Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
cbcc844e
Commit
cbcc844e
authored
Feb 08, 2024
by
illsilin
Browse files
merge from public repo
parents
29deceb6
1f306024
Changes
393
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1620 additions
and
74 deletions
+1620
-74
example/44_elementwise_permute/elementwise_permute_4D_fp32_col.cpp
...4_elementwise_permute/elementwise_permute_4D_fp32_col.cpp
+6
-1
example/44_elementwise_permute/elementwise_permute_4D_fp32_row.cpp
...4_elementwise_permute/elementwise_permute_4D_fp32_row.cpp
+3
-0
example/48_pool3d_fwd/pool3d_fwd_common.hpp
example/48_pool3d_fwd/pool3d_fwd_common.hpp
+4
-0
example/51_avgpool3d_bwd/avgpool3d_bwd_common.hpp
example/51_avgpool3d_bwd/avgpool3d_bwd_common.hpp
+4
-0
example/53_layernorm2d_bwd/CMakeLists.txt
example/53_layernorm2d_bwd/CMakeLists.txt
+1
-0
example/53_layernorm2d_bwd/layernorm2d_bwd_fp32.cpp
example/53_layernorm2d_bwd/layernorm2d_bwd_fp32.cpp
+80
-17
example/53_layernorm_bwd/CMakeLists.txt
example/53_layernorm_bwd/CMakeLists.txt
+0
-1
example/54_groupnorm_bwd/CMakeLists.txt
example/54_groupnorm_bwd/CMakeLists.txt
+1
-1
example/54_groupnorm_bwd/groupnorm_bwd_fp32.cpp
example/54_groupnorm_bwd/groupnorm_bwd_fp32.cpp
+87
-14
example/62_conv_fwd_activ/CMakeLists.txt
example/62_conv_fwd_activ/CMakeLists.txt
+2
-0
example/62_conv_fwd_activ/convnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16.cpp
...nvnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16.cpp
+294
-0
example/62_conv_fwd_activ/run_convnd_fwd_activ_example.inc
example/62_conv_fwd_activ/run_convnd_fwd_activ_example.inc
+1
-1
include/ck/ck.hpp
include/ck/ck.hpp
+31
-17
include/ck/host_utility/device_prop.hpp
include/ck/host_utility/device_prop.hpp
+20
-1
include/ck/host_utility/hip_check_error.hpp
include/ck/host_utility/hip_check_error.hpp
+15
-13
include/ck/host_utility/kernel_launch.hpp
include/ck/host_utility/kernel_launch.hpp
+8
-5
include/ck/stream_config.hpp
include/ck/stream_config.hpp
+2
-2
include/ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops.hpp
...or_operation/gpu/block/blockwise_gemm_pipeline_xdlops.hpp
+999
-0
include/ck/tensor_operation/gpu/device/device_base.hpp
include/ck/tensor_operation/gpu/device/device_base.hpp
+3
-1
include/ck/tensor_operation/gpu/device/device_normalization_bwd_data.hpp
...or_operation/gpu/device/device_normalization_bwd_data.hpp
+59
-0
No files found.
example/44_elementwise_permute/elementwise_permute_4D_fp32_col.cpp
View file @
cbcc844e
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <cstdlib>
#include <cstdlib>
...
@@ -67,6 +70,8 @@ int main()
...
@@ -67,6 +70,8 @@ int main()
float
scale
=
1.
f
;
float
scale
=
1.
f
;
auto
i
=
0
;
auto
i
=
0
;
std
::
mt19937
gen
(
11939
);
std
::
uniform_int_distribution
<
int
>
dis
(
0
,
1
);
for
(
std
::
size_t
w
=
0
;
w
<
a
.
mDesc
.
GetLengths
()[
3
];
++
w
)
for
(
std
::
size_t
w
=
0
;
w
<
a
.
mDesc
.
GetLengths
()[
3
];
++
w
)
for
(
std
::
size_t
h
=
0
;
h
<
a
.
mDesc
.
GetLengths
()[
2
];
++
h
)
for
(
std
::
size_t
h
=
0
;
h
<
a
.
mDesc
.
GetLengths
()[
2
];
++
h
)
for
(
std
::
size_t
c
=
0
;
c
<
a
.
mDesc
.
GetLengths
()[
1
];
++
c
)
for
(
std
::
size_t
c
=
0
;
c
<
a
.
mDesc
.
GetLengths
()[
1
];
++
c
)
...
@@ -74,7 +79,7 @@ int main()
...
@@ -74,7 +79,7 @@ int main()
{
{
a
.
mData
[(
n
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
(
c
*
nchw
[
2
]
*
nchw
[
3
])
+
a
.
mData
[(
n
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
(
c
*
nchw
[
2
]
*
nchw
[
3
])
+
(
h
*
nchw
[
3
])
+
w
]
=
i
;
(
h
*
nchw
[
3
])
+
w
]
=
i
;
i
++
;
i
=
dis
(
gen
)
;
}
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
...
...
example/44_elementwise_permute/elementwise_permute_4D_fp32_row.cpp
View file @
cbcc844e
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <cstdlib>
#include <cstdlib>
...
...
example/48_pool3d_fwd/pool3d_fwd_common.hpp
View file @
cbcc844e
...
@@ -32,6 +32,8 @@ std::vector<ck::index_t> f_tensor_strides_ncdhw(ck::index_t N_,
...
@@ -32,6 +32,8 @@ std::vector<ck::index_t> f_tensor_strides_ncdhw(ck::index_t N_,
return
{
C_
*
D
*
H
*
W
,
D
*
H
*
W
,
H
*
W
,
W
,
1
_uz
};
return
{
C_
*
D
*
H
*
W
,
D
*
H
*
W
,
H
*
W
,
W
,
1
_uz
};
else
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NDHWC
>::
value
)
else
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NDHWC
>::
value
)
return
{
D
*
C_
*
H
*
W
,
1
_uz
,
C_
*
H
*
W
,
W
*
C_
,
C_
};
return
{
D
*
C_
*
H
*
W
,
1
_uz
,
C_
*
H
*
W
,
W
*
C_
,
C_
};
throw
std
::
runtime_error
(
"Pool3d_fwd: problem with layout. "
);
return
{
0
,
0
,
0
,
0
,
0
};
};
};
template
<
typename
TensorLayout
>
template
<
typename
TensorLayout
>
...
@@ -53,6 +55,8 @@ HostTensorDescriptor f_host_tensor_descriptor(std::size_t N_,
...
@@ -53,6 +55,8 @@ HostTensorDescriptor f_host_tensor_descriptor(std::size_t N_,
return
HostTensorDescriptor
({
N_
,
C_
,
D
,
H
,
W
},
return
HostTensorDescriptor
({
N_
,
C_
,
D
,
H
,
W
},
{
D
*
C_
*
H
*
W
,
1
_uz
,
C_
*
H
*
W
,
W
*
C_
,
C_
});
{
D
*
C_
*
H
*
W
,
1
_uz
,
C_
*
H
*
W
,
W
*
C_
,
C_
});
}
}
throw
std
::
runtime_error
(
"Pool3d_fwd: problem with layout. "
);
return
HostTensorDescriptor
({
0
,
0
,
0
,
0
,
0
},
{
0
,
0
,
0
,
0
,
0
});
};
};
template
<
typename
DevicePoolFwdInstance
,
template
<
typename
DevicePoolFwdInstance
,
...
...
example/51_avgpool3d_bwd/avgpool3d_bwd_common.hpp
View file @
cbcc844e
...
@@ -26,6 +26,8 @@ std::vector<ck::index_t> f_tensor_strides_ncdhw(ck::index_t N_,
...
@@ -26,6 +26,8 @@ std::vector<ck::index_t> f_tensor_strides_ncdhw(ck::index_t N_,
return
{
C_
*
D
*
H
*
W
,
D
*
H
*
W
,
H
*
W
,
W
,
1
_uz
};
return
{
C_
*
D
*
H
*
W
,
D
*
H
*
W
,
H
*
W
,
W
,
1
_uz
};
else
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NDHWC
>::
value
)
else
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NDHWC
>::
value
)
return
{
D
*
C_
*
H
*
W
,
1
_uz
,
C_
*
H
*
W
,
W
*
C_
,
C_
};
return
{
D
*
C_
*
H
*
W
,
1
_uz
,
C_
*
H
*
W
,
W
*
C_
,
C_
};
throw
std
::
runtime_error
(
"Avgpool3d_bwd: problem with layout. "
);
return
{
0
,
0
,
0
,
0
,
0
};
};
};
template
<
typename
TensorLayout
>
template
<
typename
TensorLayout
>
...
@@ -47,6 +49,8 @@ HostTensorDescriptor f_host_tensor_descriptor(std::size_t N_,
...
@@ -47,6 +49,8 @@ HostTensorDescriptor f_host_tensor_descriptor(std::size_t N_,
return
HostTensorDescriptor
({
N_
,
C_
,
D
,
H
,
W
},
return
HostTensorDescriptor
({
N_
,
C_
,
D
,
H
,
W
},
{
D
*
C_
*
H
*
W
,
1
_uz
,
C_
*
H
*
W
,
W
*
C_
,
C_
});
{
D
*
C_
*
H
*
W
,
1
_uz
,
C_
*
H
*
W
,
W
*
C_
,
C_
});
}
}
throw
std
::
runtime_error
(
"Avgpool3d_bwd: problem with layout. "
);
return
HostTensorDescriptor
({
0
,
0
,
0
,
0
,
0
},
{
0
,
0
,
0
,
0
,
0
});
};
};
template
<
typename
DevicePoolBwdInstance
,
template
<
typename
DevicePoolBwdInstance
,
...
...
example/53_layernorm2d_bwd/CMakeLists.txt
0 → 100644
View file @
cbcc844e
add_example_executable
(
example_layernorm2d_bwd_fp32 layernorm2d_bwd_fp32.cpp
)
example/53_layernorm_bwd/layernorm2d_bwd_fp
16
.cpp
→
example/53_layernorm
2d
_bwd/layernorm2d_bwd_fp
32
.cpp
View file @
cbcc844e
...
@@ -15,16 +15,17 @@
...
@@ -15,16 +15,17 @@
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_data_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_gamma_beta_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_gamma_beta_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm_bwd.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm_bwd.hpp"
using
DYDataType
=
ck
::
half_
t
;
using
DYDataType
=
floa
t
;
using
XDataType
=
ck
::
half_
t
;
using
XDataType
=
floa
t
;
using
GammaDataType
=
ck
::
half_
t
;
using
GammaDataType
=
floa
t
;
using
MeanInvStdDataType
=
float
;
using
MeanInvStdDataType
=
float
;
using
DGammaDataType
=
ck
::
half_
t
;
using
DGammaDataType
=
floa
t
;
using
DBetaDataType
=
ck
::
half_
t
;
using
DBetaDataType
=
floa
t
;
using
DXDataType
=
ck
::
half_
t
;
using
DXDataType
=
floa
t
;
using
ComputeDataType
=
float
;
using
ComputeDataType
=
float
;
constexpr
int
Rank
=
2
;
constexpr
int
Rank
=
2
;
...
@@ -39,6 +40,7 @@ constexpr int NumReduceDim = 1;
...
@@ -39,6 +40,7 @@ constexpr int NumReduceDim = 1;
// inv_std: [M, 1]
// inv_std: [M, 1]
// Output shape
// Output shape
// dx: [M, N]
// dgamma: [1, N]
// dgamma: [1, N]
// dbeta: [1, N]
// dbeta: [1, N]
...
@@ -46,8 +48,34 @@ constexpr int NumReduceDim = 1;
...
@@ -46,8 +48,34 @@ constexpr int NumReduceDim = 1;
// dbeta = reduce_sum(dy, axis=0)
// dbeta = reduce_sum(dy, axis=0)
// [CAUSION]
// [CAUSION]
// In DeviceNormalizationBwdGammaBetaImpl, M is invarient dimension, K is reduced dimension
// In DeviceNormalizationBwdDataImpl & DeviceNormalizationBwdGammaBetaImpl, M is Invariant
// Hence, M in this example and DeviceNormalizationBwdGammaBetaImpl is different
// dimension, K is reduced dimension Hence, M in this example and
// DeviceNormalizationBwdGammaBetaImpl is different
using
XDeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationBwdDataImpl
<
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
ComputeDataType
,
DXDataType
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// MThreadClusterSize
32
,
// KThreadClusterSize
1
,
// MThreadSliceSize
4
,
// KThreadSliceSize
true
,
// IsDYFastestDimReduced
4
,
// DYSrcVectorSize
true
,
// IsXFastestDimReduced
4
,
// XSrcVectorSize
true
,
// IsGammaFastestDimReduced
4
,
// GammaSrcVectorSize
false
,
// IsMeanInvStdFastestDimReduced
1
,
// MeanInvStdSrcVectorSize
true
,
// IsDXFastestDimReduced
4
>
;
// DXDstVectorSize
using
GammaBetaDeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationBwdGammaBetaImpl
<
using
GammaBetaDeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationBwdGammaBetaImpl
<
DYDataType
,
DYDataType
,
XDataType
,
XDataType
,
...
@@ -58,18 +86,18 @@ using GammaBetaDeviceInstance = ck::tensor_operation::device::DeviceNormalizatio
...
@@ -58,18 +86,18 @@ using GammaBetaDeviceInstance = ck::tensor_operation::device::DeviceNormalizatio
Rank
,
Rank
,
NumReduceDim
,
NumReduceDim
,
256
,
// BlockSize
256
,
// BlockSize
8
,
//
ClusterInvarient
8
,
//
MThreadClusterSize
32
,
// Cluster
Reduc
e
32
,
//
KThread
Cluster
Siz
e
8
,
//
SliceInvarient
4
,
//
MThreadSliceSize
1
,
//
SliceReduc
e
1
,
//
KThreadSliceSiz
e
false
,
// IsDYFastestDimReduced
false
,
// IsDYFastestDimReduced
8
,
// DYSrcVectorSize
4
,
// DYSrcVectorSize
false
,
// IsXFastestDimReduced
false
,
// IsXFastestDimReduced
8
,
// XSrcVectorSize
4
,
// XSrcVectorSize
true
,
// IsMeanInvStdFastestDimReduced
true
,
// IsMeanInvStdFastestDimReduced
1
,
// MeanInvStdSrcVectorSize
1
,
// MeanInvStdSrcVectorSize
1
,
// DGammaDstVectorSize
4
,
// DGammaDstVectorSize
1
>
;
// DBetaDstVectorSize
4
>
;
// DBetaDstVectorSize
int
main
()
int
main
()
{
{
...
@@ -96,16 +124,48 @@ int main()
...
@@ -96,16 +124,48 @@ int main()
DeviceMem
dy_dev
(
sizeof
(
DYDataType
)
*
dy
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dy_dev
(
sizeof
(
DYDataType
)
*
dy
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
x_dev
(
sizeof
(
XDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
x_dev
(
sizeof
(
XDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
gamma_dev
(
sizeof
(
GammaDataType
)
*
gamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
mean_dev
(
sizeof
(
MeanInvStdDataType
)
*
mean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
mean_dev
(
sizeof
(
MeanInvStdDataType
)
*
mean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
inv_std_dev
(
sizeof
(
MeanInvStdDataType
)
*
inv_std
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
inv_std_dev
(
sizeof
(
MeanInvStdDataType
)
*
inv_std
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dx_dev
(
sizeof
(
DXDataType
)
*
dx
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dgamma_dev
(
sizeof
(
DGammaDataType
)
*
dgamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dgamma_dev
(
sizeof
(
DGammaDataType
)
*
dgamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dbeta_dev
(
sizeof
(
DBetaDataType
)
*
dbeta
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dbeta_dev
(
sizeof
(
DBetaDataType
)
*
dbeta
.
mDesc
.
GetElementSpaceSize
());
dy_dev
.
ToDevice
(
dy
.
mData
.
data
());
dy_dev
.
ToDevice
(
dy
.
mData
.
data
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
gamma_dev
.
ToDevice
(
gamma
.
mData
.
data
());
mean_dev
.
ToDevice
(
mean
.
mData
.
data
());
mean_dev
.
ToDevice
(
mean
.
mData
.
data
());
inv_std_dev
.
ToDevice
(
inv_std
.
mData
.
data
());
inv_std_dev
.
ToDevice
(
inv_std
.
mData
.
data
());
// backward x
auto
x_device_instance
=
XDeviceInstance
{};
auto
x_argument_ptr
=
x_device_instance
.
MakeArgumentPointer
({
M
,
N
},
// lengths
{
N
,
1
},
// dyStrides
{
N
,
1
},
// xStrides
{
0
,
1
},
// gammaStrides
{
1
,
0
},
// meanStrides
{
1
,
0
},
// invStdStrides
{
N
,
1
},
// dxStrides
{
1
},
// reduceDims
dy_dev
.
GetDeviceBuffer
(),
x_dev
.
GetDeviceBuffer
(),
gamma_dev
.
GetDeviceBuffer
(),
mean_dev
.
GetDeviceBuffer
(),
inv_std_dev
.
GetDeviceBuffer
(),
dx_dev
.
GetDeviceBuffer
());
if
(
!
x_device_instance
.
IsSupportedArgument
(
x_argument_ptr
.
get
()))
{
std
::
cout
<<
"The runtime parameters are not supported."
<<
__FILE__
<<
":"
<<
__LINE__
<<
std
::
endl
;
return
1
;
};
auto
x_invoker_ptr
=
x_device_instance
.
MakeInvokerPointer
();
x_invoker_ptr
->
Run
(
x_argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
// backward gamma & beta
auto
gamma_beta_device_instance
=
GammaBetaDeviceInstance
{};
auto
gamma_beta_device_instance
=
GammaBetaDeviceInstance
{};
auto
gamma_beta_argument_ptr
=
auto
gamma_beta_argument_ptr
=
gamma_beta_device_instance
.
MakeArgumentPointer
({
M
,
N
},
// inLengths
gamma_beta_device_instance
.
MakeArgumentPointer
({
M
,
N
},
// inLengths
...
@@ -126,7 +186,8 @@ int main()
...
@@ -126,7 +186,8 @@ int main()
if
(
!
gamma_beta_device_instance
.
IsSupportedArgument
(
gamma_beta_argument_ptr
.
get
()))
if
(
!
gamma_beta_device_instance
.
IsSupportedArgument
(
gamma_beta_argument_ptr
.
get
()))
{
{
std
::
cout
<<
"The runtime parameters are not supported"
<<
std
::
endl
;
std
::
cout
<<
"The runtime parameters are not supported."
<<
__FILE__
<<
":"
<<
__LINE__
<<
std
::
endl
;
return
1
;
return
1
;
};
};
...
@@ -156,9 +217,11 @@ int main()
...
@@ -156,9 +217,11 @@ int main()
dgamma_dev
.
FromDevice
(
dgamma
.
mData
.
data
());
dgamma_dev
.
FromDevice
(
dgamma
.
mData
.
data
());
dbeta_dev
.
FromDevice
(
dbeta
.
mData
.
data
());
dbeta_dev
.
FromDevice
(
dbeta
.
mData
.
data
());
dx_dev
.
FromDevice
(
dx
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
dgamma
,
host_dgamma
,
"Error: Incorrect dgamma"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dgamma
,
host_dgamma
,
"Error: Incorrect dgamma"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dbeta
,
host_dbeta
,
"Error: Incorrect dbeta"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dbeta
,
host_dbeta
,
"Error: Incorrect dbeta"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dx
,
host_dx
,
"Error: Incorrect dx"
,
1e-3
,
1e-3
);
}
}
return
(
pass
?
0
:
1
);
return
(
pass
?
0
:
1
);
...
...
example/53_layernorm_bwd/CMakeLists.txt
deleted
100644 → 0
View file @
29deceb6
add_example_executable
(
example_layernorm2d_bwd_fp16 layernorm2d_bwd_fp16.cpp
)
example/54_groupnorm_bwd/CMakeLists.txt
View file @
cbcc844e
add_example_executable
(
example_groupnorm_bwd_fp
16
groupnorm_bwd_fp
16
.cpp
)
add_example_executable
(
example_groupnorm_bwd_fp
32
groupnorm_bwd_fp
32
.cpp
)
example/54_groupnorm_bwd/groupnorm_bwd_fp
16
.cpp
→
example/54_groupnorm_bwd/groupnorm_bwd_fp
32
.cpp
View file @
cbcc844e
...
@@ -15,23 +15,58 @@
...
@@ -15,23 +15,58 @@
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_data_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_gamma_beta_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_gamma_beta_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_groupnorm_bwd.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_groupnorm_bwd.hpp"
using
DYDataType
=
ck
::
half_
t
;
using
DYDataType
=
floa
t
;
using
XDataType
=
ck
::
half_
t
;
using
XDataType
=
floa
t
;
using
GammaDataType
=
ck
::
half_
t
;
using
GammaDataType
=
floa
t
;
using
MeanInvStdDataType
=
float
;
using
MeanInvStdDataType
=
float
;
using
DGammaDataType
=
ck
::
half_
t
;
using
DGammaDataType
=
floa
t
;
using
DBetaDataType
=
ck
::
half_
t
;
using
DBetaDataType
=
floa
t
;
using
DXDataType
=
ck
::
half_
t
;
using
DXDataType
=
floa
t
;
using
ComputeDataType
=
float
;
using
ComputeDataType
=
float
;
constexpr
int
Rank
=
5
;
constexpr
int
Rank
=
5
;
constexpr
int
NumReduceDim
=
3
;
constexpr
int
NumReduceDim
=
3
;
// Grouprnorm
// Grouprnorm
// kernel: M , K
// kernel 1: M , K
// dy: N, H, W, G, C -> N * G, H * W * C
// x: N, H, W, G, C -> N * G, H * W * C
// gamma: 1, 1, 1, G, C -> 1 * G, 1 * 1 * C
// mean: N, 1, 1, G, 1 -> N * G, 1 * 1 * 1
// rstd: N, 1, 1, G, 1 -> N * G, 1 * 1 * 1
// dx: N, H, W, G, C -> N * G, H * W * C
using
XDeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationBwdDataImpl
<
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
ComputeDataType
,
DXDataType
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// MThreadClusterSize
32
,
// KThreadClusterSize
1
,
// MThreadSliceSize
4
,
// KThreadSliceSize
true
,
// IsDYFastestDimReduced
4
,
// DYSrcVectorSize
true
,
// IsXFastestDimReduced
4
,
// XSrcVectorSize
true
,
// IsGammaFastestDimReduced
4
,
// GammaSrcVectorSize
false
,
// IsMeanInvStdFastestDimReduced
1
,
// MeanInvStdSrcVectorSize
true
,
// IsDXFastestDimReduced
4
>
;
// DXDstVectorSize
// kernel 2: M , K
// dy: N, H, W, G, C -> G * C, N * H * W
// dy: N, H, W, G, C -> G * C, N * H * W
// x: N, H, W, G, C -> G * C, N * H * W
// x: N, H, W, G, C -> G * C, N * H * W
// mean: N, 1, 1, G, 1 -> G * 1, N * 1 * 1
// mean: N, 1, 1, G, 1 -> G * 1, N * 1 * 1
...
@@ -52,18 +87,18 @@ using GammaBetaDeviceInstance = ck::tensor_operation::device::DeviceNormalizatio
...
@@ -52,18 +87,18 @@ using GammaBetaDeviceInstance = ck::tensor_operation::device::DeviceNormalizatio
Rank
,
Rank
,
NumReduceDim
,
NumReduceDim
,
256
,
// BlockSize
256
,
// BlockSize
8
,
// ClusterInvari
e
nt
8
,
// ClusterInvari
a
nt
32
,
// ClusterReduce
32
,
// ClusterReduce
8
,
// SliceInvari
e
nt
4
,
// SliceInvari
a
nt
1
,
// SliceReduce
1
,
// SliceReduce
false
,
// IsDYFastestDimReduced
false
,
// IsDYFastestDimReduced
8
,
// DYSrcVectorSize
4
,
// DYSrcVectorSize
false
,
// IsXFastestDimReduced
false
,
// IsXFastestDimReduced
8
,
// XSrcVectorSize
4
,
// XSrcVectorSize
false
,
// IsMeanInvStdFastestDimReduced
false
,
// IsMeanInvStdFastestDimReduced
1
,
// MeanInvStdSrcVectorSize
1
,
// MeanInvStdSrcVectorSize
1
,
// DGammaDstVectorSize
4
,
// DGammaDstVectorSize
1
>
;
// DBetaDstVectorSize
4
>
;
// DBetaDstVectorSize
int
main
()
int
main
()
{
{
...
@@ -93,20 +128,55 @@ int main()
...
@@ -93,20 +128,55 @@ int main()
DeviceMem
dy_dev
(
sizeof
(
DYDataType
)
*
dy
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dy_dev
(
sizeof
(
DYDataType
)
*
dy
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
x_dev
(
sizeof
(
XDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
x_dev
(
sizeof
(
XDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
gamma_dev
(
sizeof
(
GammaDataType
)
*
gamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
mean_dev
(
sizeof
(
MeanInvStdDataType
)
*
mean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
mean_dev
(
sizeof
(
MeanInvStdDataType
)
*
mean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
inv_std_dev
(
sizeof
(
MeanInvStdDataType
)
*
inv_std
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
inv_std_dev
(
sizeof
(
MeanInvStdDataType
)
*
inv_std
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dx_dev
(
sizeof
(
DXDataType
)
*
dx
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dgamma_dev
(
sizeof
(
DGammaDataType
)
*
dgamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dgamma_dev
(
sizeof
(
DGammaDataType
)
*
dgamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dbeta_dev
(
sizeof
(
DBetaDataType
)
*
dbeta
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dbeta_dev
(
sizeof
(
DBetaDataType
)
*
dbeta
.
mDesc
.
GetElementSpaceSize
());
dy_dev
.
ToDevice
(
dy
.
mData
.
data
());
dy_dev
.
ToDevice
(
dy
.
mData
.
data
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
gamma_dev
.
ToDevice
(
gamma
.
mData
.
data
());
mean_dev
.
ToDevice
(
mean
.
mData
.
data
());
mean_dev
.
ToDevice
(
mean
.
mData
.
data
());
inv_std_dev
.
ToDevice
(
inv_std
.
mData
.
data
());
inv_std_dev
.
ToDevice
(
inv_std
.
mData
.
data
());
std
::
vector
<
ck
::
index_t
>
dyStrides
{
dy
.
mDesc
.
GetStrides
().
begin
(),
dy
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
ck
::
index_t
>
dyStrides
{
dy
.
mDesc
.
GetStrides
().
begin
(),
dy
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
ck
::
index_t
>
xStrides
{
x
.
mDesc
.
GetStrides
().
begin
(),
x
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
ck
::
index_t
>
xStrides
{
x
.
mDesc
.
GetStrides
().
begin
(),
x
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
ck
::
index_t
>
gammaStrides
=
{
0
,
0
,
0
,
C
,
1
};
std
::
vector
<
ck
::
index_t
>
meanStrides
=
{
G
,
0
,
0
,
1
,
0
};
std
::
vector
<
ck
::
index_t
>
meanStrides
=
{
G
,
0
,
0
,
1
,
0
};
std
::
vector
<
ck
::
index_t
>
invStdStrides
=
{
G
,
0
,
0
,
1
,
0
};
std
::
vector
<
ck
::
index_t
>
invStdStrides
=
{
G
,
0
,
0
,
1
,
0
};
std
::
vector
<
ck
::
index_t
>
dxStrides
{
dx
.
mDesc
.
GetStrides
().
begin
(),
dx
.
mDesc
.
GetStrides
().
end
()};
// backward x
auto
x_device_instance
=
XDeviceInstance
{};
auto
x_argument_ptr
=
x_device_instance
.
MakeArgumentPointer
({
N
,
H
,
W
,
G
,
C
},
// lengths
dyStrides
,
// dyStrides
xStrides
,
// xStrides
gammaStrides
,
// gammaStrides
meanStrides
,
// meanStrides
invStdStrides
,
// invStdStrides
dxStrides
,
// dxStrides
{
1
,
2
,
4
},
// reduceDims
dy_dev
.
GetDeviceBuffer
(),
x_dev
.
GetDeviceBuffer
(),
gamma_dev
.
GetDeviceBuffer
(),
mean_dev
.
GetDeviceBuffer
(),
inv_std_dev
.
GetDeviceBuffer
(),
dx_dev
.
GetDeviceBuffer
());
if
(
!
x_device_instance
.
IsSupportedArgument
(
x_argument_ptr
.
get
()))
{
std
::
cout
<<
"The runtime parameters are not supported."
<<
__FILE__
<<
":"
<<
__LINE__
<<
std
::
endl
;
return
1
;
};
auto
x_invoker_ptr
=
x_device_instance
.
MakeInvokerPointer
();
x_invoker_ptr
->
Run
(
x_argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
// backward gamma & beta
auto
gamma_beta_device_instance
=
GammaBetaDeviceInstance
{};
auto
gamma_beta_device_instance
=
GammaBetaDeviceInstance
{};
auto
gamma_beta_argument_ptr
=
auto
gamma_beta_argument_ptr
=
...
@@ -128,7 +198,8 @@ int main()
...
@@ -128,7 +198,8 @@ int main()
if
(
!
gamma_beta_device_instance
.
IsSupportedArgument
(
gamma_beta_argument_ptr
.
get
()))
if
(
!
gamma_beta_device_instance
.
IsSupportedArgument
(
gamma_beta_argument_ptr
.
get
()))
{
{
std
::
cout
<<
"The runtime parameters are not supported"
<<
std
::
endl
;
std
::
cout
<<
"The runtime parameters are not supported."
<<
__FILE__
<<
":"
<<
__LINE__
<<
std
::
endl
;
return
1
;
return
1
;
};
};
...
@@ -158,9 +229,11 @@ int main()
...
@@ -158,9 +229,11 @@ int main()
dgamma_dev
.
FromDevice
(
dgamma
.
mData
.
data
());
dgamma_dev
.
FromDevice
(
dgamma
.
mData
.
data
());
dbeta_dev
.
FromDevice
(
dbeta
.
mData
.
data
());
dbeta_dev
.
FromDevice
(
dbeta
.
mData
.
data
());
dx_dev
.
FromDevice
(
dx
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
dgamma
,
host_dgamma
,
"Error: Incorrect dgamma"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dgamma
,
host_dgamma
,
"Error: Incorrect dgamma"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dbeta
,
host_dbeta
,
"Error: Incorrect dbeta"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dbeta
,
host_dbeta
,
"Error: Incorrect dbeta"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dx
,
host_dx
,
"Error: Incorrect dx"
,
1e-3
,
1e-3
);
}
}
return
(
pass
?
0
:
1
);
return
(
pass
?
0
:
1
);
...
...
example/62_conv_fwd_activ/CMakeLists.txt
View file @
cbcc844e
...
@@ -42,6 +42,8 @@ foreach(gpu IN LISTS GPU_TARGETS)
...
@@ -42,6 +42,8 @@ foreach(gpu IN LISTS GPU_TARGETS)
# ScaleAdd ScaleAdd Relu
# ScaleAdd ScaleAdd Relu
add_example_executable
(
example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16 convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16 convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16.cpp
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16
)
add_example_executable
(
example_convnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16 convnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16.cpp
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16
)
set
(
target 1
)
set
(
target 1
)
endif
()
endif
()
endforeach
()
endforeach
()
example/62_conv_fwd_activ/convnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16.cpp
0 → 100644
View file @
cbcc844e
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
constexpr
ck
::
index_t
NDimSpatial
=
3
;
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
using
BiasLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
ScaleAddScaleAddRelu
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
typename
OutElementOp
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
OutLayout
,
BiasLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
OutDataType
,
OutDataType
>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
using
DeviceGroupedConvNDFwdActivInstance
=
DeviceGroupedConvNDFwdInstance
<
OutElementOp
>
;
namespace
{
// Use custom implementation to pass two more tensors for post op
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
DeviceConvNDFwdInstance
>
bool
run_grouped_conv_fwd
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
{
constexpr
ck
::
index_t
NumDs
=
2
;
const
ck
::
index_t
G
=
out_g_n_k_wos_desc
.
GetLengths
()[
0
];
const
ck
::
index_t
K
=
out_g_n_k_wos_desc
.
GetLengths
()[
2
];
// Logical broadcast bias (we have to pass bias lengths in the same format as output - GNKDHW)
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
bias_g_k_lengths
;
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
bias_g_k_strides
;
// Fill other lenghts than G,K with 1 and strides with 0
bias_g_k_lengths
.
fill
(
1
);
bias_g_k_strides
.
fill
(
0
);
bias_g_k_lengths
[
0
]
=
G
;
bias_g_k_lengths
[
2
]
=
K
;
bias_g_k_strides
[
0
]
=
K
;
// stride to G
bias_g_k_strides
[
2
]
=
1
;
// stride to K
const
auto
broadcasted_bias_desc
=
HostTensorDescriptor
(
bias_g_k_lengths
,
bias_g_k_strides
);
// y = relu ( alpha1 * conv(x) + alpha2 * z + bias )
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
OutDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_device
(
out_g_n_k_wos_desc
);
std
::
array
<
Tensor
<
OutDataType
>
,
NumDs
>
d_tensors
=
{
Tensor
<
OutDataType
>
(
out_g_n_k_wos_desc
),
Tensor
<
OutDataType
>
(
broadcasted_bias_desc
)};
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_host
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"z_tensor: "
<<
d_tensors
[
0
].
mDesc
<<
std
::
endl
;
std
::
cout
<<
"bias_tensor: "
<<
d_tensors
[
1
].
mDesc
<<
std
::
endl
;
// Make sure that we allocated only G * K values for bias
assert
(
static_cast
<
ck
::
index_t
>
(
d_tensors
[
1
].
mData
.
size
())
==
G
*
K
);
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
2
,
2
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
2
,
2
});
d_tensors
[
0
].
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
2
,
2
});
d_tensors
[
1
].
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
2
,
2
});
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
1.0
,
1.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.05
,
0.05
});
d_tensors
[
0
].
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
-
0.05
,
0.05
});
d_tensors
[
1
].
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
-
0.05
,
0.05
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
z_buf
(
sizeof
(
OutDataType
)
*
d_tensors
[
0
].
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_buf
(
sizeof
(
OutDataType
)
*
d_tensors
[
1
].
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
z_buf
.
ToDevice
(
d_tensors
[
0
].
mData
.
data
());
bias_buf
.
ToDevice
(
d_tensors
[
1
].
mData
.
data
());
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
const
std
::
array
<
const
void
*
,
NumDs
>
ds
=
{
z_buf
.
GetDeviceBuffer
(),
bias_buf
.
GetDeviceBuffer
()};
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
ds
,
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
NumDs
>
{
e_g_n_k_wos_lengths
,
bias_g_k_lengths
},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
NumDs
>
{
e_g_n_k_wos_strides
,
bias_g_k_strides
},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"The device op with the specified compilation parameters does "
"not support this convolution problem."
);
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
()
+
G
*
K
+
conv_param
.
GetOutputByte
<
OutDataType
>
()
/
sizeof
(
OutDataType
);
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
()
+
G
*
K
*
sizeof
(
OutDataType
)
+
conv_param
.
GetOutputByte
<
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
0
,
/*Num A Elementwise Tensors*/
0
,
/*Num B Elementwise Tensors*/
NumDs
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
wei
,
out_host
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
out_element_op
,
{},
{},
d_tensors
);
ref_invoker
.
Run
(
ref_argument
);
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
out_device
,
out_host
,
"Error: incorrect results!"
);
}
return
true
;
}
}
// namespace
#include "run_convnd_fwd_activ_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_example
(
argc
,
argv
);
}
example/62_conv_fwd_activ/run_convnd_fwd_activ_example.inc
View file @
cbcc844e
...
@@ -24,7 +24,7 @@ bool run_convnd_fwd_example(int argc, char* argv[])
...
@@ -24,7 +24,7 @@ bool run_convnd_fwd_example(int argc, char* argv[])
// Following shapes are selected to avoid overflow. Expect inf in case of
// Following shapes are selected to avoid overflow. Expect inf in case of
// size increase for some elementwise ops.
// size increase for some elementwise ops.
ck
::
utils
::
conv
::
ConvParam
conv_param
{
ck
::
utils
::
conv
::
ConvParam
conv_param
{
3
,
1
,
16
,
128
,
8
,
{
3
,
3
,
3
},
{
17
,
17
,
17
},
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}};
3
,
2
,
16
,
128
,
8
,
{
3
,
3
,
3
},
{
17
,
17
,
17
},
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}};
if
(
argc
==
1
)
if
(
argc
==
1
)
{
{
...
...
include/ck/ck.hpp
View file @
cbcc844e
...
@@ -44,16 +44,30 @@
...
@@ -44,16 +44,30 @@
#define CK_USE_WAVES_PER_EU 0
#define CK_USE_WAVES_PER_EU 0
#endif
#endif
// define general macros for various architectures
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
#define __gfx94__
#endif
#if defined(__gfx1010__) || defined(__gfx1011__) || defined(__gfx1012__)
#define __gfx101__
#endif
#if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || \
defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__)
#define __gfx103__
#endif
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__)
#define __gfx11__
#endif
// buffer resource
// buffer resource
#ifndef __HIP_DEVICE_COMPILE__ // for host code
#ifndef __HIP_DEVICE_COMPILE__ // for host code
#define CK_BUFFER_RESOURCE_3RD_DWORD -1
#define CK_BUFFER_RESOURCE_3RD_DWORD -1
#elif defined(__gfx803__) || defined(__gfx900__) || defined(__gfx906__) || defined(__gfx908__) || \
#elif defined(__gfx803__) || defined(__gfx900__) || defined(__gfx906__) || defined(__gfx908__) || \
defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || \
defined(__gfx90a__) || defined(__gfx94__)
defined(__gfx942__) // for GPU code
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x00020000
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x00020000
#elif defined(__gfx103
0
__)
// for GPU code
#elif defined(__gfx103__)
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x31014000
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x31014000
#elif defined(__gfx11
00
__)
|| defined(__gfx1101__) || defined(__gfx1102__) // for GPU code
#elif defined(__gfx11__)
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x31004000
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x31004000
#endif
#endif
...
@@ -61,12 +75,12 @@
...
@@ -61,12 +75,12 @@
#ifndef __HIP_DEVICE_COMPILE__ // for host code, define nothing
#ifndef __HIP_DEVICE_COMPILE__ // for host code, define nothing
#elif defined(__gfx803__) || defined(__gfx900__) // for GPU code
#elif defined(__gfx803__) || defined(__gfx900__) // for GPU code
#define CK_USE_AMD_V_MAC_F32
#define CK_USE_AMD_V_MAC_F32
#elif defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx103
0
__) || \
#elif defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx103__) || \
defined(__gfx94
0__) || defined(__gfx941__) || defined(__gfx942
__) // for GPU code
defined(__gfx94__) // for GPU code
#define CK_USE_AMD_V_FMAC_F32
#define CK_USE_AMD_V_FMAC_F32
#define CK_USE_AMD_V_DOT2_F32_F16
#define CK_USE_AMD_V_DOT2_F32_F16
#define CK_USE_AMD_V_DOT4_I32_I8
#define CK_USE_AMD_V_DOT4_I32_I8
#elif defined(__gfx11
00__) || defined(__gfx1101__) || defined(__gfx1102
__)
#elif defined(__gfx11__)
#define CK_USE_AMD_V_FMAC_F32
#define CK_USE_AMD_V_FMAC_F32
#define CK_USE_AMD_V_DOT2_F32_F16
#define CK_USE_AMD_V_DOT2_F32_F16
#define CK_USE_AMD_V_DOT4_I32_I8_GFX11
#define CK_USE_AMD_V_DOT4_I32_I8_GFX11
...
@@ -75,23 +89,22 @@
...
@@ -75,23 +89,22 @@
// MFMA instruction
// MFMA instruction
#ifndef __HIP_DEVICE_COMPILE__ // for host code
#ifndef __HIP_DEVICE_COMPILE__ // for host code
#define CK_USE_AMD_MFMA
#define CK_USE_AMD_MFMA
#elif defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || \
#elif defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx94__) // for GPU code
defined(__gfx942__) // for GPU code
#define CK_USE_AMD_MFMA
#define CK_USE_AMD_MFMA
#endif
#endif
#if(defined(__gfx90a__) || defined(__gfx94
0__) || defined(__gfx941__) || defined(__gfx942
__))
#if(defined(__gfx90a__) || defined(__gfx94__))
#define CK_USE_AMD_MFMA_BF16_1K_OP
#define CK_USE_AMD_MFMA_BF16_1K_OP
#endif
#endif
#if defined(__gfx94
0__) || defined(__gfx941__) || defined(__gfx942
__)
#if defined(__gfx94__)
#define CK_USE_AMD_MFMA_GFX940
#define CK_USE_AMD_MFMA_GFX940
#endif
#endif
// WMMA instruction
// WMMA instruction
#ifndef __HIP_DEVICE_COMPILE__ // for host code
#ifndef __HIP_DEVICE_COMPILE__ // for host code
#define CK_USE_AMD_WMMA
#define CK_USE_AMD_WMMA
#elif defined(__gfx11
00__) || defined(__gfx1101__) || defined(__gfx1102
__) // for GPU code
#elif defined(__gfx11__) // for GPU code
#define CK_USE_AMD_WMMA
#define CK_USE_AMD_WMMA
#endif
#endif
...
@@ -107,15 +120,13 @@
...
@@ -107,15 +120,13 @@
// buffer atomic add: floating point
// buffer atomic add: floating point
#ifndef __HIP_DEVICE_COMPILE__ // for host code
#ifndef __HIP_DEVICE_COMPILE__ // for host code
#define CK_USE_AMD_BUFFER_ATOMIC_ADD_FLOAT 1
#define CK_USE_AMD_BUFFER_ATOMIC_ADD_FLOAT 1
#elif defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || \
#elif defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx94__) // for GPU code
defined(__gfx942__) // for GPU code
#define CK_USE_AMD_BUFFER_ATOMIC_ADD_FLOAT 1
#define CK_USE_AMD_BUFFER_ATOMIC_ADD_FLOAT 1
#else // for GPU code
#else // for GPU code
#define CK_USE_AMD_BUFFER_ATOMIC_ADD_FLOAT 0
#define CK_USE_AMD_BUFFER_ATOMIC_ADD_FLOAT 0
#endif
#endif
#if(defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || \
#if(defined(__gfx90a__) || defined(__gfx94__)) // for GPU code
defined(__gfx942__)) // for GPU code
#define CK_USE_AMD_BUFFER_ATOMIC_MAX_FLOAT64 1
#define CK_USE_AMD_BUFFER_ATOMIC_MAX_FLOAT64 1
#else
#else
#define CK_USE_AMD_BUFFER_ATOMIC_MAX_FLOAT64 0
#define CK_USE_AMD_BUFFER_ATOMIC_MAX_FLOAT64 0
...
@@ -134,6 +145,9 @@
...
@@ -134,6 +145,9 @@
// inner product using V_DOT with DPP8 modifiers
// inner product using V_DOT with DPP8 modifiers
#define CK_USE_AMD_V_DOT_DPP8_INLINE_ASM 1
#define CK_USE_AMD_V_DOT_DPP8_INLINE_ASM 1
// LDS direct loads using inline assembly
#define CK_USE_AMD_LDS_DIRECT_LOAD_INLINE_ASM 1
// set stochastic rounding as default for f8 conversions
// set stochastic rounding as default for f8 conversions
#define CK_USE_SR_F8_CONVERSION 1
#define CK_USE_SR_F8_CONVERSION 1
...
@@ -215,7 +229,7 @@
...
@@ -215,7 +229,7 @@
// denorm test fix, required to work around dissue
// denorm test fix, required to work around dissue
#ifndef CK_WORKAROUND_DENORM_FIX
#ifndef CK_WORKAROUND_DENORM_FIX
#define CK_WORKAROUND_DENORM_FIX 0
#define CK_WORKAROUND_DENORM_FIX 0
#el
if
#el
se
// enable only on MI200
// enable only on MI200
#define CK_WORKAROUND_DENORM_FIX = CK_WORKAROUND_DENORM_FIX && defined(__gfx90a__)
#define CK_WORKAROUND_DENORM_FIX = CK_WORKAROUND_DENORM_FIX && defined(__gfx90a__)
#endif // CK_WORKAROUND_DENORM_FIX
#endif // CK_WORKAROUND_DENORM_FIX
...
...
include/ck/host_utility/device_prop.hpp
View file @
cbcc844e
...
@@ -26,7 +26,7 @@ inline std::string get_device_name()
...
@@ -26,7 +26,7 @@ inline std::string get_device_name()
}
}
const
std
::
string
raw_name
(
props
.
gcnArchName
);
const
std
::
string
raw_name
(
props
.
gcnArchName
);
// https://github.com/ROCm
SoftwarePlatform
/MIOpen/blob/8498875aef84878e04c1eabefdf6571514891086/src/target_properties.cpp#L40
// https://github.com/ROCm/MIOpen/blob/8498875aef84878e04c1eabefdf6571514891086/src/target_properties.cpp#L40
static
std
::
map
<
std
::
string
,
std
::
string
>
device_name_map
=
{
static
std
::
map
<
std
::
string
,
std
::
string
>
device_name_map
=
{
{
"Ellesmere"
,
"gfx803"
},
{
"Ellesmere"
,
"gfx803"
},
{
"Baffin"
,
"gfx803"
},
{
"Baffin"
,
"gfx803"
},
...
@@ -65,4 +65,23 @@ inline bool is_lds_direct_load_supported()
...
@@ -65,4 +65,23 @@ inline bool is_lds_direct_load_supported()
ck
::
get_device_name
()
==
"gfx941"
||
ck
::
get_device_name
()
==
"gfx942"
;
ck
::
get_device_name
()
==
"gfx941"
||
ck
::
get_device_name
()
==
"gfx942"
;
}
}
inline
bool
is_navi1_supported
()
{
return
ck
::
get_device_name
()
==
"gfx1010"
||
ck
::
get_device_name
()
==
"gfx1011"
||
ck
::
get_device_name
()
==
"gfx1012"
;
}
inline
bool
is_navi2_supported
()
{
return
ck
::
get_device_name
()
==
"gfx1030"
||
ck
::
get_device_name
()
==
"gfx1031"
||
ck
::
get_device_name
()
==
"gfx1032"
||
ck
::
get_device_name
()
==
"gfx1034"
||
ck
::
get_device_name
()
==
"gfx1035"
||
ck
::
get_device_name
()
==
"gfx1036"
;
}
inline
bool
is_navi3_supported
()
{
return
ck
::
get_device_name
()
==
"gfx1100"
||
ck
::
get_device_name
()
==
"gfx1101"
||
ck
::
get_device_name
()
==
"gfx1102"
||
ck
::
get_device_name
()
==
"gfx1103"
;
}
}
// namespace ck
}
// namespace ck
include/ck/host_utility/hip_check_error.hpp
View file @
cbcc844e
...
@@ -12,21 +12,23 @@ inline void hip_check_error(hipError_t x)
...
@@ -12,21 +12,23 @@ inline void hip_check_error(hipError_t x)
if
(
x
!=
hipSuccess
)
if
(
x
!=
hipSuccess
)
{
{
std
::
ostringstream
ss
;
std
::
ostringstream
ss
;
ss
<<
"HIP runtime error: "
<<
hipGetErrorString
(
x
)
<<
". "
<<
__FILE__
<<
": "
<<
__LINE__
ss
<<
"HIP runtime error: "
<<
hipGetErrorString
(
x
)
<<
". "
<<
"in function: "
<<
__func__
;
<<
"hip_check_error.hpp"
<<
": "
<<
__LINE__
<<
"in function: "
<<
__func__
;
throw
std
::
runtime_error
(
ss
.
str
());
throw
std
::
runtime_error
(
ss
.
str
());
}
}
}
}
#define HIP_CHECK_ERROR(retval_or_funcall) \
#define HIP_CHECK_ERROR(retval_or_funcall) \
do \
do \
{ \
{ \
hipError_t _tmpVal = retval_or_funcall; \
hipError_t _tmpVal = retval_or_funcall; \
if(_tmpVal != hipSuccess) \
if(_tmpVal != hipSuccess) \
{ \
{ \
std::ostringstream ostr; \
std::ostringstream ostr; \
ostr << "HIP Function Failed (" << __FILE__ << "," << __LINE__ << ") " \
ostr << "HIP Function Failed (" \
<< hipGetErrorString(_tmpVal); \
<< "hip_check_error.hpp" \
throw std::runtime_error(ostr.str()); \
<< "," << __LINE__ << ") " << hipGetErrorString(_tmpVal); \
} \
throw std::runtime_error(ostr.str()); \
} \
} while(0)
} while(0)
include/ck/host_utility/kernel_launch.hpp
View file @
cbcc844e
...
@@ -30,7 +30,7 @@ float launch_and_time_kernel(const StreamConfig& stream_config,
...
@@ -30,7 +30,7 @@ float launch_and_time_kernel(const StreamConfig& stream_config,
block_dim
.
y
,
block_dim
.
y
,
block_dim
.
z
);
block_dim
.
z
);
printf
(
"Warm up
1
time
\n
"
);
printf
(
"Warm up
%d
time
s
\n
"
,
stream_config
.
cold_niters_
);
#endif
#endif
// warm up
// warm up
for
(
int
i
=
0
;
i
<
stream_config
.
cold_niters_
;
++
i
)
for
(
int
i
=
0
;
i
<
stream_config
.
cold_niters_
;
++
i
)
...
@@ -103,14 +103,17 @@ float launch_and_time_kernel_with_preprocess(const StreamConfig& stream_config,
...
@@ -103,14 +103,17 @@ float launch_and_time_kernel_with_preprocess(const StreamConfig& stream_config,
block_dim
.
y
,
block_dim
.
y
,
block_dim
.
z
);
block_dim
.
z
);
printf
(
"Warm up
1
time
\n
"
);
printf
(
"Warm up
%d
time
s
\n
"
,
stream_config
.
cold_niters_
);
#endif
#endif
// warm up
// warm up
preprocess
();
preprocess
();
kernel
<<<
grid_dim
,
block_dim
,
lds_byte
,
stream_config
.
stream_id_
>>>
(
args
...);
for
(
int
i
=
0
;
i
<
stream_config
.
cold_niters_
;
++
i
)
hip_check_error
(
hipGetLastError
());
{
kernel
<<<
grid_dim
,
block_dim
,
lds_byte
,
stream_config
.
stream_id_
>>>
(
args
...);
hip_check_error
(
hipGetLastError
());
}
const
int
nrepeat
=
10
;
const
int
nrepeat
=
stream_config
.
nrepeat_
;
#if DEBUG_LOG
#if DEBUG_LOG
printf
(
"Start running %d times...
\n
"
,
nrepeat
);
printf
(
"Start running %d times...
\n
"
,
nrepeat
);
#endif
#endif
...
...
include/ck/stream_config.hpp
View file @
cbcc844e
...
@@ -11,6 +11,6 @@ struct StreamConfig
...
@@ -11,6 +11,6 @@ struct StreamConfig
hipStream_t
stream_id_
=
nullptr
;
hipStream_t
stream_id_
=
nullptr
;
bool
time_kernel_
=
false
;
bool
time_kernel_
=
false
;
int
log_level_
=
0
;
int
log_level_
=
0
;
int
cold_niters_
=
1
;
int
cold_niters_
=
5
;
int
nrepeat_
=
1
0
;
int
nrepeat_
=
5
0
;
};
};
include/ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops.hpp
0 → 100644
View file @
cbcc844e
This diff is collapsed.
Click to expand it.
include/ck/tensor_operation/gpu/device/device_base.hpp
View file @
cbcc844e
...
@@ -59,7 +59,9 @@ struct BaseOperator
...
@@ -59,7 +59,9 @@ struct BaseOperator
virtual
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
)
const
{
return
0
;
}
virtual
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
)
const
{
return
0
;
}
virtual
void
SetWorkSpacePointer
(
BaseArgument
*
p_arg
,
void
*
p_workspace
)
const
virtual
void
SetWorkSpacePointer
(
BaseArgument
*
p_arg
,
void
*
p_workspace
,
const
StreamConfig
&
=
StreamConfig
{})
const
{
{
assert
(
p_arg
);
assert
(
p_arg
);
p_arg
->
p_workspace_
=
p_workspace
;
p_arg
->
p_workspace_
=
p_workspace
;
...
...
include/ck/tensor_operation/gpu/device/device_normalization_bwd_data.hpp
0 → 100644
View file @
cbcc844e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
DYDataType
,
typename
XDataType
,
typename
GammaDataType
,
typename
MeanInvStdDataType
,
typename
DXDataType
,
index_t
Rank
,
index_t
NumReduceDim
>
struct
DeviceNormalizationBwdData
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
index_t
>
lengths
,
const
std
::
vector
<
index_t
>
dyStrides
,
const
std
::
vector
<
index_t
>
xStrides
,
const
std
::
vector
<
index_t
>
gammaStrides
,
const
std
::
vector
<
index_t
>
meanStrides
,
const
std
::
vector
<
index_t
>
invStdStrides
,
const
std
::
vector
<
index_t
>
dxStrides
,
const
std
::
vector
<
index_t
>
reduceDims
,
const
void
*
p_dy
,
const
void
*
p_x
,
const
void
*
p_gamma
,
const
void
*
p_mean
,
const
void
*
p_invStd
,
void
*
p_dx
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
typename
DYDataType
,
typename
XDataType
,
typename
GammaDataType
,
typename
MeanInvStdDataType
,
typename
DXDataType
,
index_t
Rank
,
index_t
NumReduceDim
>
using
DeviceNormalizationBwdDataPtr
=
std
::
unique_ptr
<
DeviceNormalizationBwdData
<
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
DXDataType
,
Rank
,
NumReduceDim
>>
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
Prev
1
2
3
4
5
6
7
8
9
…
20
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment