Commit cdfceb0a authored by Astha Rai's avatar Astha Rai
Browse files

Merge branch 'codegen_hiprtc' of github.com:ROCm/composable_kernel into codegen_hiprtc

parents b46349df 3b9a77df
......@@ -97,6 +97,10 @@ if(DL_KERNELS)
add_definitions(-DDL_KERNELS)
set(CK_ENABLE_DL_KERNELS "ON")
endif()
if(DPP_KERNELS)
add_definitions(-DDPP_KERNELS)
set(CK_ENABLE_DPP_KERNELS "ON")
endif()
option(CK_USE_CODEGEN "Enable codegen library" OFF)
if(CK_USE_CODEGEN)
add_definitions(-DCK_USE_CODEGEN)
......
......@@ -7,7 +7,7 @@ Copyright (c) 2020 , Advanced Micro Devices, Inc. (Xiaoyan Zhou)
Copyright (c) 2021-2022, Advanced Micro Devices, Inc. (Jianfeng Yan)
SPDX-License-Identifier: MIT
Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
......
......@@ -153,6 +153,9 @@ Additional cmake flags can be used to significantly speed-up the build:
`batched_gemm_multi_d_dl`. These instances are useful on architectures like the NAVI2x, as most
other platforms have faster instances, such as `xdl` or `wmma`, available.
* `DPP_KERNELS` (default is OFF) must be set to ON in order to build instances, such as `gemm_dpp`.
These instances are useful on architectures like the NAVI2x, as most other platforms have faster instances, such as `xdl` or `wmma`, available.
* `CK_USE_FP8_ON_UNSUPPORTED_ARCH` (default is OFF) must be set to ON in order to build instances,
such as `gemm_universal`, `gemm_universal_streamk` and `gemm_multiply_multiply` for fp8 data type for GPU targets which do not have native support for fp8 data type, such as gfx908 or gfx90a. These instances are useful on
architectures like the MI100/MI200 for the functional support only.
......
rocm-docs-core==1.12.1
rocm-docs-core==1.13.0
sphinxcontrib-bibtex==2.6.3
......@@ -103,7 +103,7 @@ requests==2.32.3
# via
# pygithub
# sphinx
rocm-docs-core==1.12.1
rocm-docs-core==1.13.0
# via -r requirements.in
six==1.16.0
# via pybtex
......
......@@ -54,9 +54,9 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME)
list(REMOVE_ITEM FILE_NAME "${source}")
endif()
endforeach()
#Do not build any DPP examples if DL_KERNELS not set
#Do not build any DPP examples if DPP_KERNELS not set
foreach(source IN LISTS FILE_NAME)
if(NOT DEFINED DL_KERNELS AND source MATCHES "_dpp")
if(NOT DEFINED DPP_KERNELS AND source MATCHES "_dpp")
message("removing dpp example ${source} ")
list(REMOVE_ITEM FILE_NAME "${source}")
endif()
......
......@@ -48,8 +48,8 @@ using fmha_dtype_{F_idx} = {F_dtype};
using fmha_mask_{F_idx} = {F_mask};
namespace {{
template <bool kHasUnevenSplits>
struct kernel_runner {{
template <bool kHasUnevenSplits, bool kMergeNumHeadGroupsSeqLenQ = false>
struct instance {{
using fmha_block_tile = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}>;
using fmha_shape = ck_tile::TileFmhaShape<fmha_block_tile,
......@@ -64,11 +64,12 @@ using fmha_trait = ck_tile::TileFmhaFwdSplitKVTraits<{F_spad},
{F_dpad},
{F_dvpad},
{F_bias},
false,
/*kHasBiasGrad=*/false,
{F_lse},
{F_squant},
{F_pagedkv},
kHasUnevenSplits,
kMergeNumHeadGroupsSeqLenQ,
{F_occupancy}>;
using fmha_pipeline_problem = ck_tile::BlockFmhaFwdSplitKVPipelineProblem<
......@@ -115,28 +116,50 @@ using trait_{F_idx} = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F
#include <iostream>
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wtautological-compare"
namespace {{
template <bool kHasUnevenSplits>
void run_instance(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a) {{
if constexpr ({F_hdim} == 128 && {F_bias} == ck_tile::BlockAttentionBiasEnum::NO_BIAS
&& (std::is_same_v<{F_mask}, ck_tile::SimplifiedGenericAttentionMask<false>>
|| std::is_same_v<{F_mask}, FmhaMasks::NoMask>)) {{
if (a.max_seqlen_q == 1 && a.nhead_k < a.nhead_q) {{
instance<kHasUnevenSplits, /*kMergeNumHeadGroupsSeqLenQ=*/true>::run(s, a);
}} else {{
instance<kHasUnevenSplits>::run(s, a);
}}
}} else {{
instance<kHasUnevenSplits>::run(s, a);
}}
}}
}} // anonymous namespace
#pragma clang diagnostic pop
template<>
void fmha_fwd_splitkv_oneshot_<trait_{F_idx}>(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a)
{{
if constexpr({F_mode} == false) {{ // batch mode
// we don't check every seqlen_k values for kvcache
if (a.seqlen_k_ptr != nullptr) {{
kernel_runner<true>::run(s, a);
run_instance</*kHasUnevenSplits=*/true>(s, a);
// make sure F_bn0 is divisible by F_bk1
}} else if (a.seqlen_k % (a.num_splits * {F_bn0}) == 0) {{
kernel_runner<false>::run(s, a);
run_instance</*kHasUnevenSplits=*/false>(s, a);
}} else {{
kernel_runner<true>::run(s, a);
run_instance</*kHasUnevenSplits=*/true>(s, a);
}}
}} else {{
kernel_runner<true>::run(s, a);
run_instance</*kHasUnevenSplits=*/true>(s, a);
}}
}}
template<>
std::string fmha_fwd_splitkv_get_name_<trait_{F_idx}>()
{{
using k_ = kernel_runner<true>::fmha_kernel; /// FIXME: choose real kernel type
using k_ = instance<true>::fmha_kernel; /// FIXME: choose real kernel type
return k_::GetName();
}}
"""
......@@ -146,7 +169,7 @@ using fmha_dtype_{F_idx} = {F_dtype};
namespace {{
template <ck_tile::index_t kLogMaxSplits>
struct kernel_runner {{
struct instance {{
using fmha_trait = ck_tile::TileFmhaFwdSplitKVCombineTraits<{F_spad},
{F_dvpad},
{F_lse},
......@@ -196,22 +219,22 @@ template<>
void fmha_fwd_splitkv_combine_oneshot_<trait_{F_idx}>(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a)
{{
if (a.num_splits <= 8) {{
kernel_runner<3>::run(s, a);
instance<3>::run(s, a);
}} else if (a.num_splits <= 16) {{
kernel_runner<4>::run(s, a);
instance<4>::run(s, a);
}} else if (a.num_splits <= 32) {{
kernel_runner<5>::run(s, a);
instance<5>::run(s, a);
}} else if (a.num_splits <= 64) {{
kernel_runner<6>::run(s, a);
instance<6>::run(s, a);
}} else if (a.num_splits <= 128) {{
kernel_runner<7>::run(s, a);
instance<7>::run(s, a);
}}
}}
template<>
std::string fmha_fwd_splitkv_combine_get_name_<trait_{F_idx}>()
{{
using k_ = kernel_runner<6>::fmha_kernel; /// FIXME: choose real kernel type
using k_ = instance<6>::fmha_kernel; /// FIXME: choose real kernel type
return k_::GetName();
}}
"""
......
......@@ -510,8 +510,8 @@ auto fmha_fwd_splitkv_create_kargs_and_grids(fmha_fwd_splitkv_args args)
}
}();
dim3 grids =
Kernel::GridSize(args.batch, args.nhead_q, args.max_seqlen_q, args.hdim_v, args.num_splits);
dim3 grids = Kernel::GridSize(
args.batch, args.nhead_q, args.nhead_k, args.max_seqlen_q, args.hdim_v, args.num_splits);
return ck_tile::make_tuple(kargs, grids);
}
......
This diff is collapsed.
......@@ -41,6 +41,7 @@ auto create_args(int argc, char* argv[])
.insert("prec_sy",
"auto",
"output quant scale type, set auto will use fp32. used when fquant=1 or 2")
.insert("xbias", "0", "add bias, 0:no add, 1:add bias before fadd")
.insert("fadd", "0", "fused-add, 0:no fused add, 1:preadd+store, 2:preadd only")
.insert("fquant", "0", "fused-quant, 0:no, 1:smooth-dynamic-quant, 2:dynamic-quant")
.insert("warmup", "5", "cold iter")
......@@ -93,6 +94,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
int do_validation = arg_parser.get_int("v");
int warmup = arg_parser.get_int("warmup");
int repeat = arg_parser.get_int("repeat");
int xbias = arg_parser.get_int("xbias");
int fused_add = arg_parser.get_int("fadd");
int fused_quant = arg_parser.get_int("fquant");
if(fused_quant == 1 && prec_o != "int8")
......@@ -107,6 +109,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
using XDataType = typename TypeConfig::XDataType;
using YDataType = typename TypeConfig::YDataType;
using XBiasDataType = typename TypeConfig::XBiasDataType;
using GammaDataType = typename TypeConfig::GammaDataType;
using BetaDataType = typename TypeConfig::BetaDataType;
using XResidualDataType = XDataType;
......@@ -121,6 +124,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
// host verify
ck_tile::HostTensor<XDataType> x_host({m, n}, {x_stride, 1});
ck_tile::HostTensor<XBiasDataType> x_bias_host({n});
ck_tile::HostTensor<GammaDataType> gamma_host({n});
ck_tile::HostTensor<BetaDataType> beta_host({n});
......@@ -141,10 +145,12 @@ bool run(const ck_tile::ArgParser& arg_parser)
ck_tile::FillUniformDistribution<XDataType>{-.5f, .5f}(x_host);
ck_tile::FillUniformDistribution<XResidualDataType>{-.5f, .5f}(x_residual_host);
ck_tile::FillUniformDistribution<XScaleDataType>{-1.f, 1.f}(x_scale_host);
ck_tile::FillUniformDistribution<XBiasDataType>{-.5f, .5f}(x_bias_host);
ck_tile::FillUniformDistribution<GammaDataType>{-.5f, .5f}(gamma_host);
ck_tile::FillUniformDistribution<BetaDataType>{-.5f, .5f}(beta_host);
ck_tile::DeviceMem x_buf(x_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem x_bias_buf(x_bias_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem gamma_buf(gamma_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem beta_buf(beta_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem y_buf(y_host_dev.get_element_space_size_in_bytes());
......@@ -155,6 +161,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
ck_tile::DeviceMem y_residual_buf(y_residual_host.get_element_space_size_in_bytes());
x_buf.ToDevice(x_host.data());
x_bias_buf.ToDevice(x_bias_host.data());
gamma_buf.ToDevice(gamma_host.data());
beta_buf.ToDevice(beta_host.data());
x_residual_buf.ToDevice(x_residual_host.data());
......@@ -179,11 +186,12 @@ bool run(const ck_tile::ArgParser& arg_parser)
<< ", yr_stride:" << yr_stride << std::flush;
layernorm2d_fwd_traits traits{
prec_i, prec_o, prec_sx, prec_sy, SaveMeanVar, fused_add, fused_quant};
prec_i, prec_o, prec_sx, prec_sy, SaveMeanVar, xbias, fused_add, fused_quant};
layernorm2d_fwd_args args{x_buf.GetDeviceBuffer(),
fused_add != 0 ? x_residual_buf.GetDeviceBuffer() : nullptr,
fused_quant == 1 ? x_scale_buf.GetDeviceBuffer() : nullptr,
x_bias_buf.GetDeviceBuffer(),
gamma_buf.GetDeviceBuffer(),
beta_buf.GetDeviceBuffer(),
......@@ -210,8 +218,9 @@ bool run(const ck_tile::ArgParser& arg_parser)
return false;
}
std::size_t num_byte = sizeof(XDataType) * m * n + sizeof(GammaDataType) * n +
sizeof(BetaDataType) * n + sizeof(YDataType) * m * n;
std::size_t num_byte = sizeof(XDataType) * m * n + sizeof(XBiasDataType) * n +
sizeof(GammaDataType) * n + sizeof(BetaDataType) * n +
sizeof(YDataType) * m * n;
float gb_per_sec = num_byte / 1.E6 / ave_time;
std::cout << ", " << ave_time * 1.E3 << " us, " << gb_per_sec << " GB/s" << std::flush;
......@@ -221,6 +230,22 @@ bool run(const ck_tile::ArgParser& arg_parser)
if(do_validation)
{
// reference
if(xbias != 0)
{
// add bias before fadd
int M = x_host.mDesc.get_lengths()[0];
int N = x_host.mDesc.get_lengths()[1];
for(int idx_m = 0; idx_m < M; ++idx_m)
{
for(int idx_n = 0; idx_n < N; ++idx_n)
{
x_host(idx_m, idx_n) = ck_tile::type_convert<XDataType>(
ck_tile::type_convert<ComputeDataType>(x_host(idx_m, idx_n)) +
ck_tile::type_convert<ComputeDataType>(x_bias_host(idx_n)));
}
}
}
if(fused_add != 0)
{
// fused pre_add/pre_add_store
......
......@@ -16,6 +16,7 @@ struct LayerNormTypeConfig<ck_tile::half_t, OutType, XScaleDataType_, YScaleData
{
using XDataType = ck_tile::half_t;
using YDataType = OutType;
using XBiasDataType = ck_tile::half_t;
using GammaDataType = ck_tile::half_t;
using BetaDataType = ck_tile::half_t;
using MeanDataType = ck_tile::half_t;
......@@ -30,6 +31,7 @@ struct LayerNormTypeConfig<ck_tile::bf16_t, OutType, XScaleDataType_, YScaleData
{
using XDataType = ck_tile::bf16_t;
using YDataType = OutType;
using XBiasDataType = ck_tile::bf16_t;
using GammaDataType = ck_tile::bf16_t;
using BetaDataType = ck_tile::bf16_t;
using MeanDataType = ck_tile::bf16_t;
......@@ -57,6 +59,7 @@ struct layernorm2d_fwd_traits
std::string prec_sy; // y-scale, used for [M*1] output for next layer
bool save_mean_var; //
int xbias; // 0:no-bias, 1:add bias
int fused_add; // 0:no-add, 1:pre-add-store, 2:pre-add
int fused_quant; // 0:no-sweep, 1:smooth-dynamic-quant, 2:dynamic-quant
};
......
......@@ -97,6 +97,10 @@
#cmakedefine CK_ENABLE_DL_KERNELS @CK_ENABLE_DL_KERNELS@
#endif
#ifndef CK_ENABLE_DPP_KERNELS
#cmakedefine CK_ENABLE_DPP_KERNELS @CK_ENABLE_DPP_KERNELS@
#endif
//
// CK kernels which support XDL (MI series)
//
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment