Unverified Commit d805a461 authored by Andriy Roshchenko's avatar Andriy Roshchenko Committed by GitHub
Browse files

Fix example_convnd_fwd_max_xdl_int8 failures on MI300 (#1666)

* Improve test verbosity.

* BUGFIX: Add missing initialization for reduction buffer

* Change default initialization method

Performance may be affected for fp32 and int8 examples.

* Improve test verbosity

* Cleanup
parent c1f8d53c
...@@ -80,7 +80,7 @@ using RLayout = typename LayoutSettingSelector<NDimSpatial>::RLayout; ...@@ -80,7 +80,7 @@ using RLayout = typename LayoutSettingSelector<NDimSpatial>::RLayout;
struct ExecutionConfig final struct ExecutionConfig final
{ {
bool do_verification = true; bool do_verification = true;
int init_method = 1; int init_method = 2;
bool time_kernel = false; bool time_kernel = false;
}; };
......
...@@ -73,16 +73,25 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size, ...@@ -73,16 +73,25 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
Tensor<EDataType> conv_output_device(conv_output_g_n_k_wos_desc); Tensor<EDataType> conv_output_device(conv_output_g_n_k_wos_desc);
Tensor<R0DataType> r0_device(r0_desc); Tensor<R0DataType> r0_device(r0_desc);
std::cout << "input: " << conv_input.mDesc << std::endl;
std::cout << "weight: " << conv_weight.mDesc << std::endl;
std::cout << "output: " << conv_output_device.mDesc << std::endl;
std::cout << "reduction: " << r0_device.mDesc << std::endl << std::endl;
switch(config.init_method) switch(config.init_method)
{ {
case 0: break; case 0: break;
case 1: case 1:
ck::utils::FillUniformDistributionIntegerValue<ADataType>{-8, 7}(conv_input); ck::utils::FillUniformDistributionIntegerValue<ADataType>{-8, 7}(conv_input);
ck::utils::FillUniformDistributionIntegerValue<BDataType>{-8, 7}(conv_weight); ck::utils::FillUniformDistributionIntegerValue<BDataType>{-1, 1}(conv_weight);
break;
case 2:
ck::utils::FillUniformDistributionIntegerValue<ADataType>{-8, 7}(conv_input);
ck::utils::FillUniformDistribution<BDataType>{-1, 1}(conv_weight);
break; break;
default: default:
ck::utils::FillUniformDistribution<ADataType>{-5, 5}(conv_input); ck::utils::FillUniformDistribution<ADataType>{-8, 7}(conv_input);
ck::utils::FillUniformDistribution<BDataType>{-5, 5}(conv_weight); ck::utils::FillUniformDistribution<BDataType>{-1, 1}(conv_weight);
} }
DeviceMem conv_input_device_buf(sizeof(ADataType) * conv_input.mDesc.GetElementSpaceSize()); DeviceMem conv_input_device_buf(sizeof(ADataType) * conv_input.mDesc.GetElementSpaceSize());
...@@ -161,15 +170,25 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size, ...@@ -161,15 +170,25 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
return false; return false;
} }
// XXX: DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle will not initialize r0.
r0_device_buf.SetValue(ck::NumericLimits<R0DataType>::Lowest());
const float avg_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel}); const float avg_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
const std::size_t flop = problem_size.GetFlops(); if(config.time_kernel)
const std::size_t num_btype = problem_size.GetByte<ADataType, BDataType, EDataType>(); {
const std::size_t flop = problem_size.GetFlops();
const std::size_t num_btype = problem_size.GetByte<ADataType, BDataType, EDataType>();
const float tflops = static_cast<float>(flop) / 1.E9 / avg_time; const float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
const float gb_per_sec = num_btype / 1.E6 / avg_time; const float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, " std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< conv.GetTypeString() << std::endl; << " GB/s, " << conv.GetTypeString() << std::endl;
}
else
{
std::cout << "FINISHED: " << conv.GetTypeString() << std::endl;
}
if(config.do_verification) if(config.do_verification)
{ {
...@@ -189,6 +208,7 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size, ...@@ -189,6 +208,7 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
BElementOp{}, BElementOp{},
PassThrough{}); PassThrough{});
std::cout << "\nRunning verification on CPU." << std::endl;
ref_invoker.Run(ref_argument); ref_invoker.Run(ref_argument);
Tensor<R0DataType> r0_host(r0_device.mDesc); Tensor<R0DataType> r0_host(r0_device.mDesc);
...@@ -273,13 +293,18 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size, ...@@ -273,13 +293,18 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
conv_output_device_buf.FromDevice(conv_output_device.mData.data()); conv_output_device_buf.FromDevice(conv_output_device.mData.data());
r0_device_buf.FromDevice(r0_device.mData.data()); r0_device_buf.FromDevice(r0_device.mData.data());
return ck::utils::check_err(conv_output_device, auto pass = ck::utils::check_err(conv_output_device,
conv_output_host, conv_output_host,
"Error: incorrect results! (Matrix E)", "Error: incorrect results! (Matrix E)",
1e-5f, 1e-3f,
1e-4f) && 1e-3f);
ck::utils::check_err( pass =
r0_device, r0_host, "Error: incorrect results! (Matrix R0)", 1e-5f, 1e-4f); pass && ck::utils::check_err(
r0_device, r0_host, "Error: incorrect results! (Matrix R0)", 1e-3f, 1e-3f);
if(pass)
std::cout << "Verification on CPU: PASS" << std::endl;
return pass;
} }
return true; return true;
......
...@@ -198,7 +198,7 @@ int main() ...@@ -198,7 +198,7 @@ int main()
throw std::runtime_error("wrong! this device_op instance does not support this problem"); throw std::runtime_error("wrong! this device_op instance does not support this problem");
} }
// init reducetion buffer to 0 // init reduction buffer to 0
r0_device_buf.SetZero(); r0_device_buf.SetZero();
r1_device_buf.SetZero(); r1_device_buf.SetZero();
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment