Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
e599063f
Commit
e599063f
authored
May 10, 2024
by
illsilin
Browse files
sync from the public repo
parents
5dbbf5d6
566b6480
Changes
850
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1734 additions
and
46 deletions
+1734
-46
client_example/30_gemm_bf16Aint8B/gemm_xdl_multiply_bf16_i8.cpp
..._example/30_gemm_bf16Aint8B/gemm_xdl_multiply_bf16_i8.cpp
+220
-0
client_example/31_grouped_gemm_bf16Aint8B/CMakeLists.txt
client_example/31_grouped_gemm_bf16Aint8B/CMakeLists.txt
+16
-0
client_example/31_grouped_gemm_bf16Aint8B/grouped_gemm_bias_fastgelu_xdl_bf16_i8.cpp
...emm_bf16Aint8B/grouped_gemm_bias_fastgelu_xdl_bf16_i8.cpp
+286
-0
client_example/31_grouped_gemm_bf16Aint8B/grouped_gemm_fastgelu_xdl_bf16_i8.cpp
...ped_gemm_bf16Aint8B/grouped_gemm_fastgelu_xdl_bf16_i8.cpp
+284
-0
client_example/31_grouped_gemm_bf16Aint8B/grouped_gemm_multiply_bias_fastgelu_xdl_bf16_i8.cpp
...int8B/grouped_gemm_multiply_bias_fastgelu_xdl_bf16_i8.cpp
+286
-0
client_example/31_grouped_gemm_bf16Aint8B/grouped_gemm_multiply_xdl_bf16_i8.cpp
...ped_gemm_bf16Aint8B/grouped_gemm_multiply_xdl_bf16_i8.cpp
+281
-0
client_example/31_grouped_gemm_bf16Aint8B/grouped_gemm_xdl_bf16_i8.cpp
...e/31_grouped_gemm_bf16Aint8B/grouped_gemm_xdl_bf16_i8.cpp
+287
-0
client_example/CMakeLists.txt
client_example/CMakeLists.txt
+19
-1
cmake/EnableCompilerWarnings.cmake
cmake/EnableCompilerWarnings.cmake
+1
-0
docs/conceptual/what-is-ck.rst
docs/conceptual/what-is-ck.rst
+2
-2
docs/index.rst
docs/index.rst
+13
-14
docs/install/dockerhub.rst
docs/install/dockerhub.rst
+0
-0
docs/license.md
docs/license.md
+0
-2
docs/license.rst
docs/license.rst
+11
-0
docs/reference/API_Reference_Guide.rst
docs/reference/API_Reference_Guide.rst
+0
-0
docs/reference/Supported_Primitives_Guide.rst
docs/reference/Supported_Primitives_Guide.rst
+0
-0
docs/reference/wrapper.rst
docs/reference/wrapper.rst
+0
-0
docs/sphinx/_toc.yml.in
docs/sphinx/_toc.yml.in
+24
-9
docs/sphinx/requirements.in
docs/sphinx/requirements.in
+1
-1
docs/sphinx/requirements.txt
docs/sphinx/requirements.txt
+3
-17
No files found.
client_example/30_gemm_bf16Aint8B/gemm_xdl_multiply_bf16_i8.cpp
0 → 100644
View file @
e599063f
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iomanip>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_multi_abd.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
I8
=
int8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
A0DataType
=
BF16
;
using
AsDataType
=
ck
::
Tuple
<
A0DataType
>
;
using
B0DataType
=
I8
;
using
B1DataType
=
BF16
;
using
BsDataType
=
ck
::
Tuple
<
B0DataType
>
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<
B1DataType
>
;
using
EDataType
=
BF16
;
using
A0Layout
=
Row
;
using
AsLayout
=
ck
::
Tuple
<
A0Layout
>
;
using
B0Layout
=
Row
;
using
B1Layout
=
B0Layout
;
using
BsLayout
=
ck
::
Tuple
<
B0Layout
>
;
using
D0Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
B1Layout
>
;
using
ELayout
=
Row
;
using
Multiply
=
ck
::
tensor_operation
::
element_wise
::
Multiply
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Multiply
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
// GEMM shape
ck
::
index_t
M
=
4096
;
ck
::
index_t
N
=
768
;
ck
::
index_t
K
=
6144
;
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
K
;
ck
::
index_t
StrideE
=
N
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
7
)
{
M
=
std
::
stoi
(
argv
[
1
]);
N
=
std
::
stoi
(
argv
[
2
]);
K
=
std
::
stoi
(
argv
[
3
]);
StrideA
=
std
::
stoi
(
argv
[
4
]);
StrideB
=
std
::
stoi
(
argv
[
5
]);
StrideE
=
std
::
stoi
(
argv
[
6
]);
}
else
{
printf
(
"arg1 to 7: M, N, K, StrideA, StrideB, StrideE
\n
"
);
exit
(
0
);
}
auto
f_matrix_space_size
=
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
if
constexpr
(
std
::
is_same
<
Layout
,
Row
>::
value
)
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
else
{
return
(
nCol
-
1
)
*
stride
+
nRow
;
}
};
SimpleDeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
f_matrix_space_size
(
M
,
K
,
StrideA
,
A0Layout
{}));
SimpleDeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
f_matrix_space_size
(
K
,
N
,
StrideB
,
B0Layout
{}));
SimpleDeviceMem
b1_device_buf
(
sizeof
(
B1DataType
)
*
f_matrix_space_size
(
K
,
N
,
0
,
B1Layout
{}));
SimpleDeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideE
,
ELayout
{}));
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
constexpr
ck
::
index_t
NumATensor
=
1
;
constexpr
ck
::
index_t
NumBTensor
=
1
;
constexpr
ck
::
index_t
NumDTensor
=
1
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleABD
<
AsLayout
,
BsLayout
,
DsLayout
,
Row
,
AsDataType
,
BsDataType
,
DsDataType
,
BF16
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
std
::
array
<
const
void
*
,
NumATensor
>
{
a0_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumBTensor
>
{
b0_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumDTensor
>
{
b1_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
std
::
array
<
ck
::
index_t
,
NumATensor
>
{
StrideA
},
std
::
array
<
ck
::
index_t
,
NumBTensor
>
{
StrideB
},
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
0
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
0
;
}
client_example/31_grouped_gemm_bf16Aint8B/CMakeLists.txt
0 → 100644
View file @
e599063f
if
(
GPU_TARGETS MATCHES
"gfx9"
AND
((
DTYPES MATCHES
"int8"
AND DTYPES MATCHES
"bf16"
)
OR NOT DEFINED DTYPES
))
add_executable
(
client_grouped_gemm_bias_fastgelu_bf16_i8_bf16 grouped_gemm_bias_fastgelu_xdl_bf16_i8.cpp
)
target_link_libraries
(
client_grouped_gemm_bias_fastgelu_bf16_i8_bf16 PRIVATE composable_kernel::device_gemm_operations
)
add_executable
(
client_grouped_gemm_fastgelu_bf16_i8_bf16 grouped_gemm_fastgelu_xdl_bf16_i8.cpp
)
target_link_libraries
(
client_grouped_gemm_fastgelu_bf16_i8_bf16 PRIVATE composable_kernel::device_gemm_operations
)
add_executable
(
client_grouped_gemm_multiply_bf16_i8_bf16 grouped_gemm_multiply_xdl_bf16_i8.cpp
)
target_link_libraries
(
client_grouped_gemm_multiply_bf16_i8_bf16 PRIVATE composable_kernel::device_gemm_operations
)
add_executable
(
client_grouped_gemm_multiply_bias_fastgelu_bf16_i8_bf16 grouped_gemm_multiply_bias_fastgelu_xdl_bf16_i8.cpp
)
target_link_libraries
(
client_grouped_gemm_multiply_bias_fastgelu_bf16_i8_bf16 PRIVATE composable_kernel::device_gemm_operations
)
add_executable
(
client_grouped_gemm_bf16_i8_bf16 grouped_gemm_xdl_bf16_i8.cpp
)
target_link_libraries
(
client_grouped_gemm_bf16_i8_bf16 PRIVATE composable_kernel::device_gemm_operations
)
endif
()
client_example/31_grouped_gemm_bf16Aint8B/grouped_gemm_bias_fastgelu_xdl_bf16_i8.cpp
0 → 100644
View file @
e599063f
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iomanip>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_multi_abd_fixed_nk.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
I8
=
int8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
A0DataType
=
BF16
;
using
AsDataType
=
ck
::
Tuple
<
A0DataType
>
;
using
B0DataType
=
I8
;
using
B1DataType
=
BF16
;
using
BsDataType
=
ck
::
Tuple
<
B0DataType
,
B1DataType
>
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
BF16
;
using
D0DataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
>
;
using
EDataType
=
BF16
;
using
A0Layout
=
Row
;
using
AsLayout
=
ck
::
Tuple
<
A0Layout
>
;
using
B0Layout
=
Row
;
using
B1Layout
=
B0Layout
;
using
BsLayout
=
ck
::
Tuple
<
B0Layout
,
B1Layout
>
;
using
D0Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
>
;
using
ELayout
=
Row
;
using
Multiply
=
ck
::
tensor_operation
::
element_wise
::
Multiply
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddFastGelu
=
ck
::
tensor_operation
::
element_wise
::
AddFastGelu
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
Multiply
;
using
CDEElementOp
=
AddFastGelu
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
struct
ProblemSize
final
{
std
::
vector
<
ck
::
index_t
>
Ms
;
std
::
vector
<
ck
::
index_t
>
Ns
;
std
::
vector
<
ck
::
index_t
>
Ks
;
std
::
vector
<
ck
::
index_t
>
stride_As
;
std
::
vector
<
ck
::
index_t
>
stride_Bs
;
std
::
vector
<
ck
::
index_t
>
stride_Cs
;
ck
::
index_t
group_count
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
k_batch
=
1
;
};
bool
run_grouped_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
auto
group_count
=
problem_size
.
group_count
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmMultiABDDesc
>
gemm_descs
;
gemm_descs
.
reserve
(
group_count
);
int
sum_of_m
=
0
;
using
DeviceMemPtr
=
std
::
unique_ptr
<
SimpleDeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a0_tensors_device
,
b0_tensors_device
,
b1_tensors_device
,
d0_tensors_device
,
c_tensors_device
;
a0_tensors_device
.
reserve
(
group_count
);
b0_tensors_device
.
reserve
(
group_count
);
b1_tensors_device
.
reserve
(
group_count
);
d0_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
sum_of_m
+=
problem_size
.
Ms
[
i
];
}
constexpr
ck
::
index_t
NumATensor
=
1
;
constexpr
ck
::
index_t
NumBTensor
=
2
;
constexpr
ck
::
index_t
NumDTensor
=
1
;
using
GroupedGemmKernelArgument
=
ck
::
tensor_operation
::
device
::
GroupedGemmMultiABDKernelArgument
<
NumATensor
,
NumBTensor
,
NumDTensor
>
;
std
::
vector
<
GroupedGemmKernelArgument
>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
a0_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
A0DataType
)
*
sum_of_m
*
problem_size
.
Ks
[
i
]));
b0_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
B0DataType
)
*
problem_size
.
Ns
[
i
]
*
problem_size
.
Ks
[
i
]));
b1_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
B1DataType
)
*
problem_size
.
Ns
[
i
]));
d0_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
D0DataType
)
*
problem_size
.
Ns
[
i
]));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
EDataType
)
*
sum_of_m
*
problem_size
.
Ns
[
i
]));
gemm_descs
.
push_back
(
{
sum_of_m
,
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
{
1
},
{
1
,
1
},
{
0
},
1
});
grouped_gemm_kernel_args_
.
push_back
(
{
std
::
array
<
const
void
*
,
NumATensor
>
{
a0_tensors_device
[
i
]
->
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumBTensor
>
{
b0_tensors_device
[
i
]
->
GetDeviceBuffer
(),
b1_tensors_device
[
i
]
->
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumDTensor
>
{
d0_tensors_device
[
i
]
->
GetDeviceBuffer
()},
c_tensors_device
[
i
]
->
GetDeviceBuffer
(),
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
std
::
array
<
ck
::
index_t
,
NumATensor
>
{
problem_size
.
stride_As
[
i
]},
std
::
array
<
ck
::
index_t
,
NumBTensor
>
{
problem_size
.
stride_Bs
[
i
],
0
},
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
0
},
problem_size
.
stride_Cs
[
i
]});
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmMultiABDFixedNK
<
AsLayout
,
BsLayout
,
DsLayout
,
Row
,
AsDataType
,
BsDataType
,
DsDataType
,
BF16
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
std
::
vector
<
std
::
array
<
const
void
*
,
NumATensor
>>
p_As
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
NumBTensor
>>
p_Bs
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>
p_Ds
=
{};
std
::
vector
<
void
*>
p_Cs
=
{};
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
SimpleDeviceMem
gemm_kernel_args_dev
(
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()));
hip_check_error
(
hipMemcpy
(
gemm_kernel_args_dev
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()),
hipMemcpyHostToDevice
));
op_ptr
->
SetDeviceKernelArgs
(
argument_ptr
.
get
(),
gemm_kernel_args_dev
.
GetDeviceBuffer
());
op_ptr
->
SetElementwiseOps
(
argument_ptr
.
get
(),
a_element_op
,
b_element_op
,
cde_element_op
);
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
sum_of_m
*
problem_size
.
Ns
[
0
]
*
problem_size
.
Ks
[
0
];
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
sum_of_m
*
problem_size
.
Ks
[
0
]
+
sizeof
(
B0DataType
)
*
problem_size
.
Ks
[
0
]
*
problem_size
.
Ns
[
0
]
+
sizeof
(
EDataType
)
*
sum_of_m
*
problem_size
.
Ns
[
0
];
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
true
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
problem_size
.
group_count
=
16
;
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
{
problem_size
.
Ms
.
push_back
(
32
+
rand
()
%
32
);
problem_size
.
Ns
.
push_back
(
1024
);
problem_size
.
Ks
.
push_back
(
512
);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ns
[
i
]);
problem_size
.
stride_Cs
.
push_back
(
problem_size
.
Ns
[
i
]);
}
return
!
run_grouped_gemm
(
problem_size
,
config
);
}
client_example/31_grouped_gemm_bf16Aint8B/grouped_gemm_fastgelu_xdl_bf16_i8.cpp
0 → 100644
View file @
e599063f
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iomanip>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_multi_abd_fixed_nk.hpp"
#include "ck/host_utility/hip_check_error.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
I8
=
int8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
A0DataType
=
BF16
;
using
AsDataType
=
ck
::
Tuple
<
A0DataType
>
;
using
B0DataType
=
I8
;
using
B1DataType
=
BF16
;
using
BsDataType
=
ck
::
Tuple
<
B0DataType
,
B1DataType
>
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
BF16
;
using
D0DataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
BF16
;
using
A0Layout
=
Row
;
using
AsLayout
=
ck
::
Tuple
<
A0Layout
>
;
using
B0Layout
=
Row
;
using
B1Layout
=
B0Layout
;
using
BsLayout
=
ck
::
Tuple
<
B0Layout
,
B1Layout
>
;
using
D0Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
Multiply
=
ck
::
tensor_operation
::
element_wise
::
Multiply
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
FastGelu
=
ck
::
tensor_operation
::
element_wise
::
FastGelu
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
Multiply
;
using
CDEElementOp
=
FastGelu
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
struct
ProblemSize
final
{
std
::
vector
<
ck
::
index_t
>
Ms
;
std
::
vector
<
ck
::
index_t
>
Ns
;
std
::
vector
<
ck
::
index_t
>
Ks
;
std
::
vector
<
ck
::
index_t
>
stride_As
;
std
::
vector
<
ck
::
index_t
>
stride_Bs
;
std
::
vector
<
ck
::
index_t
>
stride_Cs
;
ck
::
index_t
group_count
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
k_batch
=
1
;
};
bool
run_grouped_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
auto
group_count
=
problem_size
.
group_count
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmMultiABDDesc
>
gemm_descs
;
gemm_descs
.
reserve
(
group_count
);
int
sum_of_m
=
0
;
using
DeviceMemPtr
=
std
::
unique_ptr
<
SimpleDeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a0_tensors_device
,
b0_tensors_device
,
b1_tensors_device
,
c_tensors_device
;
a0_tensors_device
.
reserve
(
group_count
);
b0_tensors_device
.
reserve
(
group_count
);
b1_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
sum_of_m
+=
problem_size
.
Ms
[
i
];
}
constexpr
ck
::
index_t
NumATensor
=
1
;
constexpr
ck
::
index_t
NumBTensor
=
2
;
constexpr
ck
::
index_t
NumDTensor
=
0
;
using
GroupedGemmKernelArgument
=
ck
::
tensor_operation
::
device
::
GroupedGemmMultiABDKernelArgument
<
NumATensor
,
NumBTensor
,
NumDTensor
>
;
std
::
vector
<
GroupedGemmKernelArgument
>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
a0_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
A0DataType
)
*
sum_of_m
*
problem_size
.
Ks
[
i
]));
b0_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
B0DataType
)
*
problem_size
.
Ns
[
i
]
*
problem_size
.
Ks
[
i
]));
b1_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
B1DataType
)
*
problem_size
.
Ns
[
i
]));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
EDataType
)
*
sum_of_m
*
problem_size
.
Ns
[
i
]));
gemm_descs
.
push_back
(
{
sum_of_m
,
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
{
1
},
{
1
,
1
},
{},
1
});
grouped_gemm_kernel_args_
.
push_back
(
{
std
::
array
<
const
void
*
,
NumATensor
>
{
a0_tensors_device
[
i
]
->
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumBTensor
>
{
b0_tensors_device
[
i
]
->
GetDeviceBuffer
(),
b1_tensors_device
[
i
]
->
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumDTensor
>
{},
c_tensors_device
[
i
]
->
GetDeviceBuffer
(),
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
std
::
array
<
ck
::
index_t
,
NumATensor
>
{
problem_size
.
stride_As
[
i
]},
std
::
array
<
ck
::
index_t
,
NumBTensor
>
{
problem_size
.
stride_Bs
[
i
],
0
},
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{},
problem_size
.
stride_Cs
[
i
]});
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmMultiABDFixedNK
<
AsLayout
,
BsLayout
,
DsLayout
,
Row
,
AsDataType
,
BsDataType
,
DsDataType
,
BF16
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
std
::
vector
<
std
::
array
<
const
void
*
,
NumATensor
>>
p_As
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
NumBTensor
>>
p_Bs
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>
p_Ds
=
{};
std
::
vector
<
void
*>
p_Cs
=
{};
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
SimpleDeviceMem
gemm_kernel_args_dev
(
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()));
hip_check_error
(
hipMemcpy
(
gemm_kernel_args_dev
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()),
hipMemcpyHostToDevice
));
op_ptr
->
SetDeviceKernelArgs
(
argument_ptr
.
get
(),
gemm_kernel_args_dev
.
GetDeviceBuffer
());
op_ptr
->
SetElementwiseOps
(
argument_ptr
.
get
(),
a_element_op
,
b_element_op
,
cde_element_op
);
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
sum_of_m
*
problem_size
.
Ns
[
0
]
*
problem_size
.
Ks
[
0
];
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
sum_of_m
*
problem_size
.
Ks
[
0
]
+
sizeof
(
B0DataType
)
*
problem_size
.
Ks
[
0
]
*
problem_size
.
Ns
[
0
]
+
sizeof
(
EDataType
)
*
sum_of_m
*
problem_size
.
Ns
[
0
];
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
true
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
problem_size
.
group_count
=
16
;
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
{
problem_size
.
Ms
.
push_back
(
32
+
rand
()
%
32
);
problem_size
.
Ns
.
push_back
(
1024
);
problem_size
.
Ks
.
push_back
(
512
);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ns
[
i
]);
problem_size
.
stride_Cs
.
push_back
(
problem_size
.
Ns
[
i
]);
}
return
!
run_grouped_gemm
(
problem_size
,
config
);
}
client_example/31_grouped_gemm_bf16Aint8B/grouped_gemm_multiply_bias_fastgelu_xdl_bf16_i8.cpp
0 → 100644
View file @
e599063f
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iomanip>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_tile_loop_multply.hpp"
#include "ck/host_utility/hip_check_error.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
I8
=
int8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
A0DataType
=
BF16
;
using
B0DataType
=
I8
;
using
B1DataType
=
BF16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<
B1DataType
,
D0DataType
>
;
using
EDataType
=
BF16
;
using
A0Layout
=
Row
;
using
B0Layout
=
Row
;
using
B1Layout
=
B0Layout
;
using
D0Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
B0Layout
,
D0Layout
>
;
using
ELayout
=
Row
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
MultiplyAddFastGelu
=
ck
::
tensor_operation
::
element_wise
::
MultiplyAddFastGelu
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
MultiplyAddFastGelu
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
struct
ProblemSize
final
{
std
::
vector
<
ck
::
index_t
>
Ms
;
std
::
vector
<
ck
::
index_t
>
Ns
;
std
::
vector
<
ck
::
index_t
>
Ks
;
std
::
vector
<
ck
::
index_t
>
stride_As
;
std
::
vector
<
ck
::
index_t
>
stride_Bs
;
std
::
vector
<
ck
::
index_t
>
stride_Cs
;
ck
::
index_t
group_count
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
k_batch
=
1
;
};
bool
run_grouped_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
auto
group_count
=
problem_size
.
group_count
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
gemm_descs
.
reserve
(
group_count
);
int
sum_of_m
=
0
;
using
DeviceMemPtr
=
std
::
unique_ptr
<
SimpleDeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a0_tensors_device
,
b0_tensors_device
,
b1_tensors_device
,
d0_tensors_device
,
c_tensors_device
;
a0_tensors_device
.
reserve
(
group_count
);
b0_tensors_device
.
reserve
(
group_count
);
b1_tensors_device
.
reserve
(
group_count
);
d0_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
sum_of_m
+=
problem_size
.
Ms
[
i
];
}
constexpr
ck
::
index_t
NumDTensor
=
2
;
using
GroupedGemmKernelArgument
=
ck
::
tensor_operation
::
device
::
GroupedGemmTileLoopKernelArguments
<
NumDTensor
>
;
std
::
vector
<
GroupedGemmKernelArgument
>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
a0_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
A0DataType
)
*
problem_size
.
Ms
[
i
]
*
problem_size
.
Ks
[
i
]));
b0_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
B0DataType
)
*
problem_size
.
Ns
[
i
]
*
problem_size
.
Ks
[
i
]));
b1_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
B1DataType
)
*
problem_size
.
Ns
[
i
]));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
EDataType
)
*
problem_size
.
Ms
[
i
]
*
problem_size
.
Ns
[
i
]));
d0_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
D0DataType
)
*
problem_size
.
Ns
[
i
]));
gemm_descs
.
push_back
({
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
problem_size
.
stride_Bs
[
i
],
problem_size
.
stride_Cs
[
i
],
{
0
,
0
}});
grouped_gemm_kernel_args_
.
push_back
(
{
a0_tensors_device
[
i
]
->
GetDeviceBuffer
(),
b0_tensors_device
[
i
]
->
GetDeviceBuffer
(),
{
b1_tensors_device
[
i
]
->
GetDeviceBuffer
(),
d0_tensors_device
[
i
]
->
GetDeviceBuffer
()},
c_tensors_device
[
i
]
->
GetDeviceBuffer
(),
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
problem_size
.
stride_Bs
[
i
],
{
0
,
0
},
problem_size
.
stride_Cs
[
i
]});
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmTileLoop
<
A0Layout
,
B0Layout
,
DsLayout
,
ELayout
,
A0DataType
,
B0DataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
std
::
vector
<
const
void
*>
p_As
=
{};
std
::
vector
<
const
void
*>
p_Bs
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>
p_Ds
=
{};
std
::
vector
<
void
*>
p_Cs
=
{};
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
SimpleDeviceMem
gemm_kernel_args_dev
(
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()));
hip_check_error
(
hipMemcpy
(
gemm_kernel_args_dev
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()),
hipMemcpyHostToDevice
));
op_ptr
->
SetDeviceKernelArgs
(
argument_ptr
.
get
(),
gemm_kernel_args_dev
.
GetDeviceBuffer
());
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
,
0
,
20
,
50
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
sum_of_m
*
problem_size
.
Ns
[
0
]
*
problem_size
.
Ks
[
0
];
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
sum_of_m
*
problem_size
.
Ks
[
0
]
+
sizeof
(
B0DataType
)
*
problem_size
.
Ks
[
0
]
*
problem_size
.
Ns
[
0
]
+
sizeof
(
EDataType
)
*
sum_of_m
*
problem_size
.
Ns
[
0
];
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
true
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
problem_size
.
group_count
=
16
;
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
{
problem_size
.
Ms
.
push_back
(
1
+
rand
()
%
1024
);
problem_size
.
Ns
.
push_back
(
6144
);
problem_size
.
Ks
.
push_back
(
4096
);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ns
[
i
]);
problem_size
.
stride_Cs
.
push_back
(
problem_size
.
Ns
[
i
]);
std
::
cout
<<
" M = "
<<
problem_size
.
Ms
[
i
]
<<
" N = "
<<
problem_size
.
Ns
[
i
]
<<
" K "
<<
problem_size
.
Ks
[
i
]
<<
std
::
endl
;
}
return
!
run_grouped_gemm
(
problem_size
,
config
);
}
client_example/31_grouped_gemm_bf16Aint8B/grouped_gemm_multiply_xdl_bf16_i8.cpp
0 → 100644
View file @
e599063f
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iomanip>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_tile_loop_multply.hpp"
#include "ck/host_utility/hip_check_error.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
I8
=
int8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
A0DataType
=
BF16
;
using
B0DataType
=
I8
;
using
B1DataType
=
BF16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
BF16
;
using
D0DataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<
B1DataType
>
;
using
EDataType
=
BF16
;
using
A0Layout
=
Row
;
using
B0Layout
=
Row
;
using
B1Layout
=
B0Layout
;
using
D0Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
B1Layout
>
;
using
ELayout
=
Row
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Multiply
=
ck
::
tensor_operation
::
element_wise
::
Multiply
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Multiply
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
struct
ProblemSize
final
{
std
::
vector
<
ck
::
index_t
>
Ms
;
std
::
vector
<
ck
::
index_t
>
Ns
;
std
::
vector
<
ck
::
index_t
>
Ks
;
std
::
vector
<
ck
::
index_t
>
stride_As
;
std
::
vector
<
ck
::
index_t
>
stride_Bs
;
std
::
vector
<
ck
::
index_t
>
stride_Cs
;
ck
::
index_t
group_count
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
k_batch
=
1
;
};
bool
run_grouped_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
auto
group_count
=
problem_size
.
group_count
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
gemm_descs
.
reserve
(
group_count
);
int
sum_of_m
=
0
;
using
DeviceMemPtr
=
std
::
unique_ptr
<
SimpleDeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a0_tensors_device
,
b0_tensors_device
,
b1_tensors_device
,
c_tensors_device
;
a0_tensors_device
.
reserve
(
group_count
);
b0_tensors_device
.
reserve
(
group_count
);
b1_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
sum_of_m
+=
problem_size
.
Ms
[
i
];
}
constexpr
ck
::
index_t
NumDTensor
=
1
;
using
GroupedGemmKernelArgument
=
ck
::
tensor_operation
::
device
::
GroupedGemmTileLoopKernelArguments
<
NumDTensor
>
;
std
::
vector
<
GroupedGemmKernelArgument
>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
a0_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
A0DataType
)
*
problem_size
.
Ms
[
i
]
*
problem_size
.
Ks
[
i
]));
b0_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
B0DataType
)
*
problem_size
.
Ns
[
i
]
*
problem_size
.
Ks
[
i
]));
b1_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
B1DataType
)
*
problem_size
.
Ns
[
i
]));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
EDataType
)
*
problem_size
.
Ms
[
i
]
*
problem_size
.
Ns
[
i
]));
gemm_descs
.
push_back
({
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
problem_size
.
stride_Bs
[
i
],
problem_size
.
stride_Cs
[
i
],
{
0
}});
grouped_gemm_kernel_args_
.
push_back
({
a0_tensors_device
[
i
]
->
GetDeviceBuffer
(),
b0_tensors_device
[
i
]
->
GetDeviceBuffer
(),
{
b1_tensors_device
[
i
]
->
GetDeviceBuffer
()},
c_tensors_device
[
i
]
->
GetDeviceBuffer
(),
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
problem_size
.
stride_Bs
[
i
],
{
0
},
problem_size
.
stride_Cs
[
i
]});
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmTileLoop
<
A0Layout
,
B0Layout
,
DsLayout
,
ELayout
,
A0DataType
,
B0DataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
std
::
vector
<
const
void
*>
p_As
=
{};
std
::
vector
<
const
void
*>
p_Bs
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>
p_Ds
=
{};
std
::
vector
<
void
*>
p_Cs
=
{};
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
SimpleDeviceMem
gemm_kernel_args_dev
(
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()));
hip_check_error
(
hipMemcpy
(
gemm_kernel_args_dev
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()),
hipMemcpyHostToDevice
));
op_ptr
->
SetDeviceKernelArgs
(
argument_ptr
.
get
(),
gemm_kernel_args_dev
.
GetDeviceBuffer
());
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
,
0
,
20
,
50
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
sum_of_m
*
problem_size
.
Ns
[
0
]
*
problem_size
.
Ks
[
0
];
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
sum_of_m
*
problem_size
.
Ks
[
0
]
+
sizeof
(
B0DataType
)
*
problem_size
.
Ks
[
0
]
*
problem_size
.
Ns
[
0
]
+
sizeof
(
EDataType
)
*
sum_of_m
*
problem_size
.
Ns
[
0
];
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
true
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
problem_size
.
group_count
=
16
;
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
{
problem_size
.
Ms
.
push_back
(
1
+
rand
()
%
1024
);
problem_size
.
Ns
.
push_back
(
4096
);
problem_size
.
Ks
.
push_back
(
4096
);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ns
[
i
]);
problem_size
.
stride_Cs
.
push_back
(
problem_size
.
Ns
[
i
]);
std
::
cout
<<
" M = "
<<
problem_size
.
Ms
[
i
]
<<
" N = "
<<
problem_size
.
Ns
[
i
]
<<
" K "
<<
problem_size
.
Ks
[
i
]
<<
std
::
endl
;
}
return
!
run_grouped_gemm
(
problem_size
,
config
);
}
client_example/31_grouped_gemm_bf16Aint8B/grouped_gemm_xdl_bf16_i8.cpp
0 → 100644
View file @
e599063f
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iomanip>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_multi_abd_fixed_nk.hpp"
#include "ck/host_utility/hip_check_error.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
I8
=
int8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
A0DataType
=
BF16
;
using
AsDataType
=
ck
::
Tuple
<
A0DataType
>
;
using
B0DataType
=
I8
;
using
B1DataType
=
BF16
;
using
BsDataType
=
ck
::
Tuple
<
B0DataType
,
B1DataType
>
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
BF16
;
using
D0DataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
BF16
;
using
A0Layout
=
Row
;
using
AsLayout
=
ck
::
Tuple
<
A0Layout
>
;
using
B0Layout
=
Row
;
using
B1Layout
=
B0Layout
;
using
BsLayout
=
ck
::
Tuple
<
B0Layout
,
B1Layout
>
;
using
D0Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
Multiply
=
ck
::
tensor_operation
::
element_wise
::
Multiply
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
Multiply
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
struct
ProblemSize
final
{
std
::
vector
<
ck
::
index_t
>
Ms
;
std
::
vector
<
ck
::
index_t
>
Ns
;
std
::
vector
<
ck
::
index_t
>
Ks
;
std
::
vector
<
ck
::
index_t
>
stride_As
;
std
::
vector
<
ck
::
index_t
>
stride_Bs
;
std
::
vector
<
ck
::
index_t
>
stride_Cs
;
ck
::
index_t
group_count
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
k_batch
=
1
;
};
bool
run_grouped_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
auto
group_count
=
problem_size
.
group_count
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmMultiABDDesc
>
gemm_descs
;
gemm_descs
.
reserve
(
group_count
);
int
sum_of_m
=
0
;
using
DeviceMemPtr
=
std
::
unique_ptr
<
SimpleDeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a0_tensors_device
,
b0_tensors_device
,
b1_tensors_device
,
c_tensors_device
;
a0_tensors_device
.
reserve
(
group_count
);
b0_tensors_device
.
reserve
(
group_count
);
b1_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
sum_of_m
+=
problem_size
.
Ms
[
i
];
}
constexpr
ck
::
index_t
NumATensor
=
1
;
constexpr
ck
::
index_t
NumBTensor
=
2
;
constexpr
ck
::
index_t
NumDTensor
=
0
;
using
GroupedGemmKernelArgument
=
ck
::
tensor_operation
::
device
::
GroupedGemmMultiABDKernelArgument
<
NumATensor
,
NumBTensor
,
NumDTensor
>
;
std
::
vector
<
GroupedGemmKernelArgument
>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
a0_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
A0DataType
)
*
sum_of_m
*
problem_size
.
Ks
[
i
]));
b0_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
B0DataType
)
*
problem_size
.
Ns
[
i
]
*
problem_size
.
Ks
[
i
]));
b1_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
B1DataType
)
*
problem_size
.
Ns
[
i
]));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
EDataType
)
*
sum_of_m
*
problem_size
.
Ns
[
i
]));
gemm_descs
.
push_back
(
{
sum_of_m
,
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
{
1
},
{
1
,
1
},
{},
1
});
grouped_gemm_kernel_args_
.
push_back
(
{
std
::
array
<
const
void
*
,
NumATensor
>
{
a0_tensors_device
[
i
]
->
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumBTensor
>
{
b0_tensors_device
[
i
]
->
GetDeviceBuffer
(),
b1_tensors_device
[
i
]
->
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumDTensor
>
{},
c_tensors_device
[
i
]
->
GetDeviceBuffer
(),
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
std
::
array
<
ck
::
index_t
,
NumATensor
>
{
problem_size
.
stride_As
[
i
]},
std
::
array
<
ck
::
index_t
,
NumBTensor
>
{
problem_size
.
stride_Bs
[
i
],
0
},
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{},
problem_size
.
stride_Cs
[
i
]});
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmMultiABDFixedNK
<
AsLayout
,
BsLayout
,
DsLayout
,
Row
,
AsDataType
,
BsDataType
,
DsDataType
,
BF16
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
std
::
vector
<
std
::
array
<
const
void
*
,
NumATensor
>>
p_As
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
NumBTensor
>>
p_Bs
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>
p_Ds
=
{};
std
::
vector
<
void
*>
p_Cs
=
{};
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
SimpleDeviceMem
gemm_kernel_args_dev
(
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()));
hip_check_error
(
hipMemcpy
(
gemm_kernel_args_dev
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()),
hipMemcpyHostToDevice
));
op_ptr
->
SetDeviceKernelArgs
(
argument_ptr
.
get
(),
gemm_kernel_args_dev
.
GetDeviceBuffer
());
op_ptr
->
SetElementwiseOps
(
argument_ptr
.
get
(),
a_element_op
,
b_element_op
,
cde_element_op
);
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
,
0
,
20
,
50
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
sum_of_m
*
problem_size
.
Ns
[
0
]
*
problem_size
.
Ks
[
0
];
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
sum_of_m
*
problem_size
.
Ks
[
0
]
+
sizeof
(
B0DataType
)
*
problem_size
.
Ks
[
0
]
*
problem_size
.
Ns
[
0
]
+
sizeof
(
EDataType
)
*
sum_of_m
*
problem_size
.
Ns
[
0
];
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
true
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
problem_size
.
group_count
=
16
;
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
{
problem_size
.
Ms
.
push_back
(
1
+
rand
()
%
1024
);
problem_size
.
Ns
.
push_back
(
4096
);
problem_size
.
Ks
.
push_back
(
4096
);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ns
[
i
]);
problem_size
.
stride_Cs
.
push_back
(
problem_size
.
Ns
[
i
]);
std
::
cout
<<
" M = "
<<
problem_size
.
Ms
[
i
]
<<
" N = "
<<
problem_size
.
Ns
[
i
]
<<
" K "
<<
problem_size
.
Ks
[
i
]
<<
std
::
endl
;
}
return
!
run_grouped_gemm
(
problem_size
,
config
);
}
client_example/CMakeLists.txt
View file @
e599063f
...
...
@@ -48,7 +48,25 @@ else()
endif
()
endif
()
find_package
(
composable_kernel COMPONENTS device_other_operations device_gemm_operations device_conv_operations device_contraction_operations device_reduction_operations
)
if
(
GPU_TARGETS
)
if
(
GPU_TARGETS MATCHES
"gfx9"
)
add_definitions
(
-DCK_USE_XDL
)
set
(
CK_USE_XDL
"ON"
)
endif
()
if
(
GPU_TARGETS MATCHES
"gfx11"
)
add_definitions
(
-DCK_USE_WMMA
)
set
(
CK_USE_WMMA
"ON"
)
endif
()
else
()
add_definitions
(
-DCK_USE_WMMA -DCK_USE_XDL
)
set
(
CK_USE_XDL
"ON"
)
set
(
CK_USE_WMMA
"ON"
)
endif
()
find_package
(
composable_kernel COMPONENTS device_other_operations device_gemm_operations device_conv_operations device_reduction_operations
)
if
(
GPU_TARGETS MATCHES
"gfx9"
)
find_package
(
composable_kernel COMPONENTS device_contraction_operations
)
endif
()
find_package
(
hip REQUIRED PATHS /opt/rocm
)
message
(
STATUS
"Build with HIP
${
hip_VERSION
}
"
)
...
...
cmake/EnableCompilerWarnings.cmake
View file @
e599063f
...
...
@@ -95,6 +95,7 @@ else()
-Wno-weak-vtables
-Wno-covered-switch-default
-Wno-unsafe-buffer-usage
-Wno-unused-lambda-capture
)
else
()
if
(
CMAKE_
${
COMPILER
}
_COMPILER_ID MATCHES
"GNU"
AND
${
COMPILER
}
MATCHES
"CXX"
)
...
...
docs/what-is-ck.rst
→
docs/
conceptual/
what-is-ck.rst
View file @
e599063f
...
...
@@ -20,7 +20,7 @@ CK utilizes two concepts to achieve performance portability and code maintainabi
* Algorithm complexity reduction for complex ML operators using an innovative technique called
"Tensor Coordinate Transformation".
.. image:: data/ck_component.png
.. image::
../
data/ck_component.png
:alt: CK Components
...
...
@@ -36,6 +36,6 @@ The CK library is structured into 4 layers:
It also includes a simple wrapper component used to perform tensor transform operations more easily and with fewer lines of code.
.. image:: data/ck_layer.png
.. image::
../
data/ck_layer.png
:alt: CK Layers
\ No newline at end of file
docs/index.rst
View file @
e599063f
...
...
@@ -12,28 +12,27 @@ The Composable Kernel (CK) library provides a programming model for writing perf
The CK documentation is structured as follows:
.. card:: Conceptual
.. grid:: 2
:gutter: 3
* :ref:`what-is-ck`
.. grid-item-card:: Installation
.. card:: Installation
* :ref:`docker-hub`
* :ref:`docker-hub`
.. grid-item-card:: Conceptual
.. card:: Tutorial
* :ref:`what-is-ck`
* :ref:`hello-world`
.. grid-item-card:: API reference
.. card:: API reference
* :ref:`supported-primitives`
* :ref:`api-reference`
* :ref:`wrapper`
* :ref:`supported-primitives`
* :ref:`api-reference`
* :ref:`wrapper`
.. grid-item-card:: Tutorial
.. card:: Contributing to CK
* :ref:`hello-world`
* :ref:`contributing-to`
To contribute to the documentation refer to `Contributing to ROCm <https://rocm.docs.amd.com/en/latest/contribute/index.html>`_.
To contribute to the documentation refer to `Contributing to ROCm <https://rocm.docs.amd.com/en/latest/contribute/contributing.html>`_.
You can find licensing information on the `Licensing <https://rocm.docs.amd.com/en/latest/about/license.html>`_ page.
docs/dockerhub.rst
→
docs/
install/
dockerhub.rst
View file @
e599063f
File moved
docs/license.md
deleted
100644 → 0
View file @
5dbbf5d6
```
{include} ../LICENSE.md
```
docs/license.rst
0 → 100644
View file @
e599063f
.. meta::
:description: Composable Kernel documentation and API reference library
:keywords: composable kernel, CK, ROCm, API, documentation
.. _license:
********************************************************************
License
********************************************************************
.. include:: ../LICENSE
\ No newline at end of file
docs/API_Reference_Guide.rst
→
docs/
reference/
API_Reference_Guide.rst
View file @
e599063f
File moved
docs/Supported_Primitives_Guide.rst
→
docs/
reference/
Supported_Primitives_Guide.rst
View file @
e599063f
File moved
docs/wrapper.rst
→
docs/
reference/
wrapper.rst
View file @
e599063f
File moved
docs/sphinx/_toc.yml.in
View file @
e599063f
...
...
@@ -2,20 +2,35 @@ defaults:
numbered: False
root: index
subtrees:
- entries:
- file: what-is-ck.rst
- caption: Conceptual
entries:
- file: conceptual/what-is-ck.rst
title: What is Composable Kernel?
- file: dockerhub.rst
- caption: Install
entries:
- file: install/dockerhub.rst
title: Docker Hub
- file: tutorial_hello_world.rst
title: Hello World Tutorial
- file: Supported_Primitives_Guide.rst
- caption: CK API Reference
entries:
- file: reference/Supported_Primitives_Guide.rst
title: Supported Primitives
- file: API_Reference_Guide.rst
- file:
reference/
API_Reference_Guide.rst
title: API Reference
- file: wrapper.rst
- file:
reference/
wrapper.rst
title: Wrapper
- caption: Tutorial
entries:
- file: tutorial/tutorial_hello_world.rst
title: Hello World Tutorial
- caption: About
entries:
- file: Contributors_Guide.rst
title: Contributing to CK
- file: license.
md
- file: license.
rst
title: License
\ No newline at end of file
docs/sphinx/requirements.in
View file @
e599063f
rocm-docs-core==
0.35
.1
rocm-docs-core==
1.1
.1
sphinxcontrib-bibtex==2.6.2
docs/sphinx/requirements.txt
View file @
e599063f
#
# This file is autogenerated by pip-compile with Python 3.
8
# This file is autogenerated by pip-compile with Python 3.
10
# by the following command:
#
# pip-compile requirements.in
...
...
@@ -48,12 +48,6 @@ idna==3.4
# via requests
imagesize==1.4.1
# via sphinx
importlib-metadata==6.8.0
# via
# sphinx
# sphinxcontrib-bibtex
importlib-resources==6.1.1
# via rocm-docs-core
jinja2==3.1.2
# via
# myst-parser
...
...
@@ -96,13 +90,9 @@ pygments==2.15.0
# pydata-sphinx-theme
# sphinx
pyjwt[crypto]==2.6.0
# via
# pygithub
# pyjwt
# via pygithub
pynacl==1.5.0
# via pygithub
pytz==2023.3.post1
# via babel
pyyaml==6.0
# via
# myst-parser
...
...
@@ -113,7 +103,7 @@ requests==2.31.0
# via
# pygithub
# sphinx
rocm-docs-core==
0.35
.1
rocm-docs-core==
1.1
.1
# via -r requirements.in
six==1.16.0
# via
...
...
@@ -167,7 +157,3 @@ urllib3==1.26.18
# via requests
wrapt==1.15.0
# via deprecated
zipp==3.17.0
# via
# importlib-metadata
# importlib-resources
Prev
1
2
3
4
5
6
7
…
43
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment