERROR "For PROFILE_ONLY build, please specify GPU_ARCH as gfx90, gfx94, gfx10, gfx11 or gfx12")
endif() endif()
set(GPU_TARGETS "${DEFAULT_GPU_TARGETS}" CACHE STRING " " FORCE) set(GPU_TARGETS "${DEFAULT_GPU_TARGETS}" CACHE STRING " " FORCE)
endif() endif()
message("Supported GPU_TARGETS= ${DEFAULT_GPU_TARGETS}") message("Supported GPU_TARGETS= ${DEFAULT_GPU_TARGETS}")
set(AMDGPU_TARGETS "${DEFAULT_GPU_TARGETS}" CACHE STRING " " FORCE)
if(GPU_TARGETS) if(GPU_TARGETS)
message("Building CK for the following targets: ${GPU_TARGETS}") message("Building CK for the following targets: ${GPU_TARGETS}")
else() else()
message("Building CK for the following targets: ${AMDGPU_TARGETS}") message("Building CK for the default targets: ${DEFAULT_GPU_TARGETS}")
endif() endif()
if (GPU_TARGETS) if (GPU_TARGETS)
...@@ -148,7 +156,7 @@ if (GPU_TARGETS) ...@@ -148,7 +156,7 @@ if (GPU_TARGETS)
add_definitions(-DCK_USE_XDL) add_definitions(-DCK_USE_XDL)
set(CK_USE_XDL "ON") set(CK_USE_XDL "ON")
endif() endif()
if (GPU_TARGETS MATCHES "gfx11") if (GPU_TARGETS MATCHES "gfx11" OR GPU_TARGETS MATCHES "gfx12")
add_definitions(-DCK_USE_WMMA) add_definitions(-DCK_USE_WMMA)
set(CK_USE_WMMA "ON") set(CK_USE_WMMA "ON")
endif() endif()
...@@ -202,7 +210,7 @@ endif() ...@@ -202,7 +210,7 @@ endif()
option(USE_BITINT_EXTENSION_INT4 "Whether to enable clang's BitInt extension to provide int4 data type." OFF) option(USE_BITINT_EXTENSION_INT4 "Whether to enable clang's BitInt extension to provide int4 data type." OFF)
option(USE_OPT_NAVI3X "Whether to enable LDS cumode and Wavefront32 mode for NAVI3X silicons." OFF) option(USE_OPT_GFX11 "Whether to enable LDS cumode and Wavefront32 mode for GFX11 silicons." OFF)
if(USE_BITINT_EXTENSION_INT4) if(USE_BITINT_EXTENSION_INT4)
add_compile_definitions(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4) add_compile_definitions(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4)
...@@ -210,10 +218,10 @@ if(USE_BITINT_EXTENSION_INT4) ...@@ -210,10 +218,10 @@ if(USE_BITINT_EXTENSION_INT4)
message("CK compiled with USE_BITINT_EXTENSION_INT4 set to ${USE_BITINT_EXTENSION_INT4}") message("CK compiled with USE_BITINT_EXTENSION_INT4 set to ${USE_BITINT_EXTENSION_INT4}")
endif() endif()
if(USE_OPT_NAVI3X) if(USE_OPT_GFX11)
add_compile_options(-mcumode) add_compile_options(-mcumode)
add_compile_options(-mno-wavefrontsize64) add_compile_options(-mno-wavefrontsize64)
message("CK compiled with USE_OPT_NAVI3X set to ${USE_OPT_NAVI3X}") message("CK compiled with USE_OPT_GFX11 set to ${USE_OPT_GFX11}")
endif() endif()
## Threads ## Threads
...@@ -225,7 +233,13 @@ link_libraries(Threads::Threads) ...@@ -225,7 +233,13 @@ link_libraries(Threads::Threads)
set(CMAKE_CXX_STANDARD 17) set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON) set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF) set(CMAKE_CXX_EXTENSIONS OFF)
message("CMAKE_CXX_COMPILER_ID: ${CMAKE_CXX_COMPILER_ID}") message("CMAKE_CXX_COMPILER: ${CMAKE_CXX_COMPILER}")
## HIP
set(CMAKE_HIP_PLATFORM amd)
set(CMAKE_HIP_COMPILER ${CMAKE_CXX_COMPILER})
set(CMAKE_HIP_EXTENSIONS ON)
message("CMAKE_HIP_COMPILER: ${CMAKE_HIP_COMPILER}")
## OpenMP ## OpenMP
if(CMAKE_CXX_COMPILER_ID MATCHES "Clang") if(CMAKE_CXX_COMPILER_ID MATCHES "Clang")
...@@ -436,6 +450,13 @@ if(BUILD_DEV) ...@@ -436,6 +450,13 @@ if(BUILD_DEV)
endif() endif()
message("CMAKE_CXX_FLAGS: ${CMAKE_CXX_FLAGS}") message("CMAKE_CXX_FLAGS: ${CMAKE_CXX_FLAGS}")
if("${CMAKE_CXX_COMPILER_ID}" MATCHES "Clang")
add_compile_options(-fcolor-diagnostics)
endif()
if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU" AND CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 4.9)
add_compile_options(-fdiagnostics-color=always)
endif()
add_custom_target(check COMMAND ${CMAKE_CTEST_COMMAND} --output-on-failure -C ${CMAKE_CFG_INTDIR}) add_custom_target(check COMMAND ${CMAKE_CTEST_COMMAND} --output-on-failure -C ${CMAKE_CFG_INTDIR})
file(GLOB_RECURSE INSTANCE_FILES "${PROJECT_SOURCE_DIR}/*/device_*_instance.cpp") file(GLOB_RECURSE INSTANCE_FILES "${PROJECT_SOURCE_DIR}/*/device_*_instance.cpp")
......
...@@ -23,11 +23,11 @@ RUN if [ "$ROCMVERSION" != "6.2" ]; then \ ...@@ -23,11 +23,11 @@ RUN if [ "$ROCMVERSION" != "6.2" ]; then \
wget -qO - http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add - && \ wget -qO - http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add - && \
sh -c "echo deb [arch=amd64 signed-by=/etc/apt/trusted.gpg.d/rocm-keyring.gpg] $DEB_ROCM_REPO focal main > /etc/apt/sources.list.d/rocm.list" && \ sh -c "echo deb [arch=amd64 signed-by=/etc/apt/trusted.gpg.d/rocm-keyring.gpg] $DEB_ROCM_REPO focal main > /etc/apt/sources.list.d/rocm.list" && \
sh -c 'echo deb [arch=amd64 signed-by=/etc/apt/trusted.gpg.d/rocm-keyring.gpg] https://repo.radeon.com/amdgpu/$ROCMVERSION/ubuntu focal main > /etc/apt/sources.list.d/amdgpu.list'; \ sh -c 'echo deb [arch=amd64 signed-by=/etc/apt/trusted.gpg.d/rocm-keyring.gpg] https://repo.radeon.com/amdgpu/$ROCMVERSION/ubuntu focal main > /etc/apt/sources.list.d/amdgpu.list'; \
elif [ "$ROCMVERSION" = "6.2" ] && [ "$compiler_version" = "rc2" ]; then \ elif [ "$ROCMVERSION" = "6.2" ] && [ "$compiler_version" = "rc3" ]; then \
sh -c "wget http://artifactory-cdn.amd.com/artifactory/list/amdgpu-deb/amdgpu-install-internal_6.1-20.04-1_all.deb --no-check-certificate" && \ sh -c "wget http://artifactory-cdn.amd.com/artifactory/list/amdgpu-deb/amdgpu-install-internal_6.2-20.04-1_all.deb --no-check-certificate" && \
apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install dialog && DEBIAN_FRONTEND=noninteractive apt-get install ./amdgpu-install-internal_6.1-20.04-1_all.deb && \ apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install dialog libpopt0 rsync && DEBIAN_FRONTEND=noninteractive apt-get install ./amdgpu-install-internal_6.2-20.04-1_all.deb && \
sh -c 'echo deb [arch=amd64 trusted=yes] http://compute-artifactory.amd.com/artifactory/list/rocm-release-archive-20.04-deb/ 6.1 rel-48 > /etc/apt/sources.list.d/rocm-build.list' && \ sh -c 'echo deb [arch=amd64 trusted=yes] http://compute-artifactory.amd.com/artifactory/list/rocm-release-archive-20.04-deb/ 6.2 rel-45 > /etc/apt/sources.list.d/rocm-build.list' && \
amdgpu-repo --amdgpu-build=1736298; \ amdgpu-repo --amdgpu-build=2003709; \
fi fi
RUN sh -c "echo deb http://mirrors.kernel.org/ubuntu focal main universe | tee -a /etc/apt/sources.list" RUN sh -c "echo deb http://mirrors.kernel.org/ubuntu focal main universe | tee -a /etc/apt/sources.list"
......
...@@ -315,6 +315,10 @@ def buildHipClangJob(Map conf=[:]){ ...@@ -315,6 +315,10 @@ def buildHipClangJob(Map conf=[:]){
if (params.COMPILER_VERSION == "amd-staging" || params.COMPILER_VERSION == "amd-mainline-open" || params.COMPILER_COMMIT != ""){ if (params.COMPILER_VERSION == "amd-staging" || params.COMPILER_VERSION == "amd-mainline-open" || params.COMPILER_COMMIT != ""){
dockerOpts = dockerOpts + " --env HIP_CLANG_PATH='/llvm-project/build/bin' " dockerOpts = dockerOpts + " --env HIP_CLANG_PATH='/llvm-project/build/bin' "
} }
def video_id = sh(returnStdout: true, script: 'getent group video | cut -d: -f3')
def render_id = sh(returnStdout: true, script: 'getent group render | cut -d: -f3')
dockerOpts = dockerOpts + " --group-add=${video_id} --group-add=${render_id} "
echo "Docker flags: ${dockerOpts}"
def variant = env.STAGE_NAME def variant = env.STAGE_NAME
...@@ -366,6 +370,11 @@ def runCKProfiler(Map conf=[:]){ ...@@ -366,6 +370,11 @@ def runCKProfiler(Map conf=[:]){
if (conf.get("enforce_xnack_on", false)) { if (conf.get("enforce_xnack_on", false)) {
dockerOpts = dockerOpts + " --env HSA_XNACK=1 " dockerOpts = dockerOpts + " --env HSA_XNACK=1 "
} }
def video_id = sh(returnStdout: true, script: 'getent group video | cut -d: -f3')
def render_id = sh(returnStdout: true, script: 'getent group render | cut -d: -f3')
dockerOpts = dockerOpts + " --group-add=${video_id} --group-add=${render_id} "
echo "Docker flags: ${dockerOpts}"
def dockerArgs = "--build-arg PREFIX=${prefixpath} --build-arg compiler_version='${params.COMPILER_VERSION}' --build-arg compiler_commit='${params.COMPILER_COMMIT}' --build-arg ROCMVERSION='${params.ROCMVERSION}' " def dockerArgs = "--build-arg PREFIX=${prefixpath} --build-arg compiler_version='${params.COMPILER_VERSION}' --build-arg compiler_commit='${params.COMPILER_COMMIT}' --build-arg ROCMVERSION='${params.ROCMVERSION}' "
def variant = env.STAGE_NAME def variant = env.STAGE_NAME
...@@ -493,6 +502,7 @@ def Build_CK(Map conf=[:]){ ...@@ -493,6 +502,7 @@ def Build_CK(Map conf=[:]){
def variant = env.STAGE_NAME def variant = env.STAGE_NAME
def retimage def retimage
gitStatusWrapper(credentialsId: "${env.status_wrapper_creds}", gitHubContext: "Jenkins - ${variant}", account: 'ROCm', repo: 'composable_kernel') { gitStatusWrapper(credentialsId: "${env.status_wrapper_creds}", gitHubContext: "Jenkins - ${variant}", account: 'ROCm', repo: 'composable_kernel') {
try { try {
(retimage, image) = getDockerImage(conf) (retimage, image) = getDockerImage(conf)
...@@ -515,38 +525,33 @@ def Build_CK(Map conf=[:]){ ...@@ -515,38 +525,33 @@ def Build_CK(Map conf=[:]){
withDockerContainer(image: image, args: dockerOpts + ' -v=/var/jenkins/:/var/jenkins') { withDockerContainer(image: image, args: dockerOpts + ' -v=/var/jenkins/:/var/jenkins') {
timeout(time: 24, unit: 'HOURS') timeout(time: 24, unit: 'HOURS')
{ {
//check whether running on Navi or MI300 node //check whether to run performance tests on this node
def navi_node = 0 def do_perf_tests = 0
def mi300_node = 0
sh 'rocminfo | tee rocminfo.log' sh 'rocminfo | tee rocminfo.log'
if ( runShell('grep -n "gfx1030" rocminfo.log') || runShell('grep -n "gfx1101" rocminfo.log') ){ if ( runShell('grep -n "gfx1030" rocminfo.log') || runShell('grep -n "gfx1101" rocminfo.log') || runShell('grep -n "gfx942" rocminfo.log') ){
navi_node = 1 do_perf_tests = 1
echo "This is a Navi node" echo "Stash profiler and run performance tests"
}
if ( runShell('grep -n "gfx942" rocminfo.log') ){
mi300_node = 1
echo "This is MI300 node"
} }
cmake_build(conf) cmake_build(conf)
dir("build"){ dir("build"){
//run tests and examples //run tests and examples
sh 'make -j check' sh 'make -j check'
if (params.RUN_PERFORMANCE_TESTS && navi_node == 0 && mi300_node == 0 ){ if (params.RUN_PERFORMANCE_TESTS && do_perf_tests == 0 ){
//we only need the ckProfiler to run the performance tests, so we pack and stash it //we only need the ckProfiler to run the performance tests, so we pack and stash it
//do not stash profiler on Navi or MI300 nodes //do not stash profiler on nodes where we don't need to run performance tests
sh 'tar -zcvf ckProfiler.tar.gz bin/ckProfiler' sh 'tar -zcvf ckProfiler.tar.gz bin/ckProfiler'
stash name: "ckProfiler.tar.gz" stash name: "ckProfiler.tar.gz"
} }
if (params.RUN_FULL_QA && mi300_node == 0 ){ if (params.RUN_FULL_QA && do_perf_tests == 0 ){
// build deb packages for all MI100/200/300 targets and prepare to export // build deb packages for all gfx9 targets and prepare to export
sh 'make -j package' sh 'make -j package'
archiveArtifacts artifacts: 'composablekernel-ckprofiler_*.deb' archiveArtifacts artifacts: 'composablekernel-ckprofiler_*.deb'
archiveArtifacts artifacts: 'composablekernel-tests_*.deb' archiveArtifacts artifacts: 'composablekernel-tests_*.deb'
sh 'mv composablekernel-ckprofiler_*.deb ckprofiler_0.2.0_amd64.deb' sh 'mv composablekernel-ckprofiler_*.deb ckprofiler_0.2.0_amd64.deb'
stash name: "ckprofiler_0.2.0_amd64.deb" stash name: "ckprofiler_0.2.0_amd64.deb"
} }
} }
if (params.hipTensor_test && navi_node == 0 ){ if (params.hipTensor_test && do_perf_tests == 0 ){
//build and test hipTensor //build and test hipTensor
sh """#!/bin/bash sh """#!/bin/bash
rm -rf "${params.hipTensor_branch}".zip rm -rf "${params.hipTensor_branch}".zip
...@@ -657,10 +662,11 @@ def process_results(Map conf=[:]){ ...@@ -657,10 +662,11 @@ def process_results(Map conf=[:]){
} }
//launch develop branch daily at 23:00 UT in FULL_QA mode and at 19:00 UT with latest staging compiler version //launch develop branch daily at 23:00 UT in FULL_QA mode and at 19:00 UT with latest staging compiler version
CRON_SETTINGS = BRANCH_NAME == "develop" ? '''0 23 * * * % RUN_FULL_QA=true;ROCMVERSION=6.1;COMPILER_VERSION= CRON_SETTINGS = BRANCH_NAME == "develop" ? '''0 23 * * * % RUN_FULL_QA=true;ROCMVERSION=6.1; RUN_CK_TILE_TESTS=true
0 21 * * * % ROCMVERSION=6.1;COMPILER_VERSION=;COMPILER_COMMIT= 0 21 * * * % ROCMVERSION=6.1;hipTensor_test=true
0 19 * * * % BUILD_DOCKER=true;DL_KERNELS=true;COMPILER_VERSION=amd-staging;COMPILER_COMMIT=;USE_SCCACHE=false 0 19 * * * % BUILD_DOCKER=true;DL_KERNELS=true;COMPILER_VERSION=amd-staging;COMPILER_COMMIT=;USE_SCCACHE=false
0 17 * * * % BUILD_DOCKER=true;DL_KERNELS=true;COMPILER_VERSION=amd-mainline-open;COMPILER_COMMIT=;USE_SCCACHE=false''' : "" 0 17 * * * % BUILD_DOCKER=true;DL_KERNELS=true;COMPILER_VERSION=amd-mainline-open;COMPILER_COMMIT=;USE_SCCACHE=false
0 15 * * * % BUILD_INSTANCES_ONLY=true;RUN_CODEGEN_TESTS=false;RUN_PERFORMANCE_TESTS=false;USE_SCCACHE=false''' : ""
pipeline { pipeline {
agent none agent none
...@@ -705,8 +711,8 @@ pipeline { ...@@ -705,8 +711,8 @@ pipeline {
description: "Select whether to build DL kernels (default: OFF)") description: "Select whether to build DL kernels (default: OFF)")
booleanParam( booleanParam(
name: "hipTensor_test", name: "hipTensor_test",
defaultValue: true, defaultValue: false,
description: "Use the CK build to verify hipTensor build and tests (default: ON)") description: "Use the CK build to verify hipTensor build and tests (default: OFF)")
string( string(
name: 'hipTensor_branch', name: 'hipTensor_branch',
defaultValue: 'mainline', defaultValue: 'mainline',
...@@ -727,6 +733,14 @@ pipeline { ...@@ -727,6 +733,14 @@ pipeline {
name: "RUN_CODEGEN_TESTS", name: "RUN_CODEGEN_TESTS",
defaultValue: true, defaultValue: true,
description: "Run the codegen tests (default: ON)") description: "Run the codegen tests (default: ON)")
booleanParam(
name: "RUN_CK_TILE_TESTS",
defaultValue: false,
description: "Run the ck_tile tests (default: OFF)")
booleanParam(
name: "BUILD_INSTANCES_ONLY",
defaultValue: false,
description: "Test building instances for various architectures simultaneously (default: OFF)")
} }
environment{ environment{
dbuser = "${dbuser}" dbuser = "${dbuser}"
...@@ -809,22 +823,67 @@ pipeline { ...@@ -809,22 +823,67 @@ pipeline {
{ {
parallel parallel
{ {
stage("Run Codegen Tests on MI100/MI200") stage("Run Codegen Tests on gfx90a")
{ {
when { when {
beforeAgent true beforeAgent true
expression { params.RUN_CODEGEN_TESTS.toBoolean() } expression { params.RUN_CODEGEN_TESTS.toBoolean() }
} }
options { retry(2) } agent{ label rocmnode("gfx90a")}
agent{ label rocmnode("gfx908 || gfx90a")}
environment{ environment{
setup_args = "NO_CK_BUILD" setup_args = "NO_CK_BUILD"
execute_args = """ cd ../codegen && rm -rf build && mkdir build && cd build && \ execute_args = """ cd ../codegen && rm -rf build && mkdir build && cd build && \
cmake -D CMAKE_PREFIX_PATH=/opt/rocm \ cmake -D CMAKE_PREFIX_PATH=/opt/rocm \
-D CMAKE_CXX_COMPILER=/opt/rocm/llvm/bin/clang++ \ -D CMAKE_CXX_COMPILER=/opt/rocm/llvm/bin/clang++ \
-D CMAKE_BUILD_TYPE=Release \ -D CMAKE_BUILD_TYPE=Release \
-D GPU_TARGETS="gfx908;gfx90a" \ -D GPU_TARGETS="gfx90a" \
-DCMAKE_CXX_FLAGS=" -Xclang -mllvm -Xclang -enable-post-misched=0 -O3 " .. && make -j check""" -DCMAKE_CXX_FLAGS=" -O3 " .. && make -j check"""
}
steps{
buildHipClangJobAndReboot(setup_args:setup_args, no_reboot:true, build_type: 'Release', execute_cmd: execute_args)
cleanWs()
}
}
}
}
stage("Run CK_TILE Tests")
{
parallel
{
stage("Run CK_TILE Tests on gfx90a")
{
when {
beforeAgent true
expression { params.RUN_CK_TILE_TESTS.toBoolean() }
}
agent{ label rocmnode("gfx90a") }
environment{
setup_args = "NO_CK_BUILD"
execute_args = """ ../script/cmake-ck-dev.sh ../ gfx90a && \
make -j64 tile_example_fmha_fwd tile_example_fmha_bwd && \
cd ../ &&
example/ck_tile/01_fmha/script/smoke_test_fwd.sh && \
example/ck_tile/01_fmha/script/smoke_test_bwd.sh"""
}
steps{
buildHipClangJobAndReboot(setup_args:setup_args, no_reboot:true, build_type: 'Release', execute_cmd: execute_args)
cleanWs()
}
}
stage("Run CK_TILE Tests on gfx942")
{
when {
beforeAgent true
expression { params.RUN_CK_TILE_TESTS.toBoolean() }
}
agent{ label rocmnode("gfx942") }
environment{
setup_args = "NO_CK_BUILD"
execute_args = """ ../script/cmake-ck-dev.sh ../ gfx942 && \
make -j64 tile_example_fmha_fwd tile_example_fmha_bwd && \
cd ../ &&
example/ck_tile/01_fmha/script/smoke_test_fwd.sh && \
example/ck_tile/01_fmha/script/smoke_test_bwd.sh"""
} }
steps{ steps{
buildHipClangJobAndReboot(setup_args:setup_args, no_reboot:true, build_type: 'Release', execute_cmd: execute_args) buildHipClangJobAndReboot(setup_args:setup_args, no_reboot:true, build_type: 'Release', execute_cmd: execute_args)
...@@ -837,30 +896,30 @@ pipeline { ...@@ -837,30 +896,30 @@ pipeline {
{ {
parallel parallel
{ {
stage("Build CK and run Tests on MI100/MI200/MI300") stage("Build CK for all gfx9 targets")
{ {
when { when {
beforeAgent true beforeAgent true
expression { params.RUN_FULL_QA.toBoolean() } expression { params.RUN_FULL_QA.toBoolean() }
} }
agent{ label rocmnode("gfx908 || gfx90a") } agent{ label rocmnode("gfx90a") }
environment{ environment{
setup_args = """ -DCMAKE_INSTALL_PREFIX=../install \ setup_args = """ -DCMAKE_INSTALL_PREFIX=../install \
-DGPU_TARGETS="gfx908;gfx90a;gfx940;gfx941;gfx942" \ -DGPU_TARGETS="gfx908;gfx90a;gfx940;gfx941;gfx942" \
-DCMAKE_EXE_LINKER_FLAGS=" -L ${env.WORKSPACE}/script -T hip_fatbin_insert " \ -DCMAKE_EXE_LINKER_FLAGS=" -L ${env.WORKSPACE}/script -T hip_fatbin_insert " \
-DCMAKE_CXX_FLAGS=" -Xclang -mllvm -Xclang -enable-post-misched=0 -O3 " """ -DCMAKE_CXX_FLAGS=" -O3 " """
execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && \ execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && \
cmake -DCMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" \ cmake -DCMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" \
-DGPU_TARGETS="gfx908;gfx90a;gfx940;gfx941;gfx942" \ -DGPU_TARGETS="gfx908;gfx90a;gfx940;gfx941;gfx942" \
-DCMAKE_CXX_COMPILER="${build_compiler()}" \ -DCMAKE_CXX_COMPILER="${build_compiler()}" \
-DCMAKE_CXX_FLAGS=" -Xclang -mllvm -Xclang -enable-post-misched=0 -O3 " .. && make -j """ -DCMAKE_CXX_FLAGS=" -O3 " .. && make -j """
} }
steps{ steps{
Build_CK_and_Reboot(setup_args: setup_args, config_targets: "install", no_reboot:true, build_type: 'Release', execute_cmd: execute_args, prefixpath: '/usr/local') Build_CK_and_Reboot(setup_args: setup_args, config_targets: "install", no_reboot:true, build_type: 'Release', execute_cmd: execute_args, prefixpath: '/usr/local')
cleanWs() cleanWs()
} }
} }
stage("Build CK and run Tests on MI300") stage("Build CK and run Tests on gfx942")
{ {
when { when {
beforeAgent true beforeAgent true
...@@ -868,45 +927,64 @@ pipeline { ...@@ -868,45 +927,64 @@ pipeline {
} }
agent{ label rocmnode("gfx942") } agent{ label rocmnode("gfx942") }
environment{ environment{
setup_args = """ -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx942" -DCMAKE_CXX_FLAGS=" -Xclang -mllvm -Xclang -enable-post-misched=0 -O3 " """ setup_args = """ -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx942" -DCMAKE_CXX_FLAGS=" -O3 " """
execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && \ execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && \
cmake -DCMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" \ cmake -DCMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" \
-DGPU_TARGETS="gfx942" \ -DGPU_TARGETS="gfx942" \
-DCMAKE_CXX_COMPILER="${build_compiler()}" \ -DCMAKE_CXX_COMPILER="${build_compiler()}" \
-DCMAKE_CXX_FLAGS=" -Xclang -mllvm -Xclang -enable-post-misched=0 -O3 " .. && make -j """ -DCMAKE_CXX_FLAGS=" -O3 " .. && make -j """
} }
steps{ steps{
Build_CK_and_Reboot(setup_args: setup_args, config_targets: "install", no_reboot:true, build_type: 'Release', execute_cmd: execute_args, prefixpath: '/usr/local') Build_CK_and_Reboot(setup_args: setup_args, config_targets: "install", no_reboot:true, build_type: 'Release', execute_cmd: execute_args, prefixpath: '/usr/local')
cleanWs() cleanWs()
} }
} }
stage("Build CK and run Tests on MI100/MI200") stage("Build CK and run Tests on gfx90a")
{ {
when { when {
beforeAgent true beforeAgent true
expression { !params.RUN_FULL_QA.toBoolean() } expression { !params.RUN_FULL_QA.toBoolean() && !params.BUILD_INSTANCES_ONLY.toBoolean() }
} }
agent{ label rocmnode("gfx908 || gfx90a") } agent{ label rocmnode("gfx90a") }
environment{ environment{
setup_args = """ -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a" -DCMAKE_CXX_FLAGS=" -Xclang -mllvm -Xclang -enable-post-misched=0 -O3 " """ setup_args = """ -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx1100;gfx90a" -DCMAKE_CXX_FLAGS=" -O3 " """
execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && \ execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && \
cmake -DCMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" \ cmake -DCMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" \
-DGPU_TARGETS="gfx908;gfx90a" \ -DGPU_TARGETS="gfx1100;gfx90a" \
-DCMAKE_CXX_COMPILER="${build_compiler()}" \ -DCMAKE_CXX_COMPILER="${build_compiler()}" \
-DCMAKE_CXX_FLAGS=" -Xclang -mllvm -Xclang -enable-post-misched=0 -O3 " .. && make -j """ -DCMAKE_CXX_FLAGS=" -O3 " .. && make -j """
} }
steps{ steps{
Build_CK_and_Reboot(setup_args: setup_args, config_targets: "install", no_reboot:true, build_type: 'Release', execute_cmd: execute_args, prefixpath: '/usr/local') Build_CK_and_Reboot(setup_args: setup_args, config_targets: "install", no_reboot:true, build_type: 'Release', execute_cmd: execute_args, prefixpath: '/usr/local')
cleanWs() cleanWs()
} }
} }
stage("Build CK and run Tests on Navi21") stage("Build CK instances for different targets")
{ {
when { when {
beforeAgent true beforeAgent true
expression { !params.RUN_FULL_QA.toBoolean() } expression { params.BUILD_INSTANCES_ONLY.toBoolean() && !params.RUN_FULL_QA.toBoolean() }
} }
agent{ label rocmnode("navi21") } agent{ label rocmnode("gfx90a") }
environment{
execute_args = """ cmake -D CMAKE_PREFIX_PATH=/opt/rocm \
-D CMAKE_CXX_COMPILER="${build_compiler()}" \
-D CMAKE_BUILD_TYPE=Release \
-D INSTANCES_ONLY=ON \
-DCMAKE_CXX_FLAGS=" -O3 " .. && make -j64 """
}
steps{
buildHipClangJobAndReboot(setup_cmd: "", build_cmd: "", no_reboot:true, build_type: 'Release', execute_cmd: execute_args)
cleanWs()
}
}
stage("Build CK and run Tests on gfx1030")
{
when {
beforeAgent true
expression { !params.RUN_FULL_QA.toBoolean() && !params.BUILD_INSTANCES_ONLY.toBoolean() }
}
agent{ label rocmnode("gfx1030") }
environment{ environment{
setup_args = """ -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx1030" -DDL_KERNELS=ON -DCMAKE_CXX_FLAGS=" -O3 " """ setup_args = """ -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx1030" -DDL_KERNELS=ON -DCMAKE_CXX_FLAGS=" -O3 " """
execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && \ execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && \
...@@ -920,13 +998,13 @@ pipeline { ...@@ -920,13 +998,13 @@ pipeline {
cleanWs() cleanWs()
} }
} }
stage("Build CK and run Tests on Navi32") stage("Build CK and run Tests on gfx1101")
{ {
when { when {
beforeAgent true beforeAgent true
expression { !params.RUN_FULL_QA.toBoolean() } expression { !params.RUN_FULL_QA.toBoolean() && !params.BUILD_INSTANCES_ONLY.toBoolean() }
} }
agent{ label rocmnode("navi32") } agent{ label rocmnode("gfx1101") }
environment{ environment{
setup_args = """ -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx1101" -DDL_KERNELS=ON -DCMAKE_CXX_FLAGS=" -O3 " """ setup_args = """ -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx1101" -DDL_KERNELS=ON -DCMAKE_CXX_FLAGS=" -O3 " """
execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && \ execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && \
...@@ -947,29 +1025,13 @@ pipeline { ...@@ -947,29 +1025,13 @@ pipeline {
{ {
parallel parallel
{ {
stage("Run ckProfiler: gfx90*")
{
when {
beforeAgent true
expression { !params.RUN_FULL_QA.toBoolean() && params.RUN_PERFORMANCE_TESTS.toBoolean() }
}
options { retry(2) }
agent{ label rocmnode("gfx908 || gfx90a")}
environment{
setup_args = """ -DGPU_TARGETS="gfx908;gfx90a" -DBUILD_DEV=On """
}
steps{
runPerfTest(setup_args:setup_args, config_targets: "ckProfiler", no_reboot:true, build_type: 'Release')
cleanWs()
}
}
stage("Run ckProfiler: gfx90a") stage("Run ckProfiler: gfx90a")
{ {
when { when {
beforeAgent true beforeAgent true
expression { params.RUN_FULL_QA.toBoolean() && params.RUN_PERFORMANCE_TESTS.toBoolean() } expression { params.RUN_PERFORMANCE_TESTS.toBoolean() }
} }
options { retry(2) } options { retry(1) }
agent{ label rocmnode("gfx90a")} agent{ label rocmnode("gfx90a")}
environment{ environment{
setup_args = """ -DGPU_TARGETS="gfx90a" -DBUILD_DEV=On """ setup_args = """ -DGPU_TARGETS="gfx90a" -DBUILD_DEV=On """
......
...@@ -4,4 +4,22 @@ if(GPU_TARGETS MATCHES "gfx9") ...@@ -4,4 +4,22 @@ if(GPU_TARGETS MATCHES "gfx9")
add_executable(client_grouped_conv1d_fwd grouped_conv1d_fwd.cpp) add_executable(client_grouped_conv1d_fwd grouped_conv1d_fwd.cpp)
target_link_libraries(client_grouped_conv1d_fwd PRIVATE composable_kernel::device_conv_operations) target_link_libraries(client_grouped_conv1d_fwd PRIVATE composable_kernel::device_conv_operations)
endif()
\ No newline at end of file if((DTYPES MATCHES "fp8") OR NOT DEFINED DTYPES)
add_executable(client_grouped_conv3d_fwd_fp8 grouped_conv3d_fwd_fp8.cpp)
target_link_libraries(client_grouped_conv3d_fwd_fp8 PRIVATE composable_kernel::device_conv_operations)
endif()
if((DTYPES MATCHES "bf8") OR NOT DEFINED DTYPES)
add_executable(client_grouped_conv3d_fwd_bf8 grouped_conv3d_fwd_bf8.cpp)
target_link_libraries(client_grouped_conv3d_fwd_bf8 PRIVATE composable_kernel::device_conv_operations)
endif()
if((DTYPES MATCHES "fp8" AND DTYPES MATCHES "bf8") OR NOT DEFINED DTYPES)
add_executable(client_grouped_conv3d_fwd_fp8_bf8 grouped_conv3d_fwd_fp8_bf8.cpp)
target_link_libraries(client_grouped_conv3d_fwd_fp8_bf8 PRIVATE composable_kernel::device_conv_operations)
add_executable(client_grouped_conv3d_fwd_bf8_fp8 grouped_conv3d_fwd_bf8_fp8.cpp)
target_link_libraries(client_grouped_conv3d_fwd_bf8_fp8 PRIVATE composable_kernel::device_conv_operations)
endif()
endif()
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <string>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
template <ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetFlops(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& output_lengths,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& weights_lengths)
{
// 2 * G * N * K * C * <output spatial lengths product> * <filter spatial lengths product>
ck::index_t G = weights_lengths[0];
ck::index_t N = output_lengths[1];
ck::index_t K = weights_lengths[1];
ck::index_t C = weights_lengths[2];
return static_cast<std::size_t>(2) * G * N * K * C *
std::accumulate(std::next(std::begin(output_lengths), NumNonSpatialDim),
std::end(output_lengths),
static_cast<std::size_t>(1),
std::multiplies<>()) *
std::accumulate(std::next(std::begin(weights_lengths), NumNonSpatialDim),
std::end(weights_lengths),
static_cast<std::size_t>(1),
std::multiplies<>());
}
template <typename InDataType, ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetInputByte(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& input_lengths)
{
// sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
return sizeof(InDataType) * std::accumulate(std::begin(input_lengths),
std::end(input_lengths),
static_cast<std::size_t>(1),
std::multiplies<>());
}
template <typename WeiDataType, ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetWeightByte(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& weights_lengths)
{
// sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
return sizeof(WeiDataType) * std::accumulate(std::begin(weights_lengths),
std::end(weights_lengths),
static_cast<std::size_t>(1),
std::multiplies<>());
}
template <typename OutDataType, ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetOutputByte(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& output_lengths)
{
// sizeof(OutDataType) * (G * N * K * <output spatial lengths product>);
return sizeof(OutDataType) * std::accumulate(std::begin(output_lengths),
std::end(output_lengths),
static_cast<std::size_t>(1),
std::multiplies<std::size_t>());
}
template <ck::index_t NumDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InLayout,
typename WeiLayout,
typename OutLayout,
ck::index_t NumNonSpatialDim = 3,
typename AComputeType = InDataType,
typename BComputeType = AComputeType>
bool run_grouped_conv_fwd(std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> in_lengths,
std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> wei_lengths,
std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> out_lengths)
{
std::size_t in_mem_size = GetInputByte<InDataType, NumDimSpatial>(in_lengths);
std::size_t wei_mem_size = GetWeightByte<WeiDataType, NumDimSpatial>(wei_lengths);
std::size_t out_mem_size = GetOutputByte<OutDataType, NumDimSpatial>(out_lengths);
SimpleDeviceMem in(in_mem_size);
SimpleDeviceMem wei(wei_mem_size);
SimpleDeviceMem out(out_mem_size);
std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> in_strides;
std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> wei_strides;
std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> out_strides;
in_strides.fill(0);
wei_strides.fill(0);
out_strides.fill(0);
in_strides.back() = 1;
wei_strides.back() = 1;
out_strides.back() = 1;
std::partial_sum(rbegin(in_lengths),
std::prev(rend(in_lengths)),
std::next(rbegin(in_strides)),
std::multiplies<>{});
std::partial_sum(rbegin(wei_lengths),
std::prev(rend(wei_lengths)),
std::next(rbegin(wei_strides)),
std::multiplies<>{});
std::partial_sum(rbegin(out_lengths),
std::prev(rend(out_lengths)),
std::next(rbegin(out_strides)),
std::multiplies<>{});
// transpose NDHWGC/KZYXGC/NDHWGK to GNDHWC/GKZYXC/GNDHWK to GNCDHW/GKCZYX/GNKDHW
std::rotate(std::next(rbegin(in_lengths)), std::next(rbegin(in_lengths), 2), rend(in_lengths));
std::rotate(rbegin(in_lengths),
std::next(rbegin(in_lengths)),
std::next(rbegin(in_lengths), NumDimSpatial + 1));
std::rotate(std::next(rbegin(in_strides)), std::next(rbegin(in_strides), 2), rend(in_strides));
std::rotate(rbegin(in_strides),
std::next(rbegin(in_strides)),
std::next(rbegin(in_strides), NumDimSpatial + 1));
std::rotate(rbegin(wei_lengths),
std::next(rbegin(wei_lengths)),
std::next(rbegin(wei_lengths), NumDimSpatial + 1));
std::rotate(rbegin(wei_strides),
std::next(rbegin(wei_strides)),
std::next(rbegin(wei_strides), NumDimSpatial + 1));
std::rotate(
std::next(rbegin(out_lengths)), std::next(rbegin(out_lengths), 2), rend(out_lengths));
std::rotate(rbegin(out_lengths),
std::next(rbegin(out_lengths)),
std::next(rbegin(out_lengths), NumDimSpatial + 1));
std::rotate(
std::next(rbegin(out_strides)), std::next(rbegin(out_strides), 2), rend(out_strides));
std::rotate(rbegin(out_strides),
std::next(rbegin(out_strides)),
std::next(rbegin(out_strides), NumDimSpatial + 1));
std::array<ck::index_t, NumDimSpatial> conv_filter_strides;
std::array<ck::index_t, NumDimSpatial> conv_filter_dilations;
std::array<ck::index_t, NumDimSpatial> input_left_pads;
std::array<ck::index_t, NumDimSpatial> input_right_pads;
conv_filter_strides.fill(1);
conv_filter_dilations.fill(1);
input_left_pads.fill(1);
input_right_pads.fill(1);
std::size_t flop = GetFlops<NumDimSpatial>(out_lengths, wei_lengths);
std::size_t num_bytes = in_mem_size + wei_mem_size + out_mem_size;
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
PassThrough,
PassThrough,
PassThrough,
AComputeType,
BComputeType>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
float best_tflops = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
std::array<const void*, 0>{},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
wei_lengths,
wei_strides,
std::array<std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>, 0>{{}},
std::array<std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>, 0>{{}},
out_lengths,
out_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_id = i;
best_op_name = op_name;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
best_tflops = tflops;
}
}
else
{
std::cerr << op_name << " does not support this problem" << std::endl;
}
}
if(best_op_id < 0)
{
std::cerr << "no suitable instance" << std::endl;
return false;
}
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(
in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
std::array<const void*, 0>{},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
wei_lengths,
wei_strides,
std::array<std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>, 0>{{}},
std::array<std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>, 0>{{}},
out_lengths,
out_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return true;
}
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib> #include "common.hpp"
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/ck.hpp" #include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using InDataType = ck::half_t; using InDataType = ck::half_t;
using WeiDataType = ck::half_t; using WeiDataType = ck::half_t;
...@@ -31,199 +24,16 @@ static constexpr ck::index_t X = 3; ...@@ -31,199 +24,16 @@ static constexpr ck::index_t X = 3;
static constexpr ck::index_t Wi = 28; static constexpr ck::index_t Wi = 28;
static constexpr ck::index_t Wo = 28; static constexpr ck::index_t Wo = 28;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main() int main()
{ {
std::array<ck::index_t, NumDimSpatial + 3> in_lengths{G, N, Wi, C}; return run_grouped_conv_fwd<NumDimSpatial,
std::array<ck::index_t, NumDimSpatial + 3> in_strides{0, 0, 0, 1}; InDataType,
WeiDataType,
std::array<ck::index_t, NumDimSpatial + 3> wei_lengths{G, K, X, C}; OutDataType,
std::array<ck::index_t, NumDimSpatial + 3> wei_strides{0, 0, 0, 1}; InLayout,
WeiLayout,
std::array<ck::index_t, NumDimSpatial + 3> out_lengths{G, N, Wo, K}; OutLayout,
std::array<ck::index_t, NumDimSpatial + 3> out_strides{0, 0, 0, 1}; 3>({N, Wi, G, C}, {G, K, X, C}, {N, Wo, G, K})
? EXIT_SUCCESS
std::partial_sum(rbegin(in_lengths), : EXIT_FAILURE;
std::prev(rend(in_lengths)),
std::next(rbegin(in_strides)),
std::multiplies<>{});
std::partial_sum(rbegin(wei_lengths),
std::prev(rend(wei_lengths)),
std::next(rbegin(wei_strides)),
std::multiplies<>{});
std::partial_sum(rbegin(out_lengths),
std::prev(rend(out_lengths)),
std::next(rbegin(out_strides)),
std::multiplies<>{});
// transpose GNWC/GKXC/GNWK to GNCW/GKCX/GNCW
std::rotate(rbegin(in_lengths),
std::next(rbegin(in_lengths)),
std::next(rbegin(in_lengths), NumDimSpatial + 1));
std::rotate(rbegin(in_strides),
std::next(rbegin(in_strides)),
std::next(rbegin(in_strides), NumDimSpatial + 1));
std::rotate(rbegin(wei_lengths),
std::next(rbegin(wei_lengths)),
std::next(rbegin(wei_lengths), NumDimSpatial + 1));
std::rotate(rbegin(wei_strides),
std::next(rbegin(wei_strides)),
std::next(rbegin(wei_strides), NumDimSpatial + 1));
std::rotate(rbegin(out_lengths),
std::next(rbegin(out_lengths)),
std::next(rbegin(out_lengths), NumDimSpatial + 1));
std::rotate(rbegin(out_strides),
std::next(rbegin(out_strides)),
std::next(rbegin(out_strides), NumDimSpatial + 1));
std::array<ck::index_t, NumDimSpatial> filter_strides{1};
std::array<ck::index_t, NumDimSpatial> filter_dilations{1};
std::array<ck::index_t, NumDimSpatial> input_left_pads{1};
std::array<ck::index_t, NumDimSpatial> input_right_pads{1};
SimpleDeviceMem in(sizeof(InDataType) * G * N * Wi * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * G * N * Wo * K);
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
PassThrough,
PassThrough,
PassThrough>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
float best_tflops = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
{},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
wei_lengths,
wei_strides,
{},
{},
out_lengths,
out_strides,
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = std::size_t(2) * G * N * K * C * Wo * X;
std::size_t num_bytes = sizeof(InDataType) * G * N * Wi * C +
sizeof(WeiDataType) * G * K * X * C +
sizeof(OutDataType) * G * N * Wo * K;
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_id = i;
best_op_name = op_name;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
best_tflops = tflops;
}
}
else
{
std::cerr << op_name << " does not support this problem" << std::endl;
}
}
if(best_op_id < 0)
{
std::cerr << "no suitable instance" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
{},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
wei_lengths,
wei_strides,
{},
{},
out_lengths,
out_strides,
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
} }
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib> #include "common.hpp"
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/ck.hpp" #include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using InDataType = ck::half_t; using InDataType = ck::half_t;
using WeiDataType = ck::half_t; using WeiDataType = ck::half_t;
...@@ -34,167 +27,16 @@ static constexpr ck::index_t Wi = 28; // input W ...@@ -34,167 +27,16 @@ static constexpr ck::index_t Wi = 28; // input W
static constexpr ck::index_t Ho = 28; // output H static constexpr ck::index_t Ho = 28; // output H
static constexpr ck::index_t Wo = 28; // output W static constexpr ck::index_t Wo = 28; // output W
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main() int main()
{ {
// We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space return run_grouped_conv_fwd<NumDimSpatial,
// However, CK's API only accept length and stride with order of GNCHW/GKCYX/GNCHW InDataType,
// Hence, we need to adjust the order of stride WeiDataType,
std::array<ck::index_t, 5> in_lengths{G, N, C, Hi, Wi}; OutDataType,
std::array<ck::index_t, 5> in_strides{C, Hi * Wi * G * C, 1, Wi * G * C, G * C}; InLayout,
std::array<ck::index_t, 5> wei_lengths{G, K, C, Y, X}; WeiLayout,
std::array<ck::index_t, 5> wei_strides{K * Y * X * C, Y * X * C, 1, X * C, C}; OutLayout,
std::array<ck::index_t, 5> out_lengths{G, N, K, Ho, Wo}; 3>({N, Hi, Wi, G, C}, {G, K, Y, X, C}, {N, Ho, Wo, G, K})
std::array<ck::index_t, 5> out_strides{C, Ho * Wo * G * C, 1, Wo * G * C, G * C}; ? EXIT_SUCCESS
: EXIT_FAILURE;
std::array<ck::index_t, NumDimSpatial> filter_strides{1, 1};
std::array<ck::index_t, NumDimSpatial> filter_dilations{1, 1};
std::array<ck::index_t, NumDimSpatial> input_left_pads{1, 1};
std::array<ck::index_t, NumDimSpatial> input_right_pads{1, 1};
SimpleDeviceMem in(sizeof(InDataType) * N * Hi * Wi * G * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Y * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * N * Ho * Wo * G * K);
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
PassThrough,
PassThrough,
PassThrough>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
float best_tflops = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
{},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
wei_lengths,
wei_strides,
{},
{},
out_lengths,
out_strides,
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = std::size_t(2) * G * N * K * C * Ho * Wo * Y * X;
std::size_t num_bytes = sizeof(InDataType) * N * Hi * Wi * G * C +
sizeof(WeiDataType) * G * K * Y * X * C +
sizeof(OutDataType) * N * Ho * Wo * G * K;
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_id = i;
best_op_name = op_name;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
best_tflops = tflops;
}
}
else
{
std::cerr << op_name << " does not support this problem" << std::endl;
}
}
if(best_op_id < 0)
{
std::cerr << "no suitable instance" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
{},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
wei_lengths,
wei_strides,
{},
{},
out_lengths,
out_strides,
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
} }
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib> #include <cstdlib>
#include <iomanip> #include <iomanip>
...@@ -160,6 +160,10 @@ bool run_grouped_conv_bwd_weight( ...@@ -160,6 +160,10 @@ bool run_grouped_conv_bwd_weight(
auto invoker_ptr = op_ptr->MakeInvokerPointer(); auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString(); std::string op_name = op_ptr->GetTypeString();
const std::size_t workspace_sz = op_ptr->GetWorkSpaceSize(argument_ptr.get());
SimpleDeviceMem workspace_dev(workspace_sz);
op_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace_dev.GetDeviceBuffer());
if(op_ptr->IsSupportedArgument(argument_ptr.get())) if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{ {
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
......
...@@ -7,22 +7,6 @@ endif() ...@@ -7,22 +7,6 @@ endif()
if((DTYPES MATCHES "fp8") OR NOT DEFINED DTYPES) if((DTYPES MATCHES "fp8") OR NOT DEFINED DTYPES)
add_executable(client_conv3d_fwd_fp16_comp_fp8 conv3d_fwd_fp16_comp_fp8.cpp) add_executable(client_conv3d_fwd_fp16_comp_fp8 conv3d_fwd_fp16_comp_fp8.cpp)
target_link_libraries(client_conv3d_fwd_fp16_comp_fp8 PRIVATE composable_kernel::device_conv_operations) target_link_libraries(client_conv3d_fwd_fp16_comp_fp8 PRIVATE composable_kernel::device_conv_operations)
add_executable(client_conv3d_fwd_fp8 conv3d_fwd_fp8.cpp)
target_link_libraries(client_conv3d_fwd_fp8 PRIVATE composable_kernel::device_conv_operations)
endif()
if((DTYPES MATCHES "bf8") OR NOT DEFINED DTYPES)
add_executable(client_conv3d_fwd_bf8 conv3d_fwd_bf8.cpp)
target_link_libraries(client_conv3d_fwd_bf8 PRIVATE composable_kernel::device_conv_operations)
endif()
if((DTYPES MATCHES "fp8" AND DTYPES MATCHES "bf8") OR NOT DEFINED DTYPES)
add_executable(client_conv3d_fwd_fp8_bf8 conv3d_fwd_fp8_bf8.cpp)
target_link_libraries(client_conv3d_fwd_fp8_bf8 PRIVATE composable_kernel::device_conv_operations)
add_executable(client_conv3d_fwd_bf8_fp8 conv3d_fwd_bf8_fp8.cpp)
target_link_libraries(client_conv3d_fwd_bf8_fp8 PRIVATE composable_kernel::device_conv_operations)
endif() endif()
if((DTYPES MATCHES "fp32") OR NOT DEFINED DTYPES) if((DTYPES MATCHES "fp32") OR NOT DEFINED DTYPES)
......
...@@ -35,6 +35,30 @@ target_link_libraries(client_grouped_convnd_fwd_scaleadd_ab_int8 PRIVATE composa ...@@ -35,6 +35,30 @@ target_link_libraries(client_grouped_convnd_fwd_scaleadd_ab_int8 PRIVATE composa
add_executable(client_grouped_convnd_fwd_bilinear_residual_fp16 add_executable(client_grouped_convnd_fwd_bilinear_residual_fp16
grouped_convnd_fwd_bilinear/grouped_conv_fwd_bilinear_residual_fp16.cpp) grouped_convnd_fwd_bilinear/grouped_conv_fwd_bilinear_residual_fp16.cpp)
target_link_libraries(client_grouped_convnd_fwd_bilinear_residual_fp16 PRIVATE composable_kernel::device_conv_operations) target_link_libraries(client_grouped_convnd_fwd_bilinear_residual_fp16 PRIVATE composable_kernel::device_conv_operations)
# Fwd convinvscale
add_executable(client_conv3d_fwd_convinvscale_fp8
grouped_convnd_fwd_convinvscale/conv3d_fwd_convinvscale_fp8.cpp)
target_link_libraries(client_conv3d_fwd_convinvscale_fp8 PRIVATE composable_kernel::device_conv_operations)
# Fwd convscale + ReLU
add_executable(client_conv3d_fwd_convscale_relu_fp8
grouped_convnd_fwd_convscale_relu/conv3d_fwd_convscale_relu_fp8.cpp)
target_link_libraries(client_conv3d_fwd_convscale_relu_fp8 PRIVATE composable_kernel::device_conv_operations)
# Fwd convscale
add_executable(client_conv3d_fwd_convscale_fp8
grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8.cpp)
target_link_libraries(client_conv3d_fwd_convscale_fp8 PRIVATE composable_kernel::device_conv_operations)
add_executable(client_conv3d_fwd_convscale_bf8
grouped_convnd_fwd_convscale/conv3d_fwd_convscale_bf8.cpp)
target_link_libraries(client_conv3d_fwd_convscale_bf8 PRIVATE composable_kernel::device_conv_operations)
add_executable(client_conv3d_fwd_convscale_fp8_bf8
grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8_bf8.cpp)
target_link_libraries(client_conv3d_fwd_convscale_fp8_bf8 PRIVATE composable_kernel::device_conv_operations)
add_executable(client_conv3d_fwd_convscale_bf8_fp8
grouped_convnd_fwd_convscale/conv3d_fwd_convscale_bf8_fp8.cpp)
target_link_libraries(client_conv3d_fwd_convscale_bf8_fp8 PRIVATE composable_kernel::device_conv_operations)
# Bwd data bilinear # Bwd data bilinear
add_executable(client_grouped_convnd_bwd_data_bilinear_residual_fp16 add_executable(client_grouped_convnd_bwd_data_bilinear_residual_fp16
grouped_convnd_bwd_data_bilinear/grouped_conv_bwd_data_bilinear_residual_fp16.cpp) grouped_convnd_bwd_data_bilinear/grouped_conv_bwd_data_bilinear_residual_fp16.cpp)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <string>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_convinvscale.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ConvInvscale = ck::tensor_operation::element_wise::ConvInvscale;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
template <ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetFlops(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& output_lengths,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& weights_lengths,
const std::size_t& ds_size)
{
// G * N * C * <output spatial lengths product> * (2 * K * <filter spatial lengths product> +
// <number of scale factors>)
ck::index_t G = weights_lengths[0];
ck::index_t N = output_lengths[1];
ck::index_t K = weights_lengths[1];
ck::index_t C = weights_lengths[2];
return G * N * C *
std::accumulate(std::next(std::begin(output_lengths), NumNonSpatialDim),
std::end(output_lengths),
static_cast<std::size_t>(1),
std::multiplies<>()) *
(static_cast<std::size_t>(2) * K *
std::accumulate(std::next(std::begin(weights_lengths), NumNonSpatialDim),
std::end(weights_lengths),
static_cast<std::size_t>(1),
std::multiplies<>()) +
ds_size);
}
template <typename InDataType, ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetInputByte(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& input_lengths)
{
// sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
return sizeof(InDataType) * std::accumulate(std::begin(input_lengths),
std::end(input_lengths),
static_cast<std::size_t>(1),
std::multiplies<>());
}
template <typename WeiDataType, ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetWeightByte(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& weights_lengths)
{
// sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
return sizeof(WeiDataType) * std::accumulate(std::begin(weights_lengths),
std::end(weights_lengths),
static_cast<std::size_t>(1),
std::multiplies<>());
}
template <typename OutDataType, ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetOutputByte(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& output_lengths)
{
// sizeof(OutDataType) * (G * N * K * <output spatial lengths product>);
return sizeof(OutDataType) * std::accumulate(std::begin(output_lengths),
std::end(output_lengths),
static_cast<std::size_t>(1),
std::multiplies<std::size_t>());
}
template <ck::index_t NumDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InLayout,
typename WeiLayout,
typename OutLayout,
ck::index_t NumNonSpatialDim = 3,
typename AComputeType = InDataType,
typename BComputeType = AComputeType>
bool run_grouped_conv_fwd_convinvscale(
std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> in_lengths,
std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> wei_lengths,
std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> out_lengths)
{
std::size_t in_mem_size = GetInputByte<InDataType, NumDimSpatial>(in_lengths);
std::size_t wei_mem_size = GetWeightByte<WeiDataType, NumDimSpatial>(wei_lengths);
std::size_t out_mem_size = GetOutputByte<OutDataType, NumDimSpatial>(out_lengths);
SimpleDeviceMem in(in_mem_size);
SimpleDeviceMem wei(wei_mem_size);
SimpleDeviceMem out(out_mem_size);
float scale_in = float(std::rand()) / float(RAND_MAX);
float scale_wei = float(std::rand()) / float(RAND_MAX);
float scale_out = float(std::rand()) / float(RAND_MAX);
std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> in_strides;
std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> wei_strides;
std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> out_strides;
in_strides.fill(0);
wei_strides.fill(0);
out_strides.fill(0);
in_strides.back() = 1;
wei_strides.back() = 1;
out_strides.back() = 1;
std::partial_sum(rbegin(in_lengths),
std::prev(rend(in_lengths)),
std::next(rbegin(in_strides)),
std::multiplies<>{});
std::partial_sum(rbegin(wei_lengths),
std::prev(rend(wei_lengths)),
std::next(rbegin(wei_strides)),
std::multiplies<>{});
std::partial_sum(rbegin(out_lengths),
std::prev(rend(out_lengths)),
std::next(rbegin(out_strides)),
std::multiplies<>{});
// transpose NDHWGC/KZYXGC/NDHWGK to GNDHWC/GKZYXC/GNDHWK to GNCDHW/GKCZYX/GNKDHW
std::rotate(std::next(rbegin(in_lengths)), std::next(rbegin(in_lengths), 2), rend(in_lengths));
std::rotate(rbegin(in_lengths),
std::next(rbegin(in_lengths)),
std::next(rbegin(in_lengths), NumDimSpatial + 1));
std::rotate(std::next(rbegin(in_strides)), std::next(rbegin(in_strides), 2), rend(in_strides));
std::rotate(rbegin(in_strides),
std::next(rbegin(in_strides)),
std::next(rbegin(in_strides), NumDimSpatial + 1));
std::rotate(rbegin(wei_lengths),
std::next(rbegin(wei_lengths)),
std::next(rbegin(wei_lengths), NumDimSpatial + 1));
std::rotate(rbegin(wei_strides),
std::next(rbegin(wei_strides)),
std::next(rbegin(wei_strides), NumDimSpatial + 1));
std::rotate(
std::next(rbegin(out_lengths)), std::next(rbegin(out_lengths), 2), rend(out_lengths));
std::rotate(rbegin(out_lengths),
std::next(rbegin(out_lengths)),
std::next(rbegin(out_lengths), NumDimSpatial + 1));
std::rotate(
std::next(rbegin(out_strides)), std::next(rbegin(out_strides), 2), rend(out_strides));
std::rotate(rbegin(out_strides),
std::next(rbegin(out_strides)),
std::next(rbegin(out_strides), NumDimSpatial + 1));
std::array<ck::index_t, NumDimSpatial> conv_filter_strides;
std::array<ck::index_t, NumDimSpatial> conv_filter_dilations;
std::array<ck::index_t, NumDimSpatial> input_left_pads;
std::array<ck::index_t, NumDimSpatial> input_right_pads;
conv_filter_strides.fill(1);
conv_filter_dilations.fill(1);
input_left_pads.fill(1);
input_right_pads.fill(1);
std::size_t ds_size = 3; // 3 element-wise scale multipliers
std::size_t flop = GetFlops<NumDimSpatial>(out_lengths, wei_lengths, ds_size);
std::size_t num_bytes =
in_mem_size + wei_mem_size + sizeof(float) + sizeof(float) + sizeof(float) + out_mem_size;
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
PassThrough,
PassThrough,
ConvInvscale,
AComputeType,
BComputeType>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
float best_tflops = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
std::array<const void*, 0>{},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
wei_lengths,
wei_strides,
std::array<std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>, 0>{},
std::array<std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>, 0>{},
out_lengths,
out_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
ConvInvscale{scale_in, scale_wei, scale_out});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_id = i;
best_op_name = op_name;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
best_tflops = tflops;
}
}
else
{
std::cerr << op_name << " does not support this problem" << std::endl;
}
}
if(best_op_id < 0)
{
std::cerr << "no suitable instance" << std::endl;
return false;
}
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(
in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
std::array<const void*, 0>{},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
wei_lengths,
wei_strides,
std::array<std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>, 0>{},
std::array<std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>, 0>{},
out_lengths,
out_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
ConvInvscale{scale_in, scale_wei, scale_out});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return true;
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment