"vscode:/vscode.git/clone" did not exist on "67ad47e7c124eaa180161e35eaad8a6dbb7985e6"
Unverified Commit e0d8806c authored by Anthony Chang's avatar Anthony Chang Committed by GitHub
Browse files

Attention with output permutation (#370)

* comment on specialization for TensorSpecialization::Packed

* gemm_softmax_gemm with output permutation

* scaling

* refactor MatrixPadder; rename to GemmPadder

* remove old sanity check

* restore original gemm_softmax_gemm

* revise comment in gemm_softmax_gemm example

* use GetElementSpaceSize()

* remove extra header

* typo

* remove archaic DeviceOpPtr
parent 60914583
...@@ -280,10 +280,11 @@ int main(int argc, char* argv[]) ...@@ -280,10 +280,11 @@ int main(int argc, char* argv[])
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{}); b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
} }
DeviceMem a_g_m_k_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSize()); DeviceMem a_g_m_k_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpaceSize());
DeviceMem b0_g_k_n_device_buf(sizeof(B0DataType) * b0_g_k_n.mDesc.GetElementSize()); DeviceMem b0_g_k_n_device_buf(sizeof(B0DataType) * b0_g_k_n.mDesc.GetElementSpaceSize());
DeviceMem b1_g_n_o_device_buf(sizeof(B1DataType) * b1_g_n_o.mDesc.GetElementSize()); DeviceMem b1_g_n_o_device_buf(sizeof(B1DataType) * b1_g_n_o.mDesc.GetElementSpaceSize());
DeviceMem c_g_m_o_device_buf(sizeof(CDataType) * c_g_m_o_device_result.mDesc.GetElementSize()); DeviceMem c_g_m_o_device_buf(sizeof(CDataType) *
c_g_m_o_device_result.mDesc.GetElementSpaceSize());
a_g_m_k_device_buf.ToDevice(a_g_m_k.mData.data()); a_g_m_k_device_buf.ToDevice(a_g_m_k.mData.data());
b0_g_k_n_device_buf.ToDevice(b0_g_k_n.mData.data()); b0_g_k_n_device_buf.ToDevice(b0_g_k_n.mData.data());
......
add_example_executable(example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp) add_example_executable(example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp)
add_example_executable(example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g_k_n) * B1_g_n_o
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using B0DataType = F16;
using B1DataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using CDataType = F16;
using ALayout = Row;
using B0Layout = Col;
using B1Layout = Row;
using CPermuteNumDims_G_M_O =
S<2, 1, 1>; // "using CLayout = Row" has been replaced by CPermuteNumDims_G_M_O
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle<
ALayout,
B0Layout,
B1Layout,
CPermuteNumDims_G_M_O,
ADataType,
B0DataType,
B1DataType,
CDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmDefault,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
64, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
2, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8>; // CShuffleBlockTransferScalarPerVector_NPerBlock
// Ref Gemm0: fp16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
AccDataType,
AccDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: fp32 in, fp16 out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<AccDataType, ADataType, AccDataType>;
// Ref Gemm1: fp16 in, fp16 out
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck::index_t M = 128;
ck::index_t N = 1024;
ck::index_t K = 64;
ck::index_t O = 128;
ck::index_t StrideA = -1;
ck::index_t StrideB0 = -1;
ck::index_t StrideB1 = -1;
ck::index_t BatchStrideA = -1;
ck::index_t BatchStrideB0 = -1;
ck::index_t BatchStrideB1 = -1;
float alpha = 1;
// Output shape C[G0, M, G1, O]. Batch dim, outer dim, inner dim must match GEMM shape
// C_g0_g1_m_o = reshape(C_g_m_o, [g0, g1, m, o])
// C_g0_m_g1_o = permute(C_g0_g1_m_o, [0, 2, 1, 3])
ck::index_t G0 = 7;
ck::index_t G1 = 13;
std::vector<ck::index_t> c_gs_ms_os_lengths{G0, G1, M, O};
std::vector<ck::index_t> c_gs_ms_os_strides{M * G1 * O, O, G1 * O, 1};
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 11)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
G0 = std::stoi(argv[8]);
G1 = std::stoi(argv[9]);
alpha = std::stof(argv[10]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 11: M, N, K, O, G0, G1\n");
printf("arg10: scale (alpha)\n");
exit(0);
}
const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
const int DefaultStrideB0 = ck::is_same_v<B0Layout, Row> ? N : K;
const int DefaultStrideB1 = ck::is_same_v<B1Layout, Row> ? O : N;
StrideA = (StrideA < 0) ? DefaultStrideA : StrideA;
StrideB0 = (StrideB0 < 0) ? DefaultStrideB0 : StrideB0;
StrideB1 = (StrideB1 < 0) ? DefaultStrideB1 : StrideB1;
const int DefaultBatchStrideA = (ck::is_same_v<ALayout, Col> ? K : M) * StrideA;
const int DefaultBatchStrideB0 = (ck::is_same_v<B0Layout, Col> ? N : K) * StrideB0;
const int DefaultBatchStrideB1 = (ck::is_same_v<B1Layout, Col> ? O : N) * StrideB1;
BatchStrideA = BatchStrideA < 0 ? DefaultBatchStrideA : BatchStrideA;
BatchStrideB0 = BatchStrideB0 < 0 ? DefaultBatchStrideB0 : BatchStrideB0;
BatchStrideB1 = BatchStrideB1 < 0 ? DefaultBatchStrideB1 : BatchStrideB1;
const int BatchCount = G0 * G1;
auto f_host_tensor_descriptor = [](std::size_t batch_count,
std::size_t row,
std::size_t col,
std::size_t stride,
std::size_t batch_stride,
auto layout) {
if(std::is_same<decltype(layout), Row>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, 1, stride}));
}
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor<ADataType> a_g_m_k(
f_host_tensor_descriptor(BatchCount, M, K, StrideA, BatchStrideA, ALayout{}));
Tensor<B0DataType> b0_g_k_n(
f_host_tensor_descriptor(BatchCount, K, N, StrideB0, BatchStrideB0, B0Layout{}));
Tensor<B1DataType> b1_g_n_o(
f_host_tensor_descriptor(BatchCount, N, O, StrideB1, BatchStrideB1, B1Layout{}));
Tensor<CDataType> c_gs_ms_os_host_result(
std::vector<std::size_t>(c_gs_ms_os_lengths.begin(), c_gs_ms_os_lengths.end()),
std::vector<std::size_t>(c_gs_ms_os_strides.begin(), c_gs_ms_os_strides.end()));
Tensor<CDataType> c_gs_ms_os_device_result(
std::vector<std::size_t>(c_gs_ms_os_lengths.begin(), c_gs_ms_os_lengths.end()),
std::vector<std::size_t>(c_gs_ms_os_strides.begin(), c_gs_ms_os_strides.end()));
std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
std::cout << "b0_g_k_n: " << b0_g_k_n.mDesc << std::endl;
std::cout << "b1_g_n_o: " << b1_g_n_o.mDesc << std::endl;
std::cout << "c_gs_ms_os: " << c_gs_ms_os_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-5, 5});
break;
case 2:
a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
case 3:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
DeviceMem a_g_m_k_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpaceSize());
DeviceMem b0_g_k_n_device_buf(sizeof(B0DataType) * b0_g_k_n.mDesc.GetElementSpaceSize());
DeviceMem b1_g_n_o_device_buf(sizeof(B1DataType) * b1_g_n_o.mDesc.GetElementSpaceSize());
DeviceMem c_gs_ms_os_device_buf(sizeof(CDataType) *
c_gs_ms_os_device_result.mDesc.GetElementSpaceSize());
a_g_m_k_device_buf.ToDevice(a_g_m_k.mData.data());
b0_g_k_n_device_buf.ToDevice(b0_g_k_n.mData.data());
b1_g_n_o_device_buf.ToDevice(b1_g_n_o.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{alpha};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument =
gemm.MakeArgument(static_cast<ADataType*>(a_g_m_k_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_g_k_n_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_g_n_o_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_gs_ms_os_device_buf.GetDeviceBuffer()),
M,
N,
K,
O,
BatchCount,
c_gs_ms_os_lengths,
c_gs_ms_os_strides,
StrideA,
StrideB0,
StrideB1,
BatchStrideA,
BatchStrideB0,
BatchStrideB1,
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
if(do_verification)
{
c_gs_ms_os_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
// Output of Gemm0 is input A of Gemm1
Tensor<AccDataType> acc0_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
Tensor<ADataType> a1_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
Tensor<CDataType> c_g_m_o_host_result(std::vector<int>{BatchCount, M, O},
std::vector<int>{M * O, O, 1});
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, acc0_element_op);
ref_gemm0_invoker.Run(ref_gemm0_argument);
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument = ref_softmax.MakeArgument(acc0_g_m_n, a1_g_m_n, 1, 0, {2});
ref_softmax_invoker.Run(ref_softmax_argument);
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(
a1_g_m_n, b1_g_n_o, c_g_m_o_host_result, PassThrough{}, b1_element_op, c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
c_gs_ms_os_host_result.ForEach([&](auto& self, auto idx) {
const size_t& g0 = idx[0];
const size_t& g1 = idx[1];
const size_t g = g0 * G1 + g1;
self(idx) = c_g_m_o_host_result(g, idx[2], idx[3]);
});
return ck::utils::check_err(c_gs_ms_os_device_result.mData, c_gs_ms_os_host_result.mData)
? 0
: 1;
}
return 0;
}
...@@ -2,11 +2,11 @@ ...@@ -2,11 +2,11 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/* /*
Gemm + Gemm fused operation. Computes C_m_o = A_m_k * B0_k_n * B1_n_o Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g_k_n) * B1_g_n_o
|------------| |-----------------|
Gemm0 Gemm0
|---------------------| |-------------------------------------|
Gemm1 Gemm1
*/ */
#include <iostream> #include <iostream>
...@@ -212,9 +212,9 @@ int main(int argc, char* argv[]) ...@@ -212,9 +212,9 @@ int main(int argc, char* argv[])
printf("arg1: verification (0=no, 1=yes)\n"); printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"); printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n"); printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 17: M, N, K, O, Batch, StrideA, StrideB0, StrideB1, StrideC, BatchStrideA, " printf("arg4 to 16: M, N, K, O, Batch, StrideA, StrideB0, StrideB1, StrideC, BatchStrideA, "
"BatchStrideB0, BatchStrideB1, BatchStrideC\n"); "BatchStrideB0, BatchStrideB1, BatchStrideC\n");
printf("arg18: alpha\n"); printf("arg17: scale (alpha)\n");
exit(0); exit(0);
} }
...@@ -297,10 +297,11 @@ int main(int argc, char* argv[]) ...@@ -297,10 +297,11 @@ int main(int argc, char* argv[])
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{}); b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
} }
DeviceMem a_g_m_k_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSize()); DeviceMem a_g_m_k_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpaceSize());
DeviceMem b0_g_k_n_device_buf(sizeof(B0DataType) * b0_g_k_n.mDesc.GetElementSize()); DeviceMem b0_g_k_n_device_buf(sizeof(B0DataType) * b0_g_k_n.mDesc.GetElementSpaceSize());
DeviceMem b1_g_n_o_device_buf(sizeof(B1DataType) * b1_g_n_o.mDesc.GetElementSize()); DeviceMem b1_g_n_o_device_buf(sizeof(B1DataType) * b1_g_n_o.mDesc.GetElementSpaceSize());
DeviceMem c_g_m_o_device_buf(sizeof(CDataType) * c_g_m_o_device_result.mDesc.GetElementSize()); DeviceMem c_g_m_o_device_buf(sizeof(CDataType) *
c_g_m_o_device_result.mDesc.GetElementSpaceSize());
a_g_m_k_device_buf.ToDevice(a_g_m_k.mData.data()); a_g_m_k_device_buf.ToDevice(a_g_m_k.mData.data());
b0_g_k_n_device_buf.ToDevice(b0_g_k_n.mData.data()); b0_g_k_n_device_buf.ToDevice(b0_g_k_n.mData.data());
......
...@@ -129,6 +129,25 @@ namespace device { ...@@ -129,6 +129,25 @@ namespace device {
// B[G0, G1, ..., N0, N1, N2, ..., K0, K1, K2, ...] // B[G0, G1, ..., N0, N1, N2, ..., K0, K1, K2, ...]
// D[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...] // D[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...]
// E[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...] // E[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...]
// FIXME: TensorSpecialization::Packed specialization does not cover all packed tensor cases, it
// merely degenerates into TensorSpecialization::Default with NumDimG/M/N/K = 1
//
// Detail- Packed tensor satisfies
// stride_0 = 1
// stride_i = stride_{i - 1} * extent_{i - 1}
// So tensor
// [G0, G1, G2, M, N]
// transposed into tensor
// [G0, G2, G1, M, N]
// with strides
// [G2 * G1 * M * N, G1 * M * N, M * N, N, 1]
// is again a packed tensor. MakeGridDescriptor() currently just merges dimensions and ignores some
// strides from input tensor extents so finer dimension information is lost. Merging dimensions is
// essentially a degenerated case of TensorSpecialization::Default with NumDimG/M/N/K = 1.
//
// Might need to expose dimension order to the interface to fully support
// TensorSpecialization::Packed.
template <index_t NumDimG, template <index_t NumDimG,
index_t NumDimM, index_t NumDimM,
index_t NumDimN, index_t NumDimN,
......
...@@ -54,33 +54,6 @@ struct DeviceBatchedGemmGemm : public BaseOperator ...@@ -54,33 +54,6 @@ struct DeviceBatchedGemmGemm : public BaseOperator
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0; virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
}; };
template <typename ALayout,
typename B0Layout,
typename B1Layout,
typename CLayout,
typename ADataType,
typename B0DataType,
typename B1DataType,
typename CDataType,
typename AElementwiseOperation,
typename B0ElementwiseOperation,
typename Acc0ElementwiseOperation,
typename B1ElementwiseOperation,
typename CElementwiseOperation>
using DeviceBatchedGemmGemmPtr = std::unique_ptr<DeviceBatchedGemmGemm<ALayout,
B0Layout,
B1Layout,
CLayout,
ADataType,
B0DataType,
B1DataType,
CDataType,
AElementwiseOperation,
B0ElementwiseOperation,
Acc0ElementwiseOperation,
B1ElementwiseOperation,
CElementwiseOperation>>;
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
...@@ -54,34 +54,6 @@ struct DeviceBatchedGemmSoftmaxGemm : public BaseOperator ...@@ -54,34 +54,6 @@ struct DeviceBatchedGemmSoftmaxGemm : public BaseOperator
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0; virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
}; };
template <typename ALayout,
typename B0Layout,
typename B1Layout,
typename CLayout,
typename ADataType,
typename B0DataType,
typename B1DataType,
typename CDataType,
typename AElementwiseOperation,
typename B0ElementwiseOperation,
typename Acc0ElementwiseOperation,
typename B1ElementwiseOperation,
typename CElementwiseOperation>
using DeviceBatchedGemmSoftmaxGemmPtr =
std::unique_ptr<DeviceBatchedGemmSoftmaxGemm<ALayout,
B0Layout,
B1Layout,
CLayout,
ADataType,
B0DataType,
B1DataType,
CDataType,
AElementwiseOperation,
B0ElementwiseOperation,
Acc0ElementwiseOperation,
B1ElementwiseOperation,
CElementwiseOperation>>;
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ALayout,
typename B0Layout,
typename B1Layout,
typename CPermuteNumDims_G_M_Gemm1N, // Sequence<>
typename ADataType,
typename B0DataType,
typename B1DataType,
typename CDataType,
typename AElementwiseOperation,
typename B0ElementwiseOperation,
typename Acc0ElementwiseOperation,
typename B1ElementwiseOperation,
typename CElementwiseOperation>
struct DeviceBatchedGemmSoftmaxGemmPermute : public BaseOperator
{
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b0,
const void* p_b1,
void* p_c,
ck::index_t M,
ck::index_t N,
ck::index_t K,
ck::index_t O,
ck::index_t Batch,
std::vector<index_t> c_gs_ms_os_lengths,
std::vector<index_t> c_gs_ms_os_strides,
ck::index_t StrideA,
ck::index_t StrideB0,
ck::index_t StrideB1,
ck::index_t BatchStrideA,
ck::index_t BatchStrideB0,
ck::index_t BatchStrideB1,
AElementwiseOperation a_element_op,
B0ElementwiseOperation b0_element_op,
Acc0ElementwiseOperation acc0_element_op,
B1ElementwiseOperation b1_element_op,
CElementwiseOperation c_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -249,8 +249,6 @@ struct GridwiseBatchedGemmGemm_Xdl_CShuffle ...@@ -249,8 +249,6 @@ struct GridwiseBatchedGemmGemm_Xdl_CShuffle
return false; return false;
} }
assert(num_gemm1_k_outer_loop * num_gemm1_k_inner_loop == N / Gemm1KPerBlock);
if(!block_2_ctile_map.CheckValidity(c_grid_desc_m_n)) if(!block_2_ctile_map.CheckValidity(c_grid_desc_m_n))
{ {
return false; return false;
......
...@@ -245,8 +245,6 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle ...@@ -245,8 +245,6 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
return false; return false;
} }
assert(num_gemm1_k_outer_loop * num_gemm1_k_inner_loop == N / Gemm1KPerBlock);
if(!block_2_ctile_map.CheckValidity(c_grid_desc_m_n)) if(!block_2_ctile_map.CheckValidity(c_grid_desc_m_n))
{ {
return false; return false;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment