Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
d39c3f5d
Commit
d39c3f5d
authored
Jun 06, 2024
by
Jun Liu
Browse files
Merge branch 'develop' into amd-develop
parents
88b978c5
ac58cc5d
Changes
120
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
3083 additions
and
138 deletions
+3083
-138
Jenkinsfile
Jenkinsfile
+4
-4
client_example/24_grouped_conv_activation/CMakeLists.txt
client_example/24_grouped_conv_activation/CMakeLists.txt
+4
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale/common.hpp
...d_conv_activation/grouped_convnd_fwd_convscale/common.hpp
+316
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8.cpp
...grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8.cpp
+50
-0
docs/sphinx/requirements.in
docs/sphinx/requirements.in
+1
-1
docs/sphinx/requirements.txt
docs/sphinx/requirements.txt
+1
-1
example/62_convnd_activ/CMakeLists.txt
example/62_convnd_activ/CMakeLists.txt
+1
-0
example/62_convnd_activ/convscale/CMakeLists.txt
example/62_convnd_activ/convscale/CMakeLists.txt
+10
-0
example/62_convnd_activ/convscale/convnd_fwd_convscale_common.hpp
...62_convnd_activ/convscale/convnd_fwd_convscale_common.hpp
+301
-0
example/62_convnd_activ/convscale/convnd_fwd_xdl_convscale_fp8.cpp
...2_convnd_activ/convscale/convnd_fwd_xdl_convscale_fp8.cpp
+88
-0
example/62_convnd_activ/convscale/run_convnd_fwd_convscale_example.inc
...nvnd_activ/convscale/run_convnd_fwd_convscale_example.inc
+104
-0
example/ck_tile/01_fmha/CMakeLists.txt
example/ck_tile/01_fmha/CMakeLists.txt
+35
-4
example/ck_tile/01_fmha/fmha_bwd.cpp
example/ck_tile/01_fmha/fmha_bwd.cpp
+932
-0
example/ck_tile/01_fmha/fmha_bwd.hpp
example/ck_tile/01_fmha/fmha_bwd.hpp
+359
-0
example/ck_tile/01_fmha/fmha_fwd.cpp
example/ck_tile/01_fmha/fmha_fwd.cpp
+88
-47
example/ck_tile/01_fmha/fmha_fwd.hpp
example/ck_tile/01_fmha/fmha_fwd.hpp
+72
-42
example/ck_tile/01_fmha/generate.py
example/ck_tile/01_fmha/generate.py
+663
-39
example/ck_tile/01_fmha/script/benchmark_bwd.sh
example/ck_tile/01_fmha/script/benchmark_bwd.sh
+21
-0
example/ck_tile/01_fmha/script/benchmark_fwd.sh
example/ck_tile/01_fmha/script/benchmark_fwd.sh
+0
-0
example/ck_tile/01_fmha/script/smoke_test_bwd.sh
example/ck_tile/01_fmha/script/smoke_test_bwd.sh
+33
-0
No files found.
Jenkinsfile
View file @
d39c3f5d
...
@@ -652,8 +652,8 @@ def process_results(Map conf=[:]){
...
@@ -652,8 +652,8 @@ def process_results(Map conf=[:]){
}
}
//launch develop branch daily at 23:00 UT in FULL_QA mode and at 19:00 UT with latest staging compiler version
//launch develop branch daily at 23:00 UT in FULL_QA mode and at 19:00 UT with latest staging compiler version
CRON_SETTINGS
=
BRANCH_NAME
==
"develop"
?
'''0 23 * * * % RUN_FULL_QA=true;ROCMVERSION=6.1;
COMPILER_VERSION=
CRON_SETTINGS
=
BRANCH_NAME
==
"develop"
?
'''0 23 * * * % RUN_FULL_QA=true;ROCMVERSION=6.1;
0 21 * * * % ROCMVERSION=6.1;
COMPILER_VERSION=;COMPILER_COMMIT=
0 21 * * * % ROCMVERSION=6.1;
hipTensor_test=true
0 19 * * * % BUILD_DOCKER=true;DL_KERNELS=true;COMPILER_VERSION=amd-staging;COMPILER_COMMIT=;USE_SCCACHE=false
0 19 * * * % BUILD_DOCKER=true;DL_KERNELS=true;COMPILER_VERSION=amd-staging;COMPILER_COMMIT=;USE_SCCACHE=false
0 17 * * * % BUILD_DOCKER=true;DL_KERNELS=true;COMPILER_VERSION=amd-mainline-open;COMPILER_COMMIT=;USE_SCCACHE=false
0 17 * * * % BUILD_DOCKER=true;DL_KERNELS=true;COMPILER_VERSION=amd-mainline-open;COMPILER_COMMIT=;USE_SCCACHE=false
0 15 * * * % BUILD_INSTANCES_ONLY=true;RUN_CODEGEN_TESTS=false;RUN_PERFORMANCE_TESTS=false;USE_SCCACHE=false'''
:
""
0 15 * * * % BUILD_INSTANCES_ONLY=true;RUN_CODEGEN_TESTS=false;RUN_PERFORMANCE_TESTS=false;USE_SCCACHE=false'''
:
""
...
@@ -701,8 +701,8 @@ pipeline {
...
@@ -701,8 +701,8 @@ pipeline {
description:
"Select whether to build DL kernels (default: OFF)"
)
description:
"Select whether to build DL kernels (default: OFF)"
)
booleanParam
(
booleanParam
(
name:
"hipTensor_test"
,
name:
"hipTensor_test"
,
defaultValue:
tru
e
,
defaultValue:
fals
e
,
description:
"Use the CK build to verify hipTensor build and tests (default: O
N
)"
)
description:
"Use the CK build to verify hipTensor build and tests (default: O
FF
)"
)
string
(
string
(
name:
'hipTensor_branch'
,
name:
'hipTensor_branch'
,
defaultValue:
'mainline'
,
defaultValue:
'mainline'
,
...
...
client_example/24_grouped_conv_activation/CMakeLists.txt
View file @
d39c3f5d
...
@@ -35,6 +35,10 @@ target_link_libraries(client_grouped_convnd_fwd_scaleadd_ab_int8 PRIVATE composa
...
@@ -35,6 +35,10 @@ target_link_libraries(client_grouped_convnd_fwd_scaleadd_ab_int8 PRIVATE composa
add_executable
(
client_grouped_convnd_fwd_bilinear_residual_fp16
add_executable
(
client_grouped_convnd_fwd_bilinear_residual_fp16
grouped_convnd_fwd_bilinear/grouped_conv_fwd_bilinear_residual_fp16.cpp
)
grouped_convnd_fwd_bilinear/grouped_conv_fwd_bilinear_residual_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_bilinear_residual_fp16 PRIVATE composable_kernel::device_conv_operations
)
target_link_libraries
(
client_grouped_convnd_fwd_bilinear_residual_fp16 PRIVATE composable_kernel::device_conv_operations
)
# Fwd convscale
add_executable
(
client_conv3d_fwd_convscale_fp8
grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8.cpp
)
target_link_libraries
(
client_conv3d_fwd_convscale_fp8 PRIVATE composable_kernel::device_conv_operations
)
# Bwd data bilinear
# Bwd data bilinear
add_executable
(
client_grouped_convnd_bwd_data_bilinear_residual_fp16
add_executable
(
client_grouped_convnd_bwd_data_bilinear_residual_fp16
grouped_convnd_bwd_data_bilinear/grouped_conv_bwd_data_bilinear_residual_fp16.cpp
)
grouped_convnd_bwd_data_bilinear/grouped_conv_bwd_data_bilinear_residual_fp16.cpp
)
...
...
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale/common.hpp
0 → 100644
View file @
d39c3f5d
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <string>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_convscale.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ConvScale
=
ck
::
tensor_operation
::
element_wise
::
ConvScale
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
template
<
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetFlops
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
,
const
std
::
size_t
&
ds_size
)
{
// G * N * C * <output spatial lengths product> * (2 * K * <filter spatial lengths product> +
// <number of scale factors>)
ck
::
index_t
G
=
weights_lengths
[
0
];
ck
::
index_t
N
=
output_lengths
[
1
];
ck
::
index_t
K
=
weights_lengths
[
1
];
ck
::
index_t
C
=
weights_lengths
[
2
];
return
G
*
N
*
C
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
output_lengths
),
NumNonSpatialDim
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
*
(
static_cast
<
std
::
size_t
>
(
2
)
*
K
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
weights_lengths
),
NumNonSpatialDim
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
+
ds_size
);
}
template
<
typename
InDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetInputByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
input_lengths
)
{
// sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
return
sizeof
(
InDataType
)
*
std
::
accumulate
(
std
::
begin
(
input_lengths
),
std
::
end
(
input_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
WeiDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetWeightByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
)
{
// sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
return
sizeof
(
WeiDataType
)
*
std
::
accumulate
(
std
::
begin
(
weights_lengths
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
OutDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetOutputByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
)
{
// sizeof(OutDataType) * (G * N * K * <output spatial lengths product>);
return
sizeof
(
OutDataType
)
*
std
::
accumulate
(
std
::
begin
(
output_lengths
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<
std
::
size_t
>
());
}
template
<
ck
::
index_t
NumDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
,
ck
::
index_t
NumNonSpatialDim
=
3
,
typename
AComputeType
=
InDataType
,
typename
BComputeType
=
AComputeType
>
bool
run_grouped_conv_fwd_convscale
(
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
out_lengths
)
{
std
::
size_t
in_mem_size
=
GetInputByte
<
InDataType
,
NumDimSpatial
>
(
in_lengths
);
std
::
size_t
wei_mem_size
=
GetWeightByte
<
WeiDataType
,
NumDimSpatial
>
(
wei_lengths
);
std
::
size_t
out_mem_size
=
GetOutputByte
<
OutDataType
,
NumDimSpatial
>
(
out_lengths
);
SimpleDeviceMem
in
(
in_mem_size
);
SimpleDeviceMem
wei
(
wei_mem_size
);
SimpleDeviceMem
out
(
out_mem_size
);
float
scale_in
;
float
scale_wei
;
float
scale_out
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
out_strides
;
in_strides
.
fill
(
0
);
wei_strides
.
fill
(
0
);
out_strides
.
fill
(
0
);
in_strides
.
back
()
=
1
;
wei_strides
.
back
()
=
1
;
out_strides
.
back
()
=
1
;
std
::
partial_sum
(
rbegin
(
in_lengths
),
std
::
prev
(
rend
(
in_lengths
)),
std
::
next
(
rbegin
(
in_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
wei_lengths
),
std
::
prev
(
rend
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
out_lengths
),
std
::
prev
(
rend
(
out_lengths
)),
std
::
next
(
rbegin
(
out_strides
)),
std
::
multiplies
<>
{});
// transpose NDHWGC/KZYXGC/NDHWGK to GNDHWC/GKZYXC/GNDHWK to GNCDHW/GKCZYX/GNKDHW
std
::
rotate
(
std
::
next
(
rbegin
(
in_lengths
)),
std
::
next
(
rbegin
(
in_lengths
),
2
),
rend
(
in_lengths
));
std
::
rotate
(
rbegin
(
in_lengths
),
std
::
next
(
rbegin
(
in_lengths
)),
std
::
next
(
rbegin
(
in_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
in_strides
)),
std
::
next
(
rbegin
(
in_strides
),
2
),
rend
(
in_strides
));
std
::
rotate
(
rbegin
(
in_strides
),
std
::
next
(
rbegin
(
in_strides
)),
std
::
next
(
rbegin
(
in_strides
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
wei_lengths
),
std
::
next
(
rbegin
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
wei_strides
),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
next
(
rbegin
(
wei_strides
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
out_lengths
)),
std
::
next
(
rbegin
(
out_lengths
),
2
),
rend
(
out_lengths
));
std
::
rotate
(
rbegin
(
out_lengths
),
std
::
next
(
rbegin
(
out_lengths
)),
std
::
next
(
rbegin
(
out_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
out_strides
)),
std
::
next
(
rbegin
(
out_strides
),
2
),
rend
(
out_strides
));
std
::
rotate
(
rbegin
(
out_strides
),
std
::
next
(
rbegin
(
out_strides
)),
std
::
next
(
rbegin
(
out_strides
),
NumDimSpatial
+
1
));
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_dilations
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
;
conv_filter_strides
.
fill
(
1
);
conv_filter_dilations
.
fill
(
1
);
input_left_pads
.
fill
(
1
);
input_right_pads
.
fill
(
1
);
std
::
size_t
ds_size
=
3
;
// 3 element-wise scale multipliers
std
::
size_t
flop
=
GetFlops
<
NumDimSpatial
>
(
out_lengths
,
wei_lengths
,
ds_size
);
std
::
size_t
num_bytes
=
in_mem_size
+
wei_mem_size
+
sizeof
(
float
)
+
sizeof
(
float
)
+
sizeof
(
float
)
+
out_mem_size
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
PassThrough
,
PassThrough
,
ConvScale
,
AComputeType
,
BComputeType
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
out_lengths
,
out_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
ConvScale
{
scale_in
,
scale_wei
,
scale_out
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
false
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
out_lengths
,
out_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
ConvScale
{
scale_in
,
scale_wei
,
scale_out
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
true
;
}
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8.cpp
0 → 100644
View file @
d39c3f5d
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
f8_t
;
using
CShuffleDataType
=
float
;
using
OutDataType
=
ck
::
f8_t
;
using
AComputeDataType
=
ck
::
f8_t
;
using
BComputeDataType
=
ck
::
f8_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_fwd_convscale
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
3
,
AComputeDataType
,
BComputeDataType
>
(
{
N
,
Di
,
Hi
,
Wi
,
G
,
C
},
{
G
,
K
,
Z
,
Y
,
X
,
C
},
{
N
,
Do
,
Ho
,
Wo
,
G
,
K
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
docs/sphinx/requirements.in
View file @
d39c3f5d
rocm-docs-core==1.
2
.0
rocm-docs-core==1.
3
.0
sphinxcontrib-bibtex==2.6.2
sphinxcontrib-bibtex==2.6.2
docs/sphinx/requirements.txt
View file @
d39c3f5d
...
@@ -103,7 +103,7 @@ requests==2.31.0
...
@@ -103,7 +103,7 @@ requests==2.31.0
# via
# via
# pygithub
# pygithub
# sphinx
# sphinx
rocm-docs-core==1.
2
.0
rocm-docs-core==1.
3
.0
# via -r requirements.in
# via -r requirements.in
six==1.16.0
six==1.16.0
# via
# via
...
...
example/62_convnd_activ/CMakeLists.txt
View file @
d39c3f5d
add_subdirectory
(
binary
)
add_subdirectory
(
binary
)
add_subdirectory
(
convscale
)
add_subdirectory
(
multi_AB
)
add_subdirectory
(
multi_AB
)
add_subdirectory
(
unary
)
add_subdirectory
(
unary
)
...
...
example/62_convnd_activ/convscale/CMakeLists.txt
0 → 100644
View file @
d39c3f5d
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_custom_target
(
example_convnd_activ_xdl_convscale
)
add_example_executable
(
example_convnd_fwd_xdl_convscale_fp8 convnd_fwd_xdl_convscale_fp8.cpp
)
add_example_dependencies
(
example_convnd_activ_xdl_convscale example_convnd_fwd_xdl_convscale_fp8
)
set
(
target 1
)
endif
()
endforeach
()
example/62_convnd_activ/convscale/convnd_fwd_convscale_common.hpp
0 → 100644
View file @
d39c3f5d
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ConvScale
=
ck
::
tensor_operation
::
element_wise
::
ConvScale
;
void
print_helper_msg
()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=no, 1=yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
}
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_rtol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1e-6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5e-2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
1e-1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
1.5e-1
;
// 57344 and 49152 are acceptable
}
else
{
return
1e-3
;
}
}
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_atol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1e-6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5e-2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
16.1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
8192.1
;
// 57344 and 49152 are acceptable
}
else
{
return
1e-3
;
}
}
template
<
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetFlops
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
,
const
std
::
size_t
&
ds_size
)
{
// G * N * C * <output spatial lengths product> * (2 * K * <filter spatial lengths product> +
// <number of scale factors>)
ck
::
index_t
G
=
weights_lengths
[
0
];
ck
::
index_t
N
=
output_lengths
[
1
];
ck
::
index_t
K
=
weights_lengths
[
1
];
ck
::
index_t
C
=
weights_lengths
[
2
];
return
G
*
N
*
C
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
output_lengths
),
NumNonSpatialDim
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
*
(
static_cast
<
std
::
size_t
>
(
2
)
*
K
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
weights_lengths
),
NumNonSpatialDim
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
+
ds_size
);
}
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
OutDataType
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
DeviceConvNDFwdInstance
>
bool
run_grouped_conv_fwd
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
)
{
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
CShuffleDataType
>
c
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_device
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_host
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
// random scale values
float
scale_in
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_wei
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_out
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
// initialize out_element_op for each iteration
const
auto
out_element_op
=
OutElementOp
{
scale_in
,
scale_wei
,
scale_out
};
// do Conv
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
);
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
ds_size
=
3
;
// 3 element-wise scale multipliers
std
::
size_t
flop
=
GetFlops
<
NDimSpatial
>
(
e_g_n_k_wos_lengths
,
b_g_k_c_xs_lengths
,
ds_size
);
std
::
size_t
num_btype
=
conv_param
.
GetInputByte
<
InDataType
>
()
+
conv_param
.
GetWeightByte
<
WeiDataType
>
()
+
sizeof
(
float
)
+
sizeof
(
float
)
+
sizeof
(
float
)
+
conv_param
.
GetOutputByte
<
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InDataType
,
WeiDataType
,
CShuffleDataType
,
InElementOp
,
WeiElementOp
,
PassThrough
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
wei
,
c
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
out_host
.
ForEach
([
&
](
auto
&
,
auto
idx
)
{
out_element_op
(
out_host
(
idx
),
c
(
idx
));
});
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
out_device
,
out_host
,
"Error: incorrect results!"
,
get_rtol
<
OutDataType
>
(),
get_atol
<
OutDataType
>
());
}
return
true
;
}
example/62_convnd_activ/convscale/convnd_fwd_xdl_convscale_fp8.cpp
0 → 100644
View file @
d39c3f5d
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_convscale_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
f8_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
float
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
OutDataType
=
ck
::
f8_t
;
using
AComputeDataType
=
ck
::
f8_t
;
using
BComputeDataType
=
ck
::
f8_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
ConvScale
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
DsLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
DsLayout
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
AComputeDataType
,
BComputeDataType
>
;
#include "run_convnd_fwd_convscale_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_convnd_fwd_example
(
argc
,
argv
)
?
0
:
1
;
}
example/62_convnd_activ/convscale/run_convnd_fwd_convscale_example.inc
0 → 100644
View file @
d39c3f5d
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
bool
run_convnd_fwd_example
(
int
argc
,
char
*
argv
[])
{
print_helper_msg
();
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
ck
::
utils
::
conv
::
ConvParam
conv_param
{
2
,
1
,
128
,
256
,
192
,
{
3
,
3
},
{
71
,
71
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}};
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
conv_param
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
5
,
argv
);
}
// instantiate in and wei element ops, will
// instantiate out_element_op below for every iteration
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
run
=
[
&
](
auto
ndim_spatial
,
auto
in_layout
,
auto
wei_layout
,
auto
ds_layout
,
auto
out_layout
)
{
constexpr
ck
::
index_t
ndim_spatial_value
=
ndim_spatial
.
value
;
using
InLayout
=
decltype
(
in_layout
);
using
WeiLayout
=
decltype
(
wei_layout
);
using
DsLayout
=
decltype
(
ds_layout
);
using
OutLayout
=
decltype
(
out_layout
);
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
return
run_grouped_conv_fwd
<
ndim_spatial_value
,
InDataType
,
WeiDataType
,
CShuffleDataType
,
DsDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceGroupedConvNDFwdInstance
<
ndim_spatial_value
,
InLayout
,
WeiLayout
,
DsLayout
,
OutLayout
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
);
};
namespace
ctc
=
ck
::
tensor_layout
::
convolution
;
if
(
conv_param
.
num_dim_spatial_
==
1
)
{
return
run
(
ck
::
Number
<
1
>
{},
ctc
::
GNWC
{},
ctc
::
GKXC
{},
ck
::
Tuple
<>
{},
ctc
::
GNWK
{});
}
else
if
(
conv_param
.
num_dim_spatial_
==
2
)
{
return
run
(
ck
::
Number
<
2
>
{},
ctc
::
GNHWC
{},
ctc
::
GKYXC
{},
ck
::
Tuple
<>
{},
ctc
::
GNHWK
{});
}
else
if
(
conv_param
.
num_dim_spatial_
==
3
)
{
return
run
(
ck
::
Number
<
3
>
{},
ctc
::
GNDHWC
{},
ctc
::
GKZYXC
{},
ck
::
Tuple
<>
{},
ctc
::
GNDHWK
{});
}
return
true
;
}
example/ck_tile/01_fmha/CMakeLists.txt
View file @
d39c3f5d
# generate a list of kernels, but not actually emit files at config stage
# generate a list of kernels, but not actually emit files at config stage
execute_process
(
execute_process
(
COMMAND
${
Python3_EXECUTABLE
}
${
CMAKE_CURRENT_LIST_DIR
}
/generate.py
COMMAND
${
Python3_EXECUTABLE
}
${
CMAKE_CURRENT_LIST_DIR
}
/generate.py
--list_blobs
${
CMAKE_CURRENT_BINARY_DIR
}
/blob_list.txt
--direction fwd
--list_blobs
${
CMAKE_CURRENT_BINARY_DIR
}
/
fwd_
blob_list.txt
)
)
# NOTE: for cmake, the FMHA_FWD_GEN_BLOBS files must be in the same directory
execute_process
(
COMMAND
${
Python3_EXECUTABLE
}
${
CMAKE_CURRENT_LIST_DIR
}
/generate.py
--direction bwd --list_blobs
${
CMAKE_CURRENT_BINARY_DIR
}
/bwd_blob_list.txt
)
# NOTE: for cmake, the FMHA_FWD_GEN_BLOBS/FMHA_BWD_GEN_BLOBS files must be in the same directory
# as current cmake list, otherwise will not figure out the dependency properly
# as current cmake list, otherwise will not figure out the dependency properly
file
(
STRINGS
${
CMAKE_CURRENT_BINARY_DIR
}
/blob_list.txt FMHA_FWD_GEN_BLOBS
)
file
(
STRINGS
${
CMAKE_CURRENT_BINARY_DIR
}
/fwd_blob_list.txt FMHA_FWD_GEN_BLOBS
)
file
(
STRINGS
${
CMAKE_CURRENT_BINARY_DIR
}
/bwd_blob_list.txt FMHA_BWD_GEN_BLOBS
)
add_custom_command
(
add_custom_command
(
OUTPUT
${
FMHA_FWD_GEN_BLOBS
}
OUTPUT
${
FMHA_FWD_GEN_BLOBS
}
COMMAND
${
Python3_EXECUTABLE
}
${
CMAKE_CURRENT_LIST_DIR
}
/generate.py
COMMAND
${
Python3_EXECUTABLE
}
${
CMAKE_CURRENT_LIST_DIR
}
/generate.py
--output_dir
${
CMAKE_CURRENT_BINARY_DIR
}
--direction fwd --output_dir
${
CMAKE_CURRENT_BINARY_DIR
}
)
add_custom_command
(
OUTPUT
${
FMHA_BWD_GEN_BLOBS
}
COMMAND
${
Python3_EXECUTABLE
}
${
CMAKE_CURRENT_LIST_DIR
}
/generate.py
--direction bwd --output_dir
${
CMAKE_CURRENT_BINARY_DIR
}
)
)
set
(
EXAMPLE_FMHA_FWD
"tile_example_fmha_fwd"
)
set
(
EXAMPLE_FMHA_FWD
"tile_example_fmha_fwd"
)
...
@@ -22,6 +34,14 @@ add_executable(${EXAMPLE_FMHA_FWD} EXCLUDE_FROM_ALL fmha_fwd.cpp)
...
@@ -22,6 +34,14 @@ add_executable(${EXAMPLE_FMHA_FWD} EXCLUDE_FROM_ALL fmha_fwd.cpp)
target_include_directories
(
${
EXAMPLE_FMHA_FWD
}
PRIVATE
${
CMAKE_CURRENT_LIST_DIR
}
)
target_include_directories
(
${
EXAMPLE_FMHA_FWD
}
PRIVATE
${
CMAKE_CURRENT_LIST_DIR
}
)
target_sources
(
${
EXAMPLE_FMHA_FWD
}
PRIVATE
${
FMHA_FWD_GEN_BLOBS
}
)
target_sources
(
${
EXAMPLE_FMHA_FWD
}
PRIVATE
${
FMHA_FWD_GEN_BLOBS
}
)
set
(
EXAMPLE_FMHA_BWD
"tile_example_fmha_bwd"
)
# not using add_example_executable() to add this target, since we don't want this to have
# to be included in "make all/install/check"
message
(
"adding example
${
EXAMPLE_FMHA_BWD
}
"
)
add_executable
(
${
EXAMPLE_FMHA_BWD
}
EXCLUDE_FROM_ALL fmha_bwd.cpp
)
target_include_directories
(
${
EXAMPLE_FMHA_BWD
}
PRIVATE
${
CMAKE_CURRENT_LIST_DIR
}
)
target_sources
(
${
EXAMPLE_FMHA_BWD
}
PRIVATE
${
FMHA_BWD_GEN_BLOBS
}
)
# NOTE: this is dangerous since will change the whole kernel to flush denormals
# NOTE: this is dangerous since will change the whole kernel to flush denormals
# WIP with compiler team for an exp2 intrinsic..., then remove this
# WIP with compiler team for an exp2 intrinsic..., then remove this
if
(
NOT DEFINED FMHA_FWD_FAST_EXP2
)
if
(
NOT DEFINED FMHA_FWD_FAST_EXP2
)
...
@@ -29,16 +49,27 @@ if(NOT DEFINED FMHA_FWD_FAST_EXP2)
...
@@ -29,16 +49,27 @@ if(NOT DEFINED FMHA_FWD_FAST_EXP2)
endif
()
endif
()
set
(
EXAMPLE_FMHA_FWD_COMPILE_OPTIONS
)
set
(
EXAMPLE_FMHA_FWD_COMPILE_OPTIONS
)
set
(
EXAMPLE_FMHA_BWD_COMPILE_OPTIONS
)
# NOTE: we turn off undefined-func-template to let source compile without explicit declare function specializations
# NOTE: we turn off undefined-func-template to let source compile without explicit declare function specializations
# ... because they are auto-generated
# ... because they are auto-generated
if
(
FMHA_FWD_FAST_EXP2
)
if
(
FMHA_FWD_FAST_EXP2
)
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=1 -fgpu-flush-denormals-to-zero
)
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=1 -fgpu-flush-denormals-to-zero
)
list
(
APPEND EXAMPLE_FMHA_BWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=1 -fgpu-flush-denormals-to-zero
)
else
()
else
()
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=0
)
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=0
)
list
(
APPEND EXAMPLE_FMHA_BWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=0
)
endif
()
endif
()
# Allow comparing floating points directly in order to check sentinel values
# Allow comparing floating points directly in order to check sentinel values
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-float-equal
)
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-float-equal
)
list
(
APPEND EXAMPLE_FMHA_BWD_COMPILE_OPTIONS -Wno-float-equal
)
target_compile_options
(
${
EXAMPLE_FMHA_FWD
}
PRIVATE
${
EXAMPLE_FMHA_FWD_COMPILE_OPTIONS
}
)
target_compile_options
(
${
EXAMPLE_FMHA_FWD
}
PRIVATE
${
EXAMPLE_FMHA_FWD_COMPILE_OPTIONS
}
)
target_compile_options
(
${
EXAMPLE_FMHA_BWD
}
PRIVATE
${
EXAMPLE_FMHA_BWD_COMPILE_OPTIONS
}
)
# TODO: we have to turn off this global prop, otherwise the progress bar generated
# by cmake will print too many files, execvp: /bin/sh: Argument list too long
# however, this property may affect global
# TODO: consider codegen a makefile by us
set_property
(
GLOBAL PROPERTY RULE_MESSAGES OFF
)
example/ck_tile/01_fmha/fmha_bwd.cpp
0 → 100644
View file @
d39c3f5d
This diff is collapsed.
Click to expand it.
example/ck_tile/01_fmha/fmha_bwd.hpp
0 → 100644
View file @
d39c3f5d
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/host/kernel_launch.hpp"
#include "ck_tile/ops/fmha.hpp"
#include "ck_tile/ops/epilogue.hpp"
#include "mask.hpp"
#include "bias.hpp"
#include <type_traits>
template
<
typename
DataType
>
struct
FmhaBwdTypeConfig
;
template
<
>
struct
FmhaBwdTypeConfig
<
ck_tile
::
half_t
>
{
using
QDataType
=
ck_tile
::
half_t
;
using
KDataType
=
ck_tile
::
half_t
;
using
VDataType
=
ck_tile
::
half_t
;
using
GemmDataType
=
ck_tile
::
half_t
;
using
BiasDataType
=
ck_tile
::
half_t
;
using
LSEDataType
=
float
;
using
AccDataType
=
float
;
// data type for gemm accumulation
using
DDataType
=
float
;
using
RandValOutputDataType
=
uint8_t
;
using
ODataType
=
ck_tile
::
half_t
;
using
OGradDataType
=
ck_tile
::
half_t
;
using
QGradDataType
=
ck_tile
::
half_t
;
using
KGradDataType
=
ck_tile
::
half_t
;
using
VGradDataType
=
ck_tile
::
half_t
;
using
BiasGradDataType
=
ck_tile
::
half_t
;
};
template
<
>
struct
FmhaBwdTypeConfig
<
ck_tile
::
bf16_t
>
{
using
QDataType
=
ck_tile
::
bf16_t
;
using
KDataType
=
ck_tile
::
bf16_t
;
using
VDataType
=
ck_tile
::
bf16_t
;
using
GemmDataType
=
ck_tile
::
bf16_t
;
using
BiasDataType
=
ck_tile
::
bf16_t
;
using
LSEDataType
=
float
;
using
AccDataType
=
float
;
// data type for gemm accumulation
using
DDataType
=
float
;
using
RandValOutputDataType
=
uint8_t
;
using
ODataType
=
ck_tile
::
bf16_t
;
using
OGradDataType
=
ck_tile
::
bf16_t
;
using
QGradDataType
=
ck_tile
::
bf16_t
;
using
KGradDataType
=
ck_tile
::
bf16_t
;
using
VGradDataType
=
ck_tile
::
bf16_t
;
using
BiasGradDataType
=
ck_tile
::
bf16_t
;
};
struct
FmhaMasks
{
using
NoMask
=
ck_tile
::
GenericAttentionMask
<
false
>
;
using
GenericMask
=
ck_tile
::
GenericAttentionMask
<
true
,
true
>
;
using
CausalMask
=
ck_tile
::
GenericAttentionMask
<
true
,
false
>
;
};
// runtime args, some will passed to karg, some will used to compute grids/blocks
struct
fmha_bwd_args
{
const
void
*
q_ptr
;
const
void
*
k_ptr
;
const
void
*
v_ptr
;
const
void
*
bias_ptr
;
// bias or alibi_slope pointer
const
void
*
o_ptr
;
const
void
*
lse_ptr
;
const
void
*
do_ptr
;
void
*
d_ptr
;
void
*
rand_val_ptr
;
void
*
dq_ptr
;
void
*
dk_ptr
;
void
*
dv_ptr
;
void
*
dbias_ptr
;
const
void
*
seqstart_q_ptr
;
const
void
*
seqstart_k_ptr
;
const
void
*
seqlen_k_ptr
;
ck_tile
::
index_t
seqlen_q
;
ck_tile
::
index_t
seqlen_k
;
ck_tile
::
index_t
batch
;
ck_tile
::
index_t
max_seqlen_q
;
ck_tile
::
index_t
max_seqlen_k
;
ck_tile
::
index_t
hdim_q
;
ck_tile
::
index_t
hdim_v
;
ck_tile
::
index_t
nhead_q
;
ck_tile
::
index_t
nhead_k
;
float
scale
;
ck_tile
::
index_t
stride_q
;
ck_tile
::
index_t
stride_k
;
ck_tile
::
index_t
stride_v
;
ck_tile
::
index_t
stride_bias
;
// if alibi, b*h need set this to h, 1*h need set this to 0
ck_tile
::
index_t
stride_o
;
ck_tile
::
index_t
stride_randval
;
ck_tile
::
index_t
stride_do
;
ck_tile
::
index_t
stride_dk
;
ck_tile
::
index_t
stride_dv
;
ck_tile
::
index_t
stride_dbias
;
ck_tile
::
index_t
nhead_stride_q
;
ck_tile
::
index_t
nhead_stride_k
;
ck_tile
::
index_t
nhead_stride_v
;
ck_tile
::
index_t
nhead_stride_bias
;
ck_tile
::
index_t
nhead_stride_o
;
ck_tile
::
index_t
nhead_stride_randval
;
ck_tile
::
index_t
nhead_stride_do
;
ck_tile
::
index_t
nhead_stride_lsed
;
ck_tile
::
index_t
nhead_stride_dbias
;
ck_tile
::
index_t
batch_stride_q
;
ck_tile
::
index_t
batch_stride_k
;
ck_tile
::
index_t
batch_stride_v
;
ck_tile
::
index_t
batch_stride_bias
;
ck_tile
::
index_t
batch_stride_o
;
ck_tile
::
index_t
batch_stride_randval
;
ck_tile
::
index_t
batch_stride_do
;
ck_tile
::
index_t
batch_stride_lsed
;
ck_tile
::
index_t
batch_stride_dk
;
ck_tile
::
index_t
batch_stride_dv
;
ck_tile
::
index_t
batch_stride_dbias
;
ck_tile
::
index_t
window_size_left
;
ck_tile
::
index_t
window_size_right
;
ck_tile
::
index_t
mask_type
;
float
p_drop
;
float
p_undrop
;
bool
s_randval
;
std
::
tuple
<
uint64_t
,
uint64_t
>
drop_seed_offset
;
};
template
<
typename
FmhaBwdDQDKDVKernel
>
auto
fmha_bwd_dq_dk_dv_create_kargs_and_grids
(
fmha_bwd_args
args
)
{
assert
(
args
.
nhead_q
%
args
.
nhead_k
==
0
);
auto
kargs
=
[
&
]
{
// create group mode kernel arguments
if
constexpr
(
FmhaBwdDQDKDVKernel
::
kIsGroupMode
)
{
return
FmhaBwdDQDKDVKernel
::
MakeKargs
(
args
.
q_ptr
,
args
.
k_ptr
,
args
.
v_ptr
,
args
.
bias_ptr
,
args
.
lse_ptr
,
args
.
do_ptr
,
args
.
d_ptr
,
args
.
rand_val_ptr
,
args
.
dq_ptr
,
args
.
dk_ptr
,
args
.
dv_ptr
,
args
.
dbias_ptr
,
args
.
seqstart_q_ptr
,
args
.
seqstart_k_ptr
,
args
.
seqlen_k_ptr
,
args
.
hdim_q
,
args
.
hdim_v
,
args
.
nhead_q
,
args
.
nhead_q
/
args
.
nhead_k
,
args
.
scale
,
args
.
stride_q
,
args
.
stride_k
,
args
.
stride_v
,
args
.
stride_bias
,
args
.
stride_randval
,
args
.
stride_do
,
args
.
stride_dk
,
args
.
stride_dv
,
args
.
stride_dbias
,
args
.
nhead_stride_q
,
args
.
nhead_stride_k
,
args
.
nhead_stride_v
,
args
.
nhead_stride_bias
,
args
.
nhead_stride_randval
,
args
.
nhead_stride_do
,
args
.
nhead_stride_lsed
,
args
.
nhead_stride_dbias
,
args
.
batch_stride_lsed
,
args
.
window_size_left
,
args
.
window_size_right
,
args
.
mask_type
,
args
.
p_drop
,
args
.
s_randval
,
args
.
drop_seed_offset
);
}
else
{
// create batch mode kernel arguments
return
FmhaBwdDQDKDVKernel
::
MakeKargs
(
args
.
q_ptr
,
args
.
k_ptr
,
args
.
v_ptr
,
args
.
bias_ptr
,
args
.
lse_ptr
,
args
.
do_ptr
,
args
.
d_ptr
,
args
.
rand_val_ptr
,
args
.
dq_ptr
,
args
.
dk_ptr
,
args
.
dv_ptr
,
args
.
dbias_ptr
,
args
.
seqlen_q
,
args
.
seqlen_k
,
args
.
hdim_q
,
args
.
hdim_v
,
args
.
nhead_q
,
args
.
nhead_q
/
args
.
nhead_k
,
args
.
scale
,
args
.
stride_q
,
args
.
stride_k
,
args
.
stride_v
,
args
.
stride_bias
,
args
.
stride_randval
,
args
.
stride_do
,
args
.
stride_dk
,
args
.
stride_dv
,
args
.
stride_dbias
,
args
.
nhead_stride_q
,
args
.
nhead_stride_k
,
args
.
nhead_stride_v
,
args
.
nhead_stride_bias
,
args
.
nhead_stride_randval
,
args
.
nhead_stride_do
,
args
.
nhead_stride_lsed
,
args
.
nhead_stride_dbias
,
args
.
batch_stride_q
,
args
.
batch_stride_k
,
args
.
batch_stride_v
,
args
.
batch_stride_bias
,
args
.
batch_stride_randval
,
args
.
batch_stride_do
,
args
.
batch_stride_lsed
,
args
.
batch_stride_dk
,
args
.
batch_stride_dv
,
args
.
batch_stride_dbias
,
args
.
window_size_left
,
args
.
window_size_right
,
args
.
mask_type
,
args
.
p_drop
,
args
.
s_randval
,
args
.
drop_seed_offset
);
}
}();
dim3
grids
=
FmhaBwdDQDKDVKernel
::
GridSize
(
args
.
batch
,
args
.
nhead_q
,
args
.
max_seqlen_k
);
return
ck_tile
::
make_tuple
(
kargs
,
grids
);
}
template
<
typename
FmhaBwdOGradDotOKernel
>
auto
fmha_bwd_dot_do_o_create_kargs_and_grids
(
fmha_bwd_args
args
)
{
auto
kargs
=
[
&
]
{
// create group mode kernel arguments
if
constexpr
(
FmhaBwdOGradDotOKernel
::
kIsGroupMode
)
{
return
FmhaBwdOGradDotOKernel
::
MakeKargs
(
args
.
o_ptr
,
args
.
do_ptr
,
args
.
d_ptr
,
args
.
p_undrop
,
args
.
seqstart_q_ptr
,
args
.
hdim_v
,
args
.
stride_do
,
args
.
stride_o
,
args
.
nhead_stride_do
,
args
.
nhead_stride_o
,
args
.
nhead_stride_lsed
,
args
.
batch_stride_lsed
);
}
else
{
// create batch mode kernel arguments
return
FmhaBwdOGradDotOKernel
::
MakeKargs
(
args
.
o_ptr
,
args
.
do_ptr
,
args
.
d_ptr
,
args
.
p_undrop
,
args
.
seqlen_q
,
args
.
hdim_v
,
args
.
stride_do
,
args
.
stride_o
,
args
.
nhead_stride_do
,
args
.
nhead_stride_o
,
args
.
nhead_stride_lsed
,
args
.
batch_stride_do
,
args
.
batch_stride_o
,
args
.
batch_stride_lsed
);
}
}();
dim3
grids
=
FmhaBwdOGradDotOKernel
::
GridSize
(
args
.
batch
,
args
.
nhead_q
,
args
.
max_seqlen_q
);
return
ck_tile
::
make_tuple
(
kargs
,
grids
);
}
// this is used to pattern-match internl kernel implementation, not to instantiate kernel
template
<
ck_tile
::
index_t
HDim_
,
typename
DataType_
,
bool
kIsGroupMode_
,
ck_tile
::
BlockFmhaBwdPipelineEnum
FmhaBwdPipelineEnum_
,
typename
FmhaMask_
,
ck_tile
::
BlockAttentionBiasEnum
BiasEnum_
,
bool
kHasBiasGrad_
,
bool
kHasDropout_
,
bool
kPadS_
,
bool
kPadSK_
,
bool
kPadD_
,
bool
kPadDv_
>
struct
fmha_bwd_dq_dk_dv_traits_
{
static
constexpr
ck_tile
::
index_t
HDim
=
HDim_
;
using
DataType
=
ck_tile
::
remove_cvref_t
<
DataType_
>
;
static
constexpr
bool
kIsGroupMode
=
kIsGroupMode_
;
static
constexpr
auto
FmhaBwdPipelineEnum
=
FmhaBwdPipelineEnum_
;
using
FmhaMask
=
ck_tile
::
remove_cvref_t
<
FmhaMask_
>
;
static
constexpr
auto
BiasEnum
=
BiasEnum_
;
static
constexpr
bool
kHasBiasGrad
=
kHasBiasGrad_
;
static
constexpr
bool
kHasDropout
=
kHasDropout_
;
static
constexpr
bool
kPadS
=
kPadS_
;
static
constexpr
bool
kPadSK
=
kPadSK_
;
static
constexpr
bool
kPadD
=
kPadD_
;
static
constexpr
bool
kPadDv
=
kPadDv_
;
};
template
<
typename
Traits_
>
float
fmha_bwd_dq_dk_dv_
(
const
ck_tile
::
stream_config
&
,
fmha_bwd_args
);
template
<
typename
Traits_
>
void
fmha_bwd_dq_dk_dv_oneshot_
(
const
ck_tile
::
stream_config
&
,
fmha_bwd_args
);
template
<
typename
Traits_
>
std
::
string
fmha_bwd_dq_dk_dv_get_name_
();
template
<
ck_tile
::
index_t
HDim_
,
typename
DataType_
,
bool
kIsGroupMode_
,
bool
kPadS_
,
bool
kPadDv_
>
struct
fmha_bwd_dot_do_o_traits_
{
static
constexpr
ck_tile
::
index_t
HDim
=
HDim_
;
using
DataType
=
ck_tile
::
remove_cvref_t
<
DataType_
>
;
static
constexpr
bool
kIsGroupMode
=
kIsGroupMode_
;
static
constexpr
bool
kPadS
=
kPadS_
;
static
constexpr
bool
kPadDv
=
kPadDv_
;
};
template
<
typename
Traits_
>
float
fmha_bwd_dot_do_o_
(
const
ck_tile
::
stream_config
&
,
fmha_bwd_args
);
template
<
typename
Traits_
>
void
fmha_bwd_dot_do_o_oneshot_
(
const
ck_tile
::
stream_config
&
,
fmha_bwd_args
);
template
<
typename
Traits_
>
std
::
string
fmha_bwd_dot_do_o_get_name_
();
// This is the public API, will be generated by script
struct
fmha_bwd_traits
{
int
hdim_q
;
int
hdim_v
;
std
::
string
data_type
;
bool
is_group_mode
;
mask_enum
mask_type
;
bias_enum
bias_type
;
// 0:no bias, 1:elementwise bias, 2:alibi. sync with BlockAttentionBiasEnum
bool
has_dbias
;
bool
has_dropout
;
// TODO: padding check is inside this api
};
float
fmha_bwd
(
fmha_bwd_traits
,
fmha_bwd_args
,
const
ck_tile
::
stream_config
&
);
example/ck_tile/01_fmha/fmha_fwd.cpp
View file @
d39c3f5d
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include "fmha_fwd.hpp"
#include "fmha_fwd.hpp"
#include "ck_tile/host.hpp"
#include "ck_tile/host.hpp"
...
@@ -110,6 +110,9 @@ auto create_args(int argc, char* argv[])
...
@@ -110,6 +110,9 @@ auto create_args(int argc, char* argv[])
"11939"
,
"11939"
,
"random seed used for initializing input tensors. 0 for "
"random seed used for initializing input tensors. 0 for "
"non-deterministic seed"
)
"non-deterministic seed"
)
.
insert
(
"p_drop"
,
"0"
,
"0~1 probability of dropout"
)
.
insert
(
"drop_seed"
,
"1"
,
"seed for random number generator"
)
.
insert
(
"drop_offset"
,
"0"
,
"offset for random number generator"
)
.
insert
(
"timer"
,
"gpu"
,
"gpu:gpu timer, cpu:cpu timer"
)
.
insert
(
"timer"
,
"gpu"
,
"gpu:gpu timer, cpu:cpu timer"
)
.
insert
(
"warmup"
,
"5"
,
"number of iterations before benchmark the kernel"
)
.
insert
(
"warmup"
,
"5"
,
"number of iterations before benchmark the kernel"
)
.
insert
(
"repeat"
,
"20"
,
"number of iterations to benchmark the kernel"
);
.
insert
(
"repeat"
,
"20"
,
"number of iterations to benchmark the kernel"
);
...
@@ -128,26 +131,11 @@ auto get_elimit(std::string /*init_method*/)
...
@@ -128,26 +131,11 @@ auto get_elimit(std::string /*init_method*/)
}
}
template
<
>
template
<
>
auto
get_elimit
<
ck_tile
::
bf16_t
>
(
std
::
string
init_method
)
auto
get_elimit
<
ck_tile
::
bf16_t
>
(
std
::
string
/*
init_method
*/
)
{
{
if
(
init_method
==
"ui"
||
init_method
==
"ni"
)
double
rtol
=
1e-2
;
{
double
atol
=
1e-2
;
double
rtol
=
1e-2
;
return
ck_tile
::
make_tuple
(
rtol
,
atol
);
double
atol
=
1e-2
;
return
ck_tile
::
make_tuple
(
rtol
,
atol
);
}
else
if
(
init_method
==
"nf"
)
{
double
rtol
=
1e-2
;
double
atol
=
1e-2
;
return
ck_tile
::
make_tuple
(
rtol
,
atol
);
}
else
{
double
rtol
=
3e-3
;
double
atol
=
3e-3
;
return
ck_tile
::
make_tuple
(
rtol
,
atol
);
}
}
}
template
<
>
template
<
>
...
@@ -250,6 +238,21 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -250,6 +238,21 @@ bool run(const ck_tile::ArgParser& arg_parser)
mask_info
mask
=
mask_info
::
decode
(
mask_info
mask
=
mask_info
::
decode
(
arg_parser
.
get_str
(
"mask"
),
seqlen_qs
[
0
],
seqlen_ks
[
0
]);
// TODO: we don't need x/y anymore
arg_parser
.
get_str
(
"mask"
),
seqlen_qs
[
0
],
seqlen_ks
[
0
]);
// TODO: we don't need x/y anymore
float
p_drop
=
arg_parser
.
get_float
(
"p_drop"
);
uint64_t
drop_seed
=
arg_parser
.
get_uint64
(
"drop_seed"
);
uint64_t
drop_offset
=
arg_parser
.
get_uint64
(
"drop_offset"
);
if
(
p_drop
<
0.0
f
||
p_drop
>
1.0
f
)
{
std
::
cerr
<<
"The value of p_drop should be 0~1"
<<
std
::
endl
;
return
false
;
}
bool
s_randval
=
false
;
if
(
p_drop
>
0.0
f
&&
do_validation
)
{
s_randval
=
true
;
}
std
::
string
init_method
=
arg_parser
.
get_str
(
"init"
);
std
::
string
init_method
=
arg_parser
.
get_str
(
"init"
);
std
::
optional
<
uint32_t
>
seed
=
arg_parser
.
get_uint32
(
"seed"
);
std
::
optional
<
uint32_t
>
seed
=
arg_parser
.
get_uint32
(
"seed"
);
if
(
*
seed
==
0
)
if
(
*
seed
==
0
)
...
@@ -274,21 +277,23 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -274,21 +277,23 @@ bool run(const ck_tile::ArgParser& arg_parser)
using
TypeConfig
=
FmhaFwdTypeConfig
<
DataType
>
;
using
TypeConfig
=
FmhaFwdTypeConfig
<
DataType
>
;
using
QDataType
=
typename
TypeConfig
::
QDataType
;
using
QDataType
=
typename
TypeConfig
::
QDataType
;
using
KDataType
=
typename
TypeConfig
::
KDataType
;
using
KDataType
=
typename
TypeConfig
::
KDataType
;
using
VDataType
=
typename
TypeConfig
::
VDataType
;
using
VDataType
=
typename
TypeConfig
::
VDataType
;
using
BiasDataType
=
typename
TypeConfig
::
BiasDataType
;
using
BiasDataType
=
typename
TypeConfig
::
BiasDataType
;
using
LSEDataType
=
typename
TypeConfig
::
LSEDataType
;
using
RandValOutputDataType
=
typename
TypeConfig
::
RandValOutputDataType
;
using
SaccDataType
=
typename
TypeConfig
::
SaccDataType
;
using
LSEDataType
=
typename
TypeConfig
::
LSEDataType
;
using
SMPLComputeDataType
=
typename
TypeConfig
::
SMPLComputeDataType
;
using
SaccDataType
=
typename
TypeConfig
::
SaccDataType
;
using
PDataType
=
typename
TypeConfig
::
PDataType
;
using
SMPLComputeDataType
=
typename
TypeConfig
::
SMPLComputeDataType
;
using
OaccDataType
=
typename
TypeConfig
::
OaccDataType
;
using
PDataType
=
typename
TypeConfig
::
PDataType
;
using
ODataType
=
typename
TypeConfig
::
ODataType
;
using
OaccDataType
=
typename
TypeConfig
::
OaccDataType
;
using
ODataType
=
typename
TypeConfig
::
ODataType
;
// accumulation numbers for performance evaluation
// accumulation numbers for performance evaluation
std
::
size_t
flop
=
0
,
num_byte
=
0
;
std
::
size_t
flop
=
0
,
num_byte
=
0
;
auto
max_seqlen_q
=
auto
max_seqlen_q
=
std
::
numeric_limits
<
int32_t
>::
min
();
// we will use max seqlen to decide grid size
std
::
numeric_limits
<
int32_t
>::
min
();
// we will use max seqlen to decide grid size
auto
max_seqlen_k
=
std
::
numeric_limits
<
int32_t
>::
min
();
{
{
for
(
ck_tile
::
index_t
wb
=
0
;
wb
<
batch
;
++
wb
)
for
(
ck_tile
::
index_t
wb
=
0
;
wb
<
batch
;
++
wb
)
{
{
...
@@ -300,6 +305,11 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -300,6 +305,11 @@ bool run(const ck_tile::ArgParser& arg_parser)
max_seqlen_q
=
real_seqlen_q
;
max_seqlen_q
=
real_seqlen_q
;
}
}
if
(
max_seqlen_k
<
real_seqlen_k
)
{
max_seqlen_k
=
real_seqlen_k
;
}
flop
+=
nhead
*
(
static_cast
<
std
::
size_t
>
(
2
)
*
real_seqlen_q
*
real_seqlen_k
*
hdim_q
+
flop
+=
nhead
*
(
static_cast
<
std
::
size_t
>
(
2
)
*
real_seqlen_q
*
real_seqlen_k
*
hdim_q
+
static_cast
<
std
::
size_t
>
(
2
)
*
real_seqlen_q
*
hdim_v
*
real_seqlen_k
);
static_cast
<
std
::
size_t
>
(
2
)
*
real_seqlen_q
*
hdim_v
*
real_seqlen_k
);
...
@@ -353,12 +363,16 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -353,12 +363,16 @@ bool run(const ck_tile::ArgParser& arg_parser)
// self define lse data layout as [shape_batch, nhead, shape_seqlen_q]
// self define lse data layout as [shape_batch, nhead, shape_seqlen_q]
ck_tile
::
HostTensor
<
LSEDataType
>
lse_host
(
ck_tile
::
HostTensor
<
LSEDataType
>
lse_host
(
lse
?
std
::
array
<
ck_tile
::
index_t
,
3
>
{
shape_
batch
,
nhead
,
shape
_seqlen_q
}
lse
?
std
::
array
<
ck_tile
::
index_t
,
3
>
{
batch
,
nhead
,
max
_seqlen_q
}
:
std
::
array
<
ck_tile
::
index_t
,
3
>
{
1
,
1
,
1
}
/* dummy shape for simplifying code */
);
:
std
::
array
<
ck_tile
::
index_t
,
3
>
{
1
,
1
,
1
}
/* dummy shape for simplifying code */
);
ck_tile
::
HostTensor
<
ODataType
>
o_host
(
ck_tile
::
HostTensor
<
ODataType
>
o_host
(
get_lengths
(
o_perm
,
shape_batch
,
nhead
,
shape_seqlen_q
,
hdim_v
));
get_lengths
(
o_perm
,
shape_batch
,
nhead
,
shape_seqlen_q
,
hdim_v
));
ck_tile
::
HostTensor
<
RandValOutputDataType
>
randval_host
(
p_drop
>
0
?
get_lengths
(
true
,
shape_batch
,
nhead
,
shape_seqlen_q
,
max_seqlen_k
)
:
std
::
array
<
ck_tile
::
index_t
,
4
>
{
1
,
1
,
1
,
1
});
if
(
init_method
==
"ui"
||
init_method
==
"0"
)
if
(
init_method
==
"ui"
||
init_method
==
"0"
)
{
{
ck_tile
::
FillUniformDistributionIntegerValue
<
QDataType
>
{
-
3.
f
,
3.
f
,
seed
}(
q_host
);
ck_tile
::
FillUniformDistributionIntegerValue
<
QDataType
>
{
-
3.
f
,
3.
f
,
seed
}(
q_host
);
...
@@ -434,6 +448,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -434,6 +448,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
ck_tile
::
DeviceMem
seqstart_q
(
seqstart_q_host
.
size
()
*
sizeof
(
int32_t
));
ck_tile
::
DeviceMem
seqstart_q
(
seqstart_q_host
.
size
()
*
sizeof
(
int32_t
));
ck_tile
::
DeviceMem
seqstart_k
(
seqstart_k_host
.
size
()
*
sizeof
(
int32_t
));
ck_tile
::
DeviceMem
seqstart_k
(
seqstart_k_host
.
size
()
*
sizeof
(
int32_t
));
ck_tile
::
DeviceMem
seqlen_k_buf
(
seqlen_kpads
[
0
]
<
0
?
0
:
seqlen_ks
.
size
()
*
sizeof
(
int32_t
));
ck_tile
::
DeviceMem
seqlen_k_buf
(
seqlen_kpads
[
0
]
<
0
?
0
:
seqlen_ks
.
size
()
*
sizeof
(
int32_t
));
ck_tile
::
DeviceMem
randval_buf
(
randval_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
alibi_slope_buf
(
alibi_slope_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
alibi_slope_buf
(
alibi_slope_host
.
get_element_space_size_in_bytes
());
q_buf
.
ToDevice
(
q_host
.
data
());
q_buf
.
ToDevice
(
q_host
.
data
());
...
@@ -463,8 +478,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -463,8 +478,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
<<
(
seqlen_kpads
[
0
]
<
0
?
""
<<
(
seqlen_kpads
[
0
]
<
0
?
""
:
(
std
::
string
(
"("
)
+
std
::
to_string
(
seqlen_kpads
[
0
])
+
")"
))
:
(
std
::
string
(
"("
)
+
std
::
to_string
(
seqlen_kpads
[
0
])
+
")"
))
<<
", d:"
<<
hdim_q
<<
"/"
<<
hdim_v
<<
", scale_s:"
<<
scale_s
<<
", bias:"
<<
bias
<<
", d:"
<<
hdim_q
<<
"/"
<<
hdim_v
<<
", scale_s:"
<<
scale_s
<<
", bias:"
<<
bias
<<
", lse:"
<<
lse
<<
", squant:"
<<
squan
t
<<
", mask:"
<<
mask
<<
", v:"
<<
vlayou
t
<<
",
p_drop:"
<<
p_drop
<<
",
lse:"
<<
lse
<<
", squant:"
<<
squant
<<
std
::
flush
;
<<
", mask:"
<<
mask
<<
", v:"
<<
vlayout
<<
std
::
flush
;
auto
fmha_traits
=
fmha_fwd_traits
{
hdim_q
,
auto
fmha_traits
=
fmha_fwd_traits
{
hdim_q
,
hdim_v
,
hdim_v
,
...
@@ -474,6 +489,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -474,6 +489,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
mask
.
type
,
mask
.
type
,
bias
.
type
,
bias
.
type
,
lse
,
lse
,
p_drop
>
0.0
f
,
squant
};
squant
};
auto
p_compute_element_func
=
[
&
]()
{
auto
p_compute_element_func
=
[
&
]()
{
...
@@ -505,8 +521,9 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -505,8 +521,9 @@ bool run(const ck_tile::ArgParser& arg_parser)
else
else
return
i_perm
?
shape_seqlen_k
:
nhead_k
*
shape_seqlen_k
;
return
i_perm
?
shape_seqlen_k
:
nhead_k
*
shape_seqlen_k
;
}();
}();
const
ck_tile
::
index_t
stride_bias
=
(
i_perm
?
shape_seqlen_k
:
1
*
shape_seqlen_k
);
const
ck_tile
::
index_t
stride_bias
=
(
i_perm
?
shape_seqlen_k
:
1
*
shape_seqlen_k
);
const
ck_tile
::
index_t
stride_o
=
(
o_perm
?
hdim_v
:
nhead
*
hdim_v
);
const
ck_tile
::
index_t
stride_randval
=
(
max_seqlen_k
);
const
ck_tile
::
index_t
stride_o
=
(
o_perm
?
hdim_v
:
nhead
*
hdim_v
);
// setup nhead_stride_* arguments
// setup nhead_stride_* arguments
const
ck_tile
::
index_t
nhead_stride_q
=
(
i_perm
?
shape_seqlen_q
*
hdim_q
:
hdim_q
);
const
ck_tile
::
index_t
nhead_stride_q
=
(
i_perm
?
shape_seqlen_q
*
hdim_q
:
hdim_q
);
const
ck_tile
::
index_t
nhead_stride_k
=
(
i_perm
?
shape_seqlen_k
*
hdim_q
:
hdim_q
);
const
ck_tile
::
index_t
nhead_stride_k
=
(
i_perm
?
shape_seqlen_k
*
hdim_q
:
hdim_q
);
...
@@ -518,21 +535,24 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -518,21 +535,24 @@ bool run(const ck_tile::ArgParser& arg_parser)
}();
}();
const
ck_tile
::
index_t
nhead_stride_bias
=
const
ck_tile
::
index_t
nhead_stride_bias
=
(
i_perm
?
0
*
shape_seqlen_q
*
shape_seqlen_k
:
0
*
shape_seqlen_k
);
(
i_perm
?
0
*
shape_seqlen_q
*
shape_seqlen_k
:
0
*
shape_seqlen_k
);
const
ck_tile
::
index_t
nhead_stride_lse
=
(
shape_seqlen_q
*
1
);
const
ck_tile
::
index_t
nhead_stride_randval
=
(
shape_seqlen_q
*
max_seqlen_k
);
const
ck_tile
::
index_t
nhead_stride_o
=
(
o_perm
?
shape_seqlen_q
*
hdim_v
:
hdim_v
);
const
ck_tile
::
index_t
nhead_stride_lse
=
max_seqlen_q
;
const
ck_tile
::
index_t
nhead_stride_o
=
(
o_perm
?
shape_seqlen_q
*
hdim_v
:
hdim_v
);
// setup batch_stride_* arguments
// setup batch_stride_* arguments
const
ck_tile
::
index_t
batch_stride_q
=
(
nhead
*
shape_seqlen_q
*
hdim_q
);
const
ck_tile
::
index_t
batch_stride_q
=
(
nhead
*
shape_seqlen_q
*
hdim_q
);
const
ck_tile
::
index_t
batch_stride_k
=
(
nhead_k
*
shape_seqlen_k
*
hdim_q
);
const
ck_tile
::
index_t
batch_stride_k
=
(
nhead_k
*
shape_seqlen_k
*
hdim_q
);
const
ck_tile
::
index_t
batch_stride_v
=
(
nhead_k
*
hdim_v
*
shape_seqlen_k
);
const
ck_tile
::
index_t
batch_stride_v
=
(
nhead_k
*
hdim_v
*
shape_seqlen_k
);
const
ck_tile
::
index_t
batch_stride_bias
=
(
0
*
nhead
*
shape_seqlen_q
*
shape_seqlen_k
);
const
ck_tile
::
index_t
batch_stride_bias
=
(
0
*
nhead
*
shape_seqlen_q
*
shape_seqlen_k
);
const
ck_tile
::
index_t
batch_stride_lse
=
(
nhead
*
shape_seqlen_q
*
1
);
const
ck_tile
::
index_t
batch_stride_randval
=
(
nhead
*
shape_seqlen_q
*
max_seqlen_k
);
const
ck_tile
::
index_t
batch_stride_o
=
(
nhead
*
shape_seqlen_q
*
hdim_v
);
const
ck_tile
::
index_t
batch_stride_lse
=
(
nhead
*
max_seqlen_q
);
const
ck_tile
::
index_t
batch_stride_o
=
(
nhead
*
shape_seqlen_q
*
hdim_v
);
return
fmha_fwd_args
{
q_buf
.
GetDeviceBuffer
(),
return
fmha_fwd_args
{
q_buf
.
GetDeviceBuffer
(),
k_buf
.
GetDeviceBuffer
(),
k_buf
.
GetDeviceBuffer
(),
v_buf
.
GetDeviceBuffer
(),
v_buf
.
GetDeviceBuffer
(),
bias
.
type
==
bias_enum
::
alibi
?
alibi_slope_buf
.
GetDeviceBuffer
()
bias
.
type
==
bias_enum
::
alibi
?
alibi_slope_buf
.
GetDeviceBuffer
()
:
bias_buf
.
GetDeviceBuffer
(),
:
bias_buf
.
GetDeviceBuffer
(),
randval_buf
.
GetDeviceBuffer
(),
lse_buf
.
GetDeviceBuffer
(),
lse_buf
.
GetDeviceBuffer
(),
o_buf
.
GetDeviceBuffer
(),
o_buf
.
GetDeviceBuffer
(),
seqstart_q
.
GetDeviceBuffer
(),
seqstart_q
.
GetDeviceBuffer
(),
...
@@ -554,22 +574,28 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -554,22 +574,28 @@ bool run(const ck_tile::ArgParser& arg_parser)
stride_v
,
stride_v
,
bias
.
type
==
bias_enum
::
alibi
?
(
bias
.
rank_info
==
0
?
0
:
nhead
)
bias
.
type
==
bias_enum
::
alibi
?
(
bias
.
rank_info
==
0
?
0
:
nhead
)
:
stride_bias
,
:
stride_bias
,
stride_randval
,
stride_o
,
stride_o
,
nhead_stride_q
,
nhead_stride_q
,
nhead_stride_k
,
nhead_stride_k
,
nhead_stride_v
,
nhead_stride_v
,
nhead_stride_bias
,
nhead_stride_bias
,
nhead_stride_randval
,
nhead_stride_lse
,
nhead_stride_lse
,
nhead_stride_o
,
nhead_stride_o
,
batch_stride_q
,
batch_stride_q
,
batch_stride_k
,
batch_stride_k
,
batch_stride_v
,
batch_stride_v
,
batch_stride_bias
,
batch_stride_bias
,
batch_stride_randval
,
batch_stride_lse
,
batch_stride_lse
,
batch_stride_o
,
batch_stride_o
,
mask
.
left
,
mask
.
left
,
mask
.
right
,
mask
.
right
,
static_cast
<
ck_tile
::
index_t
>
(
mask
.
type
)};
static_cast
<
ck_tile
::
index_t
>
(
mask
.
type
),
p_drop
,
s_randval
,
{
drop_seed
,
drop_offset
}};
}();
}();
float
ave_time
=
fmha_fwd
(
fmha_traits
,
fmha_args
,
stream_config
);
float
ave_time
=
fmha_fwd
(
fmha_traits
,
fmha_args
,
stream_config
);
...
@@ -596,6 +622,11 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -596,6 +622,11 @@ bool run(const ck_tile::ArgParser& arg_parser)
o_buf
.
FromDevice
(
o_host
.
data
());
o_buf
.
FromDevice
(
o_host
.
data
());
lse_buf
.
FromDevice
(
lse_host
.
data
());
lse_buf
.
FromDevice
(
lse_host
.
data
());
randval_buf
.
FromDevice
(
randval_host
.
data
());
float
p_undrop
=
1.0
-
p_drop
;
uint8_t
p_undrop_in_uint8_t
=
uint8_t
(
std
::
floor
(
p_undrop
*
std
::
numeric_limits
<
uint8_t
>::
max
()));
float
rp_undrop
=
1.0
/
p_undrop
;
bool
pass
=
true
;
bool
pass
=
true
;
...
@@ -771,6 +802,17 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -771,6 +802,17 @@ bool run(const ck_tile::ArgParser& arg_parser)
s_host_ref
,
p_host_ref
,
p_compute_element_func
);
s_host_ref
,
p_host_ref
,
p_compute_element_func
);
}
}
if
(
p_drop
>
0
)
{
ck_tile
::
HostTensor
<
RandValOutputDataType
>
randval_host_ref
(
{
nhead
,
real_seqlen_q
,
real_seqlen_k
});
randval_host_ref
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
randval_host
(
b
,
idx
[
0
],
idx
[
1
]
+
query_offset
,
idx
[
2
]);
});
ck_tile
::
reference_batched_dropout
(
p_host_ref
,
randval_host_ref
,
p_undrop_in_uint8_t
,
rp_undrop
);
}
ck_tile
::
reference_batched_gemm
<
PDataType
,
VDataType
,
OaccDataType
,
ODataType
>
(
ck_tile
::
reference_batched_gemm
<
PDataType
,
VDataType
,
OaccDataType
,
ODataType
>
(
p_host_ref
,
p_host_ref
,
v_host_ref
,
v_host_ref
,
...
@@ -804,9 +846,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
...
@@ -804,9 +846,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
if
(
lse
)
if
(
lse
)
{
{
ck_tile
::
HostTensor
<
SMPLComputeDataType
>
lse_host_result
({
nhead
,
real_seqlen_q
});
ck_tile
::
HostTensor
<
SMPLComputeDataType
>
lse_host_result
({
nhead
,
real_seqlen_q
});
lse_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
lse_host_result
.
ForEach
(
self
(
idx
)
=
lse_host
(
b
,
idx
[
0
],
idx
[
1
]
+
query_offset
);
[
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
lse_host
(
wb
,
idx
[
0
],
idx
[
1
]);
});
});
bool
lse_pass
=
ck_tile
::
check_err
(
lse_host_result
,
bool
lse_pass
=
ck_tile
::
check_err
(
lse_host_result
,
lse_host_ref
,
lse_host_ref
,
...
...
example/ck_tile/01_fmha/fmha_fwd.hpp
View file @
d39c3f5d
...
@@ -17,61 +17,65 @@ struct FmhaFwdTypeConfig;
...
@@ -17,61 +17,65 @@ struct FmhaFwdTypeConfig;
template
<
>
template
<
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
half_t
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
half_t
>
{
{
using
QDataType
=
ck_tile
::
half_t
;
using
QDataType
=
ck_tile
::
half_t
;
using
KDataType
=
ck_tile
::
half_t
;
using
KDataType
=
ck_tile
::
half_t
;
using
VDataType
=
ck_tile
::
half_t
;
using
VDataType
=
ck_tile
::
half_t
;
using
BiasDataType
=
ck_tile
::
half_t
;
using
BiasDataType
=
ck_tile
::
half_t
;
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
RandValOutputDataType
=
uint8_t
;
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
PDataType
=
ck_tile
::
half_t
;
// data type for A matrix of second gemm
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
PDataType
=
ck_tile
::
half_t
;
// data type for A matrix of second gemm
using
ODataType
=
ck_tile
::
half_t
;
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
ODataType
=
ck_tile
::
half_t
;
};
};
template
<
>
template
<
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
bf16_t
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
bf16_t
>
{
{
using
QDataType
=
ck_tile
::
bf16_t
;
using
QDataType
=
ck_tile
::
bf16_t
;
using
KDataType
=
ck_tile
::
bf16_t
;
using
KDataType
=
ck_tile
::
bf16_t
;
using
VDataType
=
ck_tile
::
bf16_t
;
using
VDataType
=
ck_tile
::
bf16_t
;
using
BiasDataType
=
ck_tile
::
bf16_t
;
using
BiasDataType
=
ck_tile
::
bf16_t
;
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
RandValOutputDataType
=
uint8_t
;
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
PDataType
=
ck_tile
::
bf16_t
;
// data type for A matrix of second gemm
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
PDataType
=
ck_tile
::
bf16_t
;
// data type for A matrix of second gemm
using
ODataType
=
ck_tile
::
bf16_t
;
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
ODataType
=
ck_tile
::
bf16_t
;
};
};
template
<
>
template
<
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
fp8_t
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
fp8_t
>
{
{
using
QDataType
=
ck_tile
::
fp8_t
;
using
QDataType
=
ck_tile
::
fp8_t
;
using
KDataType
=
ck_tile
::
fp8_t
;
using
KDataType
=
ck_tile
::
fp8_t
;
using
VDataType
=
ck_tile
::
fp8_t
;
using
VDataType
=
ck_tile
::
fp8_t
;
using
BiasDataType
=
float
;
using
BiasDataType
=
float
;
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
RandValOutputDataType
=
uint8_t
;
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
PDataType
=
ck_tile
::
fp8_t
;
// data type for A matrix of second gemm
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
PDataType
=
ck_tile
::
fp8_t
;
// data type for A matrix of second gemm
using
ODataType
=
ck_tile
::
fp8_t
;
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
ODataType
=
ck_tile
::
fp8_t
;
};
};
template
<
>
template
<
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
bf8_t
>
struct
FmhaFwdTypeConfig
<
ck_tile
::
bf8_t
>
{
{
using
QDataType
=
ck_tile
::
bf8_t
;
using
QDataType
=
ck_tile
::
bf8_t
;
using
KDataType
=
ck_tile
::
bf8_t
;
using
KDataType
=
ck_tile
::
bf8_t
;
using
VDataType
=
ck_tile
::
bf8_t
;
using
VDataType
=
ck_tile
::
bf8_t
;
using
BiasDataType
=
ck_tile
::
bf8_t
;
using
BiasDataType
=
ck_tile
::
bf8_t
;
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
RandValOutputDataType
=
uint8_t
;
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
LSEDataType
=
float
;
// data type for lse(logsumexp L_j = max_j + log(l_j))
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
SaccDataType
=
float
;
// data type for first gemm accumulation
using
PDataType
=
ck_tile
::
bf8_t
;
// data type for A matrix of second gemm
using
SMPLComputeDataType
=
float
;
// data type for reduction, softmax
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
PDataType
=
ck_tile
::
bf8_t
;
// data type for A matrix of second gemm
using
ODataType
=
ck_tile
::
bf8_t
;
using
OaccDataType
=
float
;
// data type for second gemm accumulation
using
ODataType
=
ck_tile
::
bf8_t
;
};
};
struct
FmhaMasks
struct
FmhaMasks
...
@@ -88,6 +92,7 @@ struct fmha_fwd_args
...
@@ -88,6 +92,7 @@ struct fmha_fwd_args
const
void
*
k_ptr
;
const
void
*
k_ptr
;
const
void
*
v_ptr
;
const
void
*
v_ptr
;
const
void
*
bias_ptr
;
// bias or alibi_slope pointer
const
void
*
bias_ptr
;
// bias or alibi_slope pointer
void
*
rand_val_ptr
;
void
*
lse_ptr
;
void
*
lse_ptr
;
void
*
o_ptr
;
void
*
o_ptr
;
const
void
*
seqstart_q_ptr
;
const
void
*
seqstart_q_ptr
;
...
@@ -108,22 +113,28 @@ struct fmha_fwd_args
...
@@ -108,22 +113,28 @@ struct fmha_fwd_args
ck_tile
::
index_t
stride_k
;
ck_tile
::
index_t
stride_k
;
ck_tile
::
index_t
stride_v
;
ck_tile
::
index_t
stride_v
;
ck_tile
::
index_t
stride_bias
;
// if alibi, b*h need set this to h, 1*h need set this to 0
ck_tile
::
index_t
stride_bias
;
// if alibi, b*h need set this to h, 1*h need set this to 0
ck_tile
::
index_t
stride_randval
;
ck_tile
::
index_t
stride_o
;
ck_tile
::
index_t
stride_o
;
ck_tile
::
index_t
nhead_stride_q
;
ck_tile
::
index_t
nhead_stride_q
;
ck_tile
::
index_t
nhead_stride_k
;
ck_tile
::
index_t
nhead_stride_k
;
ck_tile
::
index_t
nhead_stride_v
;
ck_tile
::
index_t
nhead_stride_v
;
ck_tile
::
index_t
nhead_stride_bias
;
ck_tile
::
index_t
nhead_stride_bias
;
ck_tile
::
index_t
nhead_stride_randval
;
ck_tile
::
index_t
nhead_stride_lse
;
ck_tile
::
index_t
nhead_stride_lse
;
ck_tile
::
index_t
nhead_stride_o
;
ck_tile
::
index_t
nhead_stride_o
;
ck_tile
::
index_t
batch_stride_q
;
ck_tile
::
index_t
batch_stride_q
;
ck_tile
::
index_t
batch_stride_k
;
ck_tile
::
index_t
batch_stride_k
;
ck_tile
::
index_t
batch_stride_v
;
ck_tile
::
index_t
batch_stride_v
;
ck_tile
::
index_t
batch_stride_bias
;
ck_tile
::
index_t
batch_stride_bias
;
ck_tile
::
index_t
batch_stride_randval
;
ck_tile
::
index_t
batch_stride_lse
;
ck_tile
::
index_t
batch_stride_lse
;
ck_tile
::
index_t
batch_stride_o
;
ck_tile
::
index_t
batch_stride_o
;
ck_tile
::
index_t
window_size_left
;
ck_tile
::
index_t
window_size_left
;
ck_tile
::
index_t
window_size_right
;
ck_tile
::
index_t
window_size_right
;
ck_tile
::
index_t
mask_type
;
ck_tile
::
index_t
mask_type
;
float
p_drop
;
bool
s_randval
;
std
::
tuple
<
uint64_t
,
uint64_t
>
drop_seed_offset
;
};
};
template
<
typename
FmhaKernel
>
template
<
typename
FmhaKernel
>
...
@@ -138,6 +149,7 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
...
@@ -138,6 +149,7 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
args
.
k_ptr
,
args
.
k_ptr
,
args
.
v_ptr
,
args
.
v_ptr
,
args
.
bias_ptr
,
args
.
bias_ptr
,
args
.
rand_val_ptr
,
args
.
lse_ptr
,
args
.
lse_ptr
,
args
.
o_ptr
,
args
.
o_ptr
,
args
.
seqstart_q_ptr
,
args
.
seqstart_q_ptr
,
...
@@ -145,6 +157,7 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
...
@@ -145,6 +157,7 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
args
.
seqlen_k_ptr
,
args
.
seqlen_k_ptr
,
args
.
hdim_q
,
args
.
hdim_q
,
args
.
hdim_v
,
args
.
hdim_v
,
args
.
nhead_q
,
args
.
nhead_q
/
args
.
nhead_k
,
args
.
nhead_q
/
args
.
nhead_k
,
args
.
scale_s
,
args
.
scale_s
,
args
.
scale_p
,
args
.
scale_p
,
...
@@ -153,16 +166,22 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
...
@@ -153,16 +166,22 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
args
.
stride_k
,
args
.
stride_k
,
args
.
stride_v
,
args
.
stride_v
,
args
.
stride_bias
,
args
.
stride_bias
,
args
.
stride_randval
,
args
.
stride_o
,
args
.
stride_o
,
args
.
nhead_stride_q
,
args
.
nhead_stride_q
,
args
.
nhead_stride_k
,
args
.
nhead_stride_k
,
args
.
nhead_stride_v
,
args
.
nhead_stride_v
,
args
.
nhead_stride_bias
,
args
.
nhead_stride_bias
,
args
.
nhead_stride_randval
,
args
.
nhead_stride_lse
,
args
.
nhead_stride_lse
,
args
.
nhead_stride_o
,
args
.
nhead_stride_o
,
args
.
batch_stride_lse
,
args
.
window_size_left
,
args
.
window_size_left
,
args
.
window_size_right
,
args
.
window_size_right
,
args
.
mask_type
);
args
.
mask_type
,
args
.
p_drop
,
args
.
s_randval
,
args
.
drop_seed_offset
);
}
}
else
else
{
// create batch mode kernel arguments
{
// create batch mode kernel arguments
...
@@ -170,12 +189,14 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
...
@@ -170,12 +189,14 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
args
.
k_ptr
,
args
.
k_ptr
,
args
.
v_ptr
,
args
.
v_ptr
,
args
.
bias_ptr
,
args
.
bias_ptr
,
args
.
rand_val_ptr
,
args
.
lse_ptr
,
args
.
lse_ptr
,
args
.
o_ptr
,
args
.
o_ptr
,
args
.
seqlen_q
,
args
.
seqlen_q
,
args
.
seqlen_k
,
args
.
seqlen_k
,
args
.
hdim_q
,
args
.
hdim_q
,
args
.
hdim_v
,
args
.
hdim_v
,
args
.
nhead_q
,
args
.
nhead_q
/
args
.
nhead_k
,
args
.
nhead_q
/
args
.
nhead_k
,
args
.
scale_s
,
args
.
scale_s
,
args
.
scale_p
,
args
.
scale_p
,
...
@@ -184,22 +205,28 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
...
@@ -184,22 +205,28 @@ auto fmha_fwd_create_kargs_and_grids(fmha_fwd_args args)
args
.
stride_k
,
args
.
stride_k
,
args
.
stride_v
,
args
.
stride_v
,
args
.
stride_bias
,
args
.
stride_bias
,
args
.
stride_randval
,
args
.
stride_o
,
args
.
stride_o
,
args
.
nhead_stride_q
,
args
.
nhead_stride_q
,
args
.
nhead_stride_k
,
args
.
nhead_stride_k
,
args
.
nhead_stride_v
,
args
.
nhead_stride_v
,
args
.
nhead_stride_bias
,
args
.
nhead_stride_bias
,
args
.
nhead_stride_randval
,
args
.
nhead_stride_lse
,
args
.
nhead_stride_lse
,
args
.
nhead_stride_o
,
args
.
nhead_stride_o
,
args
.
batch_stride_q
,
args
.
batch_stride_q
,
args
.
batch_stride_k
,
args
.
batch_stride_k
,
args
.
batch_stride_v
,
args
.
batch_stride_v
,
args
.
batch_stride_bias
,
args
.
batch_stride_bias
,
args
.
batch_stride_randval
,
args
.
batch_stride_lse
,
args
.
batch_stride_lse
,
args
.
batch_stride_o
,
args
.
batch_stride_o
,
args
.
window_size_left
,
args
.
window_size_left
,
args
.
window_size_right
,
args
.
window_size_right
,
args
.
mask_type
);
args
.
mask_type
,
args
.
p_drop
,
args
.
s_randval
,
args
.
drop_seed_offset
);
}
}
}();
}();
...
@@ -222,6 +249,7 @@ template <ck_tile::index_t HDim_,
...
@@ -222,6 +249,7 @@ template <ck_tile::index_t HDim_,
typename
FmhaMask_
,
typename
FmhaMask_
,
ck_tile
::
BlockAttentionBiasEnum
BiasEnum_
,
ck_tile
::
BlockAttentionBiasEnum
BiasEnum_
,
bool
kStoreLse_
,
bool
kStoreLse_
,
bool
kHasDropout_
,
bool
kDoFp8StaticQuant_
,
bool
kDoFp8StaticQuant_
,
bool
kPadS_
,
bool
kPadS_
,
bool
kPadSK_
,
bool
kPadSK_
,
...
@@ -243,6 +271,7 @@ struct fmha_fwd_traits_
...
@@ -243,6 +271,7 @@ struct fmha_fwd_traits_
using
FmhaMask
=
ck_tile
::
remove_cvref_t
<
FmhaMask_
>
;
using
FmhaMask
=
ck_tile
::
remove_cvref_t
<
FmhaMask_
>
;
static
constexpr
auto
BiasEnum
=
BiasEnum_
;
static
constexpr
auto
BiasEnum
=
BiasEnum_
;
static
constexpr
bool
kStoreLse
=
kStoreLse_
;
static
constexpr
bool
kStoreLse
=
kStoreLse_
;
static
constexpr
bool
kHasDropout
=
kHasDropout_
;
static
constexpr
bool
kDoFp8StaticQuant
=
kDoFp8StaticQuant_
;
static
constexpr
bool
kDoFp8StaticQuant
=
kDoFp8StaticQuant_
;
static
constexpr
bool
kPadS
=
kPadS_
;
static
constexpr
bool
kPadS
=
kPadS_
;
static
constexpr
bool
kPadSK
=
kPadSK_
;
static
constexpr
bool
kPadSK
=
kPadSK_
;
...
@@ -264,6 +293,7 @@ struct fmha_fwd_traits
...
@@ -264,6 +293,7 @@ struct fmha_fwd_traits
mask_enum
mask_type
;
mask_enum
mask_type
;
bias_enum
bias_type
;
// 0:no bias, 1:elementwise bias, 2:alibi. sync with BlockAttentionBiasEnum
bias_enum
bias_type
;
// 0:no bias, 1:elementwise bias, 2:alibi. sync with BlockAttentionBiasEnum
bool
has_lse
;
bool
has_lse
;
bool
has_dropout
;
bool
do_fp8_static_quant
;
bool
do_fp8_static_quant
;
// TODO: padding check is inside this api
// TODO: padding check is inside this api
};
};
...
...
example/ck_tile/01_fmha/generate.py
View file @
d39c3f5d
This diff is collapsed.
Click to expand it.
example/ck_tile/01_fmha/script/benchmark_bwd.sh
0 → 100644
View file @
d39c3f5d
#!/bin/sh
# TODO: run this script from CK root
BUILD
=
build
EXE
=
$BUILD
/bin/tile_example_fmha_bwd
VALID
=
0
for
prec
in
"fp16"
"bf16"
;
do
for
perm
in
0 1
;
do
for
hdim
in
32 64 128
;
do
nhead
=
$((
2048
/
$hdim
))
# follow fav2 setup
$EXE
-prec
=
$prec
-b
=
32
-h
=
$nhead
-d
=
$hdim
-s
=
512
-iperm
=
$perm
-operm
=
$perm
-kname
=
1
-v
=
$VALID
;
sleep
3
$EXE
-prec
=
$prec
-b
=
16
-h
=
$nhead
-d
=
$hdim
-s
=
1024
-iperm
=
$perm
-operm
=
$perm
-kname
=
1
-v
=
$VALID
;
sleep
3
$EXE
-prec
=
$prec
-b
=
8
-h
=
$nhead
-d
=
$hdim
-s
=
2048
-iperm
=
$perm
-operm
=
$perm
-kname
=
1
-v
=
$VALID
;
sleep
3
$EXE
-prec
=
$prec
-b
=
4
-h
=
$nhead
-d
=
$hdim
-s
=
4096
-iperm
=
$perm
-operm
=
$perm
-kname
=
1
-v
=
$VALID
;
sleep
3
$EXE
-prec
=
$prec
-b
=
2
-h
=
$nhead
-d
=
$hdim
-s
=
8192
-iperm
=
$perm
-operm
=
$perm
-kname
=
1
-v
=
$VALID
;
sleep
3
$EXE
-prec
=
$prec
-b
=
1
-h
=
$nhead
-d
=
$hdim
-s
=
16384
-iperm
=
$perm
-operm
=
$perm
-kname
=
1
-v
=
$VALID
;
sleep
3
done
done
done
example/ck_tile/01_fmha/script/benchmark.sh
→
example/ck_tile/01_fmha/script/benchmark
_fwd
.sh
View file @
d39c3f5d
File moved
example/ck_tile/01_fmha/script/smoke_test_bwd.sh
0 → 100644
View file @
d39c3f5d
#!/bin/sh
# TODO: run this script from CK root
BUILD
=
build
EXE
=
$BUILD
/bin/tile_example_fmha_bwd
KNAME
=
1
export
CK_WARMUP
=
0
export
CK_REPEAT
=
1
COMMON_ARGS
=
'-v=1'
for
prec
in
"fp16"
"bf16"
;
do
for
perm
in
0 1
;
do
for
hdim
in
32 64 128
;
do
for
mode
in
0 1
;
do
for
bias
in
"n"
"e"
"a"
;
do
for
dbias
in
0 1
;
do
for
p_drop
in
0.0 0.2
;
do
$EXE
-prec
=
$prec
-b
=
1
-h
=
4
-h_k
=
2
-d
=
$hdim
-s
=
259
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
2
-h
=
2
-d
=
$hdim
-s
=
516
-s_k
=
253
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
1
-h
=
4
-h_k
=
1
-d
=
$hdim
-s
=
500
-s_k
=
251
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-mask
=
1
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
1
-h
=
2
-d
=
$hdim
-s
=
900
-s_k
=
258
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-mask
=
2
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
2
-h
=
1
-d
=
$hdim
-s
=
987
-s_k
=
219
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-mask
=
t:128,30
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
$EXE
-prec
=
$prec
-b
=
2
-h
=
3
-h_k
=
1
-d
=
$hdim
-s
=
244
-s_k
=
499
-bias
=
$bias
-dbias
=
$dbias
-p_drop
=
$p_drop
-iperm
=
$perm
-operm
=
$perm
-mask
=
b:4,35
-v
=
1
-mode
=
$mode
-kname
=
$KNAME
$COMMON_ARGS
done
done
done
done
done
done
done
Prev
1
2
3
4
5
6
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment