Unverified Commit c3a4800c authored by carlushuang's avatar carlushuang Committed by GitHub
Browse files

[CK_TILE] layernorm support fused-quant/fused-add (#1604)

* add prenorm/postnorm support, refactor using generate.py

* update README

* update README

* fix format

* update some description and fix format

* update format

* format

* use non-raw for loading

* format and update n4096

* dynamic-quant ready

* update readme

* support fused dynamic-quant

* update fused-quant, with smooth

* update README

* update args

* update some based on comment
parent 9a8a5213
set(LAYERNORM2D_FWD_KNOWN_APIS "fwd;bwd")
set(LAYERNORM2D_FWD_ENABLE_APIS "fwd" CACHE STRING
"semicolon-separated list of APIs to generate (${LAYERNORM2D_FWD_KNOWN_APIS}) & link, or \"all\".")
if(LAYERNORM2D_FWD_ENABLE_APIS STREQUAL "all")
set(LAYERNORM2D_FWD_ENABLE_APIS ${LAYERNORM2D_FWD_KNOWN_APIS})
endif()
# generate a list of kernels, but not actually emit files at config sta
execute_process(
COMMAND ${Python3_EXECUTABLE} ${CMAKE_CURRENT_LIST_DIR}/generate.py
--api ${LAYERNORM2D_FWD_ENABLE_APIS} --working_path ${CMAKE_CURRENT_BINARY_DIR} --list_blobs
RESULT_VARIABLE ret
)
if(ret AND NOT ret EQUAL 0)
message( FATAL_ERROR "Fail to generate kernels via Python. ${ret}")
endif()
file(STRINGS ${CMAKE_CURRENT_BINARY_DIR}/layernorm2d_fwd_blobs.txt LAYERNORM2D_FWD_GEN_BLOBS)
add_custom_command(
OUTPUT ${LAYERNORM2D_FWD_GEN_BLOBS}
COMMAND ${Python3_EXECUTABLE} ${CMAKE_CURRENT_LIST_DIR}/generate.py
--api ${LAYERNORM2D_FWD_ENABLE_APIS} --working_path ${CMAKE_CURRENT_BINARY_DIR} --gen_blobs
)
set(EXAMPLE_LAYERNORM2D_FWD "tile_example_layernorm2d_fwd") set(EXAMPLE_LAYERNORM2D_FWD "tile_example_layernorm2d_fwd")
# not using add_example_executable() to add this target, since we don't want this to have
# to be included in "make all/install/check"
message("adding example ${EXAMPLE_LAYERNORM2D_FWD}") message("adding example ${EXAMPLE_LAYERNORM2D_FWD}")
file(GLOB INSTANCE_SRCS instances/*.cpp)
add_executable(${EXAMPLE_LAYERNORM2D_FWD} EXCLUDE_FROM_ALL layernorm2d_fwd.cpp) add_executable(${EXAMPLE_LAYERNORM2D_FWD} EXCLUDE_FROM_ALL layernorm2d_fwd.cpp)
target_include_directories(${EXAMPLE_LAYERNORM2D_FWD} PRIVATE ${CMAKE_CURRENT_LIST_DIR}) target_include_directories(${EXAMPLE_LAYERNORM2D_FWD} PRIVATE ${CMAKE_CURRENT_LIST_DIR})
target_sources(${EXAMPLE_LAYERNORM2D_FWD} PRIVATE ${INSTANCE_SRCS}) target_sources(${EXAMPLE_LAYERNORM2D_FWD} PRIVATE ${LAYERNORM2D_FWD_GEN_BLOBS})
set(EXAMPLE_LAYERNORM2D_FWD_COMPILE_OPTIONS) set(EXAMPLE_LAYERNORM2D_FWD_COMPILE_OPTIONS)
......
# Layernorm2D forward # Layernorm2D forward
This folder contains example for Layernorm2D forward using ck_tile tile-programming implementation. This folder contains example for Layernorm2D forward using `ck_tile` tile-programming implementation.
# Implementation and feature support
## welford online algorithm
We use welfold algorithm to update `mean`/`variance` block by block. For `N <=4096` case we can compute `mean`/`var`/`normalization` within one loop, we call it `one-pass`. For large N case, it is hard to keep `mean`/`var` inside register/LDS and then computation `normalization`, so we need to load input twice, first time to compute `mean`/`var` block-by-block, then load input another time to compute the `normalization`. We call it `two-pass`.
## mean/variance save
In training case the mean/variance need to store out (TBD, not supported yet)
## prenorm/postnorm
![](misc/pnorm.png)
since [prenorm/postnorm](https://arxiv.org/pdf/1906.01787) is quite common in LLM blocks, this example boosts this feature by kernel fusion. Note that `prenorm`/`postnorm` always need to do elementwise-add a `shortcut` before the actual layernorm computation, and optionally store out the result to global. You can use `-fadd=1` to test `pre-add+store`, or `-fadd=2` to test `pre-add` without store out (not codegen by default).
## smooth-quant/dynamic-quant
we support smooth/dynamic quantization for `int8` output, by setting `-fquant=1` and `-prec_o=int8`. In this case the output will doing a rowwise dynamic quantization like below. Note that smooth-quant require input a `(1*N)` size per-channel scale(in fp32 in our example, though this is customizable), then elememt-wise multiply the tensor for each row, then compute the rowwise dynamic quant. if set `-fquant=2` will have the input per-channel scale stage, only the dynamic quant. This case is supported in our kernel but by default not generated (TBD: add some filter in generate.py support on-demand codegen)
![](misc/dquant.png)
```
# assume output int8, hidden_states is [m, n] shape and in fp16/bf16
# [m, 1]
per_token_amax, _ = torch.max(
input=torch.abs(hidden_states),
dim=-1,
keepdim=True
)
per_token_scale = per_token_amax.to(dtype=torch.float32) / 127.0
# quant hidden_states
hidden_states = (hidden_states / per_token_scale).to(dtype=torch.int8)
return hidden_states, per_token_scale
# hidden_states now is int8 will feed to next layer as intput
# per_token_scale will be used as dequant factor later layer
```
## build ## build
``` ```
...@@ -15,8 +51,35 @@ This will result in an executable `build/bin/tile_example_layernorm2d_fwd` ...@@ -15,8 +51,35 @@ This will result in an executable `build/bin/tile_example_layernorm2d_fwd`
``` ```
args: args:
-m m dimension (default:3328) -m m dimension (default:3328)
-n m dimension (default:4096) -n n dimension (default:4096)
-stride stride per row, if -1 then equal to n (default:-1)
-e epsilon (default:1e-5) -e epsilon (default:1e-5)
-save_mv save mean/variance(invstd) or not. set to 1 in training case (default:0)
-v cpu validation or not (default:1) -v cpu validation or not (default:1)
-prec precision (default:fp16) -kname print kernel name or not (default:1)
-prec_i input precision (default:fp16)
-prec_o output precision, set auto will be the same as input (default:auto)
-prec_sx output quant scale type, set auto will be the same as input. used when fquant=1 (default:auto)
-prec_sy output quant scale type, set auto will be the same as input. used when fquant=1 or 2 (default:auto)
-fadd fused-add, 0:no fused add, 1:preadd+store, 2:preadd only (default:0)
-fquant fused-quant, 0:no, 1:smooth-dynamic-quant, 2:dynamic-quant (default:0)
-warmup cold iter (default:5)
-repeat hot iter (default:20)
``` ```
## limitations
Note that `fquant=2`, `fadd=2`, `prec_sx/prec_sy` other than `fp32` are not by default generated. though our kernel template suppor this. (TBD: add some flag in generate.py) to generate those instance on demand. Beside, N>8192 case will by default using two-pass pipeline, and `-fquant=1/2` are not supported yet.
```
# some case
# standard fp16 layernorm 2d, m=10. n=1024
./build/bin/tile_example_layernorm2d_fwd -m=10 -n=1024
# standard fp16 layernorm 2d, m=10. n=1024, fused-smooth-quant, output in int8
./build/bin/tile_example_layernorm2d_fwd -m=10 -n=1024 -prec_o=int8 -fquant=1
# standard fp16 layernorm 2d, m=10. n=1024, fused-smooth-quant+fused-add-store, output in int8
./build/bin/tile_example_layernorm2d_fwd -m=10 -n=1024 -prec_o=int8 -fquant=1 -fadd=1
```
\ No newline at end of file
# SPDX-License-Identifier: MIT
# Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
# generate kernel instances to speed up compilation
import argparse
from enum import IntEnum
from pathlib import Path
import sys
from typing import List, Optional, Any
import functools
import itertools
import copy
from dataclasses import dataclass
def get_if_str(idx, total, lase_else = True):
if idx == 0:
return 'if'
elif idx < total - 1:
return 'else if'
else:
if lase_else:
return 'else'
else:
return 'else if'
FUSED_ADD_ENUM_STR_MAP = [
'no',
'pras', # pre-norm
'pra' ] # post-norm
FUSED_FUSED_SWEEP_STR_MAP = [
'no',
'dquant' ]
DATA_TYPE_MAP = {'fp32' : 'float',
'fp16' : 'ck_tile::fp16_t',
'bf16' : 'ck_tile::bf16_t',
'int8' : 'ck_tile::int8_t'}
def BOOL_MAP(b_) -> str:
if b_:
return 'true'
else:
return 'false'
class layernorm_fwd_codegen:
API_TRAITS_DEFINE = """
// this is used to pattern-match internl kernel implementation, not to instantiate kernel
template <typename XDataType_,
typename YDataType_,
typename XScaleDataType_,
typename YScaleDataType_,
ck_tile::index_t Repeat_M_, // each thread repeat along M
ck_tile::index_t Repeat_N_, // each thread repeat along N
ck_tile::index_t ThreadPerBlock_M_, // num threads along M
ck_tile::index_t ThreadPerBlock_N_, // num threads along N
ck_tile::index_t Vector_N_, // vector size along N
bool kPadN_,
bool kSaveMeanInvStd_,
bool kTwoPass_,
ck_tile::index_t kFusedAdd_ = 0,
ck_tile::index_t kFusedQuant_ = 0>
struct layernorm2d_fwd_traits_
{
using XDataType = ck_tile::remove_cvref_t<XDataType_>;
using YDataType = ck_tile::remove_cvref_t<YDataType_>;
using XScaleDataType = ck_tile::remove_cvref_t<XScaleDataType_>;
using YScaleDataType = ck_tile::remove_cvref_t<YScaleDataType_>;
static constexpr bool is_warp_per_row = ThreadPerBlock_N_ <= warpSize;
static_assert((ThreadPerBlock_M_ * ThreadPerBlock_N_) % warpSize == 0);
static constexpr ck_tile::index_t total_warps =
(ThreadPerBlock_M_ * ThreadPerBlock_N_) / warpSize;
// num of warps along m
static constexpr ck_tile::index_t BlockWarps_M = []() {
if constexpr(is_warp_per_row)
{
static_assert(warpSize % ThreadPerBlock_N_ == 0);
return total_warps * (warpSize / ThreadPerBlock_N_);
}
else
{
// static_assert(warpSize % ThreadPerBlock_M_ == 0);
return total_warps / (ThreadPerBlock_N_ / warpSize);
}
}();
// num of warps along n
static constexpr ck_tile::index_t BlockWarps_N = []() {
if constexpr(is_warp_per_row)
{
static_assert(warpSize % ThreadPerBlock_N_ == 0);
return 1;
}
else
{
static_assert(ThreadPerBlock_N_ % warpSize == 0);
return ThreadPerBlock_N_ / warpSize;
}
}();
static constexpr ck_tile::index_t Repeat_M = Repeat_M_;
static constexpr ck_tile::index_t Repeat_N = Repeat_N_;
static constexpr ck_tile::index_t Block_M = Repeat_M_ * ThreadPerBlock_M_;
static constexpr ck_tile::index_t Block_N = Repeat_N_ * ThreadPerBlock_N_ * Vector_N_;
static constexpr ck_tile::index_t Warp_M = ThreadPerBlock_M_ / BlockWarps_M;
static constexpr ck_tile::index_t Warp_N = ThreadPerBlock_N_ / BlockWarps_N * Vector_N_;
using BlockTile = ck_tile::sequence<Block_M, Block_N>;
using BlockWarps = ck_tile::sequence<BlockWarps_M, BlockWarps_N>;
using WarpTile = ck_tile::sequence<Warp_M, Warp_N>;
using Vector = ck_tile::sequence<1, Vector_N_>;
using Shape = ck_tile::Generic2dBlockShape<BlockTile, BlockWarps, WarpTile, Vector>;
static constexpr bool kPadN = kPadN_;
static constexpr bool kSaveMeanInvStd = kSaveMeanInvStd_;
static constexpr bool kTwoPass = kTwoPass_;
static constexpr ck_tile::index_t kFusedAdd = kFusedAdd_;
static constexpr ck_tile::index_t kFusedQuant = kFusedQuant_;
};
template <typename XDataType_,
typename YDataType_,
typename XScaleDataType_,
typename YScaleDataType_,
ck_tile::index_t Repeat_M_, // each thread repeat along M
ck_tile::index_t Repeat_N_, // each thread repeat along N
ck_tile::index_t ThreadPerBlock_M_, // num threads along M
ck_tile::index_t ThreadPerBlock_N_, // num threads along N
ck_tile::index_t Vector_N_, // vector size along N
bool kPadN_,
bool kSaveMeanInvStd_,
bool kTwoPass_,
int kFusedAdd_,
int kFusedQuant_>
using traits_ = layernorm2d_fwd_traits_<XDataType_,
YDataType_,
XScaleDataType_,
YScaleDataType_,
Repeat_M_,
Repeat_N_,
ThreadPerBlock_M_,
ThreadPerBlock_N_,
Vector_N_,
kPadN_,
kSaveMeanInvStd_,
kTwoPass_,
kFusedAdd_,
kFusedQuant_>;
"""
API_COMMON_HEADER = """
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <ck_tile/core.hpp>
#include "layernorm2d_fwd.hpp"
#include <ck_tile/ops/epilogue.hpp>
#include <iostream>
#pragma once
using S = ck_tile::stream_config;
using A = layernorm2d_fwd_args;
{F_traits_define}
template <typename Traits_>
float layernorm2d_fwd_(const S& s, A a)
{{
using XDataType = typename Traits_::XDataType;
using YDataType = typename Traits_::YDataType;
using XScaleDataType = typename Traits_::XScaleDataType;
using YScaleDataType = typename Traits_::YScaleDataType;
using ComputeDataType = typename LayerNormTypeConfig<XDataType, YDataType, XScaleDataType, YScaleDataType>::ComputeDataType;
using PipelineTraits = ck_tile::Layernorm2dFwdTraits<Traits_::kPadN,
Traits_::kSaveMeanInvStd,
Traits_::kTwoPass,
static_cast<ck_tile::Layernorm2dFusedAddEnum>(Traits_::kFusedAdd),
static_cast<ck_tile::Layernorm2dFusedQuantEnum>(Traits_::kFusedQuant)>;
using PipelineProblem = ck_tile::Layernorm2dFwdPipelineProblem<
typename LayerNormTypeConfig<XDataType, YDataType, XScaleDataType, YScaleDataType>::XDataType,
typename LayerNormTypeConfig<XDataType, YDataType, XScaleDataType, YScaleDataType>::GammaDataType,
typename LayerNormTypeConfig<XDataType, YDataType, XScaleDataType, YScaleDataType>::BetaDataType,
typename LayerNormTypeConfig<XDataType, YDataType, XScaleDataType, YScaleDataType>::ComputeDataType,
typename LayerNormTypeConfig<XDataType, YDataType, XScaleDataType, YScaleDataType>::YDataType,
typename LayerNormTypeConfig<XDataType, YDataType, XScaleDataType, YScaleDataType>::MeanDataType,
typename LayerNormTypeConfig<XDataType, YDataType, XScaleDataType, YScaleDataType>::InvStdDataType,
typename LayerNormTypeConfig<XDataType, YDataType, XScaleDataType, YScaleDataType>::XScaleDataType,
typename LayerNormTypeConfig<XDataType, YDataType, XScaleDataType, YScaleDataType>::YScaleDataType,
typename Traits_::Shape,
PipelineTraits>;
using OnePassPipeline = ck_tile::Layernorm2dFwdPipelineOnePass<PipelineProblem>;
using TwoPassPipeline = ck_tile::Layernorm2dFwdPipelineTwoPass<PipelineProblem>;
using Pipeline = std::conditional_t<Traits_::kTwoPass, TwoPassPipeline, OnePassPipeline>;
using Default2DEpilogueProblem = ck_tile::Default2DEpilogueProblem<ComputeDataType, YDataType, false, Traits_::kPadN, false>;
using Default2DEpilogue = ck_tile::Default2DEpilogue<Default2DEpilogueProblem>;
using DynamicQuantEpilogueProblem = ck_tile::DynamicQuantEpilogueProblem<ComputeDataType, YScaleDataType, YDataType, typename Traits_::Shape,
ck_tile::DynamicQuantEpilogueTraits<false, Traits_::kPadN, false, true/*max3*/>>;
using DynamicQuantEpilogue = ck_tile::DynamicQuantEpilogue<DynamicQuantEpilogueProblem>;
using Epilogue = std::conditional_t<Traits_::kFusedQuant == 1, DynamicQuantEpilogue, Default2DEpilogue>;
using Kernel = ck_tile::Layernorm2dFwd<Pipeline, Epilogue>;
const dim3 grids = Kernel::GridSize(a);
constexpr dim3 blocks = Kernel::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = 1;
auto kargs = Kernel::MakeKargs(a);
if(s.log_level_ > 0)
std::cout << ", " << Kernel::GetName() << std::flush;
return ck_tile::launch_kernel(
s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(Kernel{{}}, grids, blocks, 0, kargs));
}}
"""
API_BASE = """
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <ck_tile/core.hpp>
#include "layernorm2d_fwd.hpp"
{F_traits_define}
// Note: this internal API only declare, not define here, otherwise will block `make -j`
template <typename Traits_>
float layernorm2d_fwd_(const ck_tile::stream_config& s, layernorm2d_fwd_args a);
float layernorm2d_fwd(layernorm2d_fwd_traits t,
layernorm2d_fwd_args a,
const ck_tile::stream_config& s)
{{
float r = -1;
{F_dispatch}
return r;
}}
"""
API_PER_DTYPE=""" {F_if}(t.prec_i == \"{F_i_type}\" && t.prec_o == \"{F_o_type}\"){{
{F_per_n_case}
}}
"""
API_PER_N_CASE=""" {F_if} {F_N_COND} {{
{F_inner_dispatch}
}}
"""
API_INNER_CASE=""" {F_if} {F_VEC_COND}
r={F_instance_func}(s, a);
"""
INSTANCE_BASE = """
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_api_common.hpp"
// clang-format off
// prec_i prec_o prec_sy rm rn tm tn vn pd mv 2p add sweep
{F_instance_def}
// clang-format on
"""
def __init__(self, working_path, kernel_filter):
self.working_path = working_path
self.kernel_filter = kernel_filter
class k_fuesd_add_enum(IntEnum):
F_NO_ADD = 0
F_PRE_ADD = 1
F_PRE_ADD_STORE_RESIDUAL = 2
class k_fused_sweep_enum(IntEnum):
F_NO_SWEEP = 0
F_RENORM = 1
F_DYNAMIC_QUANT = 2
@dataclass
class k_traits:
F_kPadN : bool
F_kSaveMeanInvStd : bool
F_kTwoPass : bool
F_kFusedAdd : Any #: layernorm_fwd_codegen.k_fuesd_add_enum
F_kFusedQuant : Any #: layernorm_fwd_codegen.k_fused_sweep_enum
@dataclass
class k_shape:
F_BlockTile : List[int]
F_WarpPerBlock : List[int]
F_WarpTile : List[int]
F_Vector_ : List[int]
@property
def F_BlockSize(self) -> int:
return functools.reduce(lambda a, b: a*b, self.F_WarpTile)
@dataclass
class k_problem:
F_XDataType : str
F_GammaDataType : str
F_BetaDataType : str
F_ComputeDataType : str
F_YDataType : str
F_MeanDataType : str
F_InvStdDataType : str
F_BlockShape : str
F_Traits : Any #k_traits
@dataclass
class k_pipeline_one_pass:
F_Problem : Any #k_problem
@dataclass
class k_pipeline_two_pass:
F_Problem : Any #k_problem
@dataclass
class default_2d_epilogue_problem:
F_AccDataType : str
F_ODataType : str
F_kPadM : bool
F_kPadN : bool
@dataclass
class default_2d_epilogue:
F_problem : Any
@dataclass
class k_kernel:
F_pipeline : Any
F_epilogue : Any
@dataclass
class h_traits:
F_XDataType : str
F_YDataType : str
F_XScaleDataType : str
F_YScaleDataType : str
F_Repeat_M : int
F_Repeat_N : int
F_ThreadPerBlock_M : int
F_ThreadPerBlock_N : int
F_Vector_N : int
F_kPadN : bool
F_kSaveMeanInvStd_ : bool
F_kTwoPass_ : bool
F_kFusedAdd : int
F_kFusedQuant : int
@property
def trait_name(self) ->str:
t_ = f'{DATA_TYPE_MAP[self.F_XDataType]}, {DATA_TYPE_MAP[self.F_YDataType]}, {DATA_TYPE_MAP[self.F_XScaleDataType]}, {DATA_TYPE_MAP[self.F_YScaleDataType]}, {self.F_Repeat_M:2}, {self.F_Repeat_N:2}, {self.F_ThreadPerBlock_M:2}, {self.F_ThreadPerBlock_N:4}'
t_ += f', {self.F_Vector_N:2}, {BOOL_MAP(self.F_kPadN):5}, {BOOL_MAP(self.F_kSaveMeanInvStd_):5}'
t_ += f', {BOOL_MAP(self.F_kTwoPass_):5}, {self.F_kFusedAdd:4}, {self.F_kFusedQuant:4}'
return t_
# string when calling this kernel
@property
def call_name(self) -> str:
return f'layernorm2d_fwd_<traits_<{self.trait_name}>>'
# string when define this kernel
@property
def def_name(self) -> str:
return f'template float layernorm2d_fwd_<traits_<{self.trait_name}>>(const S&, A);'
# this class hold kernel under same source file
@dataclass
class h_instance:
F_DataTypePair : str
F_N : str
F_add : int
F_sweep : int
instance_list : List[Any] # List[h_traits]
@property
def name(self) -> str:
prec_i, prec_o = self.F_DataTypePair.split(',')
dtype_str = f'{prec_i}' if prec_i == prec_o else f'{prec_i}_{prec_o}'
nnn = f'layernorm2d_fwd_{dtype_str}_n{self.F_N}'
if self.F_add != 0:
nnn = nnn + '_' + FUSED_ADD_ENUM_STR_MAP[self.F_add]
if self.F_sweep != 0:
nnn = nnn + '_' + FUSED_FUSED_SWEEP_STR_MAP[self.F_sweep]
return nnn
@property
def instance_name(self) ->str:
return self.name
@property
def content(self) ->str:
instance_defs = ''
for ins in self.instance_list:
instance_defs += ins.def_name + '\n'
return layernorm_fwd_codegen.INSTANCE_BASE.format(F_instance_def=instance_defs)
@property
def name_api(self) -> str:
return 'layernorm2d_fwd_api'
@property
def name_common_header(self) -> str:
return 'layernorm2d_fwd_api_common'
@property
def content_api(self) -> str:
# 1 sort based on dtype
t_dtype_dict = dict()
blobs = self.get_blobs()
for blob in blobs:
if blob.F_DataTypePair not in t_dtype_dict:
t_dtype_dict[blob.F_DataTypePair] = {}
if blob.F_N not in t_dtype_dict[blob.F_DataTypePair]:
t_dtype_dict[blob.F_DataTypePair][blob.F_N] = []
t_dtype_dict[blob.F_DataTypePair][blob.F_N].append(blob)
d_str = ''
for i_d, dtype_ in enumerate(t_dtype_dict):
blob_per_t = t_dtype_dict[dtype_]
n_str = ''
for i_n, n_ in enumerate(blob_per_t):
blob_per_n = blob_per_t[n_]
inner_str = ""
for i_b, b_ in enumerate(blob_per_n):
# generate single kernel instance file
#vec_str = ""
for i_ins, ins in enumerate(b_.instance_list):
idx_in_n = i_b * len(b_.instance_list) + i_ins
len_in_n = len(blob_per_n) * len(b_.instance_list)
# _if = 'if' if i_ins == 0 else 'else if'
if ins.F_kFusedQuant == 0:
_sweep_cond = 't.fused_quant == {f_fused_sweep}'.format(f_fused_sweep = ins.F_kFusedQuant)
elif ins.F_kFusedQuant == 1:
_sweep_cond = 't.fused_quant == {f_fused_sweep} && (t.prec_sx == \"{f_sx_type}\" && t.prec_sy == \"{f_sy_type}\")'.format(
f_fused_sweep = ins.F_kFusedQuant, f_sx_type=ins.F_XScaleDataType, f_sy_type=ins.F_YScaleDataType)
elif ins.F_kFusedQuant == 2:
_sweep_cond = 't.fused_quant == {f_fused_sweep} && (t.prec_sy == \"{f_sy_type}\")'.format(
f_fused_sweep = ins.F_kFusedQuant, f_sy_type=ins.F_YScaleDataType)
_cond = '((a.n % {f_vec_n} == 0) && (t.fused_add == {f_fused_add}) && ({f_sweep_cond}))'.format(
f_vec_n = ins.F_Vector_N, f_fused_add = ins.F_kFusedAdd,
f_sweep_cond = _sweep_cond)
inner_str += self.API_INNER_CASE.format(F_if = get_if_str(idx_in_n, len_in_n, False),
F_VEC_COND = _cond, F_instance_func=ins.call_name)
#inner_str = inner_str + vec_str
n_cnd = f'(a.n <= {n_})' if (i_n < len(blob_per_t) - 1) else ''
n_str += self.API_PER_N_CASE.format(F_if = get_if_str(i_n, len(blob_per_t)), F_N_COND=n_cnd, F_inner_dispatch=inner_str)
prec_i, prec_o = dtype_.split(',')
d_str += self.API_PER_DTYPE.format(F_if = get_if_str(i_d, len(t_dtype_dict), False), F_i_type=prec_i, F_o_type=prec_o, F_per_n_case=n_str)
api_base = self.API_BASE.format(F_traits_define=self.API_TRAITS_DEFINE, F_dispatch=d_str)
return api_base
@property
def content_common_header(self) -> str:
return self.API_COMMON_HEADER.format(F_traits_define=self.API_TRAITS_DEFINE)
def get_blobs(self):
h_traits = layernorm_fwd_codegen.h_traits
h_instance = layernorm_fwd_codegen.h_instance
dynamic_quant_out_dtype = ['int8']
# some predefined support range
# (prec_i,prec_o) for simplicity this string will be used as key for dict
scale_list = [('fp32,fp32')]
dtype_list = [('fp16,fp16'), ('bf16,bf16'),
('fp16,int8'), ('bf16,int8')] # NOTE: only fused-dynamic-quant use int8 out
#fused_add_list = [0, 1, 2]
#fused_sweep_list = [0, 1, 2] # NOTE: only single pass can use fused dynamic quant
fused_add_list = [0, 1]
fused_sweep_list = [0, 1] # NOTE: only single pass can use fused dynamic quant
# rm rn tm tn vn pd mv 2p add sweep
h_trait_dict = {'64' : [ h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 64, 1, True, False, False, 0, 0)],
'128' : [ h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 64, 2, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 4, 64, 1, True, False, False, 0, 0)],
'256' : [ h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 64, 4, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 4, 64, 2, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 4, 64, 1, True, False, False, 0, 0)],
'512' : [ h_traits('x', 'y', 'xs', 'ys', 1, 1, 4, 64, 8, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 4, 64, 4, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 4, 64, 2, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 8, 4, 64, 1, True, False, False, 0, 0)],
'768' : [ h_traits('x', 'y', 'xs', 'ys', 1, 3, 4, 64, 4, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 6, 4, 64, 2, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 12, 4, 64, 1, True, False, False, 0, 0)],
'1024' :[ h_traits('x', 'y', 'xs', 'ys', 1, 1, 2, 128, 8, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 2, 128, 4, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 2, 128, 2, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 1, True, False, False, 0, 0)],
'1536' :[ h_traits('x', 'y', 'xs', 'ys', 1, 3, 4, 64, 8, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 2, 128, 4, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 256, 2, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 6, 1, 256, 1, True, False, False, 0, 0)],
'2048' :[ h_traits('x', 'y', 'xs', 'ys', 1, 1, 1, 256, 8, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 1, 256, 4, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 2, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 8, 1, 256, 1, True, False, False, 0, 0)],
'3072' :[ h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 128, 8, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 256, 4, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 6, 1, 256, 2, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1,1024, 1, True, False, False, 0, 0)],
'4096' :[ h_traits('x', 'y', 'xs', 'ys', 1, 2, 1, 256, 8, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 4, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 1,1024, 2, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1,1024, 1, True, False, False, 0, 0)],
'6144' :[ h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 256, 8, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1, 512, 4, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 3, 1,1024, 2, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 6, 1,1024, 1, True, False, False, 0, 0)],
'8192' :[ h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 8, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 512, 4, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1,1024, 2, True, False, False, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 8, 1,1024, 1, True, False, False, 0, 0)],
'big' :[ h_traits('x', 'y', 'xs', 'ys', 1, 2, 1, 256, 8, True, False, True, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1, 256, 4, True, False, True, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 2, 1,1024, 2, True, False, True, 0, 0),
h_traits('x', 'y', 'xs', 'ys', 1, 4, 1,1024, 1, True, False, True, 0, 0)]}
total_blob = list()
for hs_key in h_trait_dict:
hs = h_trait_dict[hs_key]
current_n = hs[0].F_Repeat_N * hs[0].F_ThreadPerBlock_N * hs[0].F_Vector_N
for dtype, scale_type, fused_add, fused_quant in itertools.product(dtype_list, scale_list, fused_add_list, fused_sweep_list):
prec_i, prec_o = dtype.split(',')
scale_x, scale_y = scale_type.split(',')
if prec_o in dynamic_quant_out_dtype and fused_quant != 1:
continue # skip non dynamic quant case
if fused_quant == 1 and hs_key == 'big':
continue
current_hs = list()
for chs_ in hs:
h_ = copy.copy(chs_) # copy the base instance out
h_.F_XDataType = prec_i
h_.F_YDataType = prec_o
h_.F_XScaleDataType = scale_y
h_.F_YScaleDataType = scale_x
h_.F_kFusedAdd = fused_add
h_.F_kFusedQuant = fused_quant
current_hs.append(h_) # + "\n"
#f.write(str(f.parent / GEN_DIR / (blobs.api_common_header_
current_n_str = 'big' if hs_key == 'big' else current_n
total_blob.append(h_instance(dtype, current_n_str, fused_add, fused_quant, current_hs))
return total_blob
def list_blobs(self) -> None:
w_p = Path(self.working_path)
list_p = w_p / 'layernorm2d_fwd_blobs.txt'
blobs = self.get_blobs()
with list_p.open('a') as list_f:
# api related file
list_f.write(str(w_p / (self.name_api + ".cpp")) + "\n")
list_f.write(str(w_p / (self.name_common_header + ".hpp")) + "\n")
# kernel instance file
for b in blobs:
list_f.write(str(w_p / (b.name + ".cpp")) + "\n")
def gen_blobs(self) -> None:
w_p = Path(self.working_path)
(w_p / (self.name_api + ".cpp")).write_text(self.content_api)
(w_p / (self.name_common_header + ".hpp")).write_text(self.content_common_header)
blobs = self.get_blobs()
for b in blobs:
(w_p / (b.name + ".cpp")).write_text(b.content)
def list_blobs(args):
api_list = args.api.split(',')
for api in api_list:
if api == 'fwd':
layernorm_fwd_codegen(args.working_path, args.filter).list_blobs()
def gen_blobs(args):
api_list = args.api.split(',')
for api in api_list:
if api == 'fwd':
layernorm_fwd_codegen(args.working_path, args.filter).gen_blobs()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog="generate",
description="gen API for CK layernorm kernel",
)
parser.add_argument(
"-a",
"--api",
default='fwd[all]',
required=False,
help="supply API(s) to generate (default: fwd). separated by comma."
)
# the directory for list_blobs/gen_blobs to write files into
parser.add_argument(
"-w",
"--working_path",
default="./",
required=False,
help="the path where all the blobs are going to be generated"
)
# this script have 2 modes
# 1) list_blobs mode, will generate a txt file with all the files going to be generated.
# this is useful in build system like cmake to construct source code dependency, by
# reading the content out of this file
# 2) gen_blobs mode, will generate the actuall kernel instance and api. If in framework
# like FA, only need to use this mode
parser.add_argument(
"-l",
"--list_blobs",
action='store_true',
help="list all the kernels to a file, "
)
parser.add_argument(
"-g",
"--gen_blobs",
action='store_true',
help="generate all kernels into different tile"
)
# TODO: if using filter, must apply same value to output_dir and list_blobs
parser.add_argument(
"-f",
"--filter",
required=False,
help="filter out kernels that need to generate, using fnmatch module"
)
parser.add_argument(
"-t",
"--traits",
default="all",
required=False,
help="enable/disable some feature. default generate all"
)
parser.add_argument(
"-r",
"--receipt",
default=0,
required=False,
help="codegen receipt."
)
args = parser.parse_args()
# print(f'{args.list_blobs}-{args.gen_blobs}')
if (args.gen_blobs and args.list_blobs) or ((not args.gen_blobs) and (not args.list_blobs)):
print('gen_blobs/list_blobs must specify only one option')
sys.exit()
p = Path(args.working_path)
if not p.exists():
p.mkdir()
if args.list_blobs:
list_blobs(args)
else:
gen_blobs(args)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <ck_tile/core.hpp>
#include "layernorm2d_fwd.hpp"
template <typename DataType_,
ck_tile::index_t Repeat_M_, // each thread repeat along M
ck_tile::index_t Repeat_N_, // each thread repeat along N
ck_tile::index_t ThreadPerBlock_M_, // num threads along M
ck_tile::index_t ThreadPerBlock_N_, // num threads along N
ck_tile::index_t Vector_N_, // vector size along N
bool kPadN_,
bool kSaveMeanInvStd_,
bool kTwoPass_>
using trait_ = layernorm2d_fwd_traits_<DataType_,
Repeat_M_,
Repeat_N_,
ThreadPerBlock_M_,
ThreadPerBlock_N_,
Vector_N_,
kPadN_,
kSaveMeanInvStd_,
kTwoPass_>;
template <typename data_type>
float layernorm2d_fwd_b16_(layernorm2d_fwd_traits /*t*/,
layernorm2d_fwd_args a,
const ck_tile::stream_config& s)
{
#if 1
float r = -1;
// clang-format off
// rm rn tm tn vn pd mv 2p
if(a.n <= 64) {
r = layernorm2d_fwd_<trait_<data_type, 1, 1, 4, 64, 1, true, false, false>>(s, a);
}
else if(a.n <= 128) {
if (a.n % 2 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 1, 4, 64, 2, true, false, false>>(s, a);
else
r = layernorm2d_fwd_<trait_<data_type, 1, 2, 4, 64, 1, true, false, false>>(s, a);
}
else if(a.n <= 256) {
if (a.n % 4 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 1, 4, 64, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 2, 4, 64, 2, true, false, false>>(s, a);
else
r = layernorm2d_fwd_<trait_<data_type, 1, 4, 4, 64, 1, true, false, false>>(s, a);
}
else if(a.n <= 512) {
if (a.n % 8 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 1, 4, 64, 8, true, false, false>>(s, a);
else if (a.n % 4 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 2, 4, 64, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 4, 4, 64, 2, true, false, false>>(s, a);
else
r = layernorm2d_fwd_<trait_<data_type, 1, 8, 4, 64, 1, true, false, false>>(s, a);
}
else if(a.n <= 768) {
if (a.n % 4 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 3, 4, 64, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 6, 4, 64, 2, true, false, false>>(s, a);
else
r = layernorm2d_fwd_<trait_<data_type, 1,12, 4, 64, 1, true, false, false>>(s, a);
}
else if(a.n <= 1024) {
if (a.n % 8 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 1, 2, 128, 8, true, false, false>>(s, a);
else if (a.n % 4 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 2, 2, 128, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 4, 2, 128, 2, true, false, false>>(s, a);
else
r = layernorm2d_fwd_<trait_<data_type, 1, 4, 1, 256, 1, true, false, false>>(s, a);
}
else if(a.n <= 1536) {
if (a.n % 8 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 3, 4, 64, 8, true, false, false>>(s, a);
else if (a.n % 4 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 3, 2, 128, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 3, 1, 256, 2, true, false, false>>(s, a);
else
r = layernorm2d_fwd_<trait_<data_type, 1, 6, 1, 256, 1, true, false, false>>(s, a);
}
else if(a.n <= 2048) {
if (a.n % 8 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 1, 1, 256, 8, true, false, false>>(s, a);
else if (a.n % 4 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 2, 1, 256, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 4, 1, 256, 2, true, false, false>>(s, a);
else
r = layernorm2d_fwd_<trait_<data_type, 1, 8, 1, 256, 1, true, false, false>>(s, a);
}
else if(a.n <= 3072) {
if (a.n % 8 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 3, 1, 128, 8, true, false, false>>(s, a);
else if (a.n % 4 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 3, 1, 256, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 6, 1, 256, 2, true, false, false>>(s, a);
else
r = layernorm2d_fwd_<trait_<data_type, 1, 3, 1, 1024, 1, true, false, false>>(s, a);
}
else if(a.n <= 4096) {
if (a.n % 8 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 2, 1, 256, 8, true, false, false>>(s, a);
else if (a.n % 4 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 4, 1, 256, 4, true, false, false>>(s, a);
else if (a.n % 2 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 2, 1, 1024, 2, true, false, false>>(s, a);
else
r = layernorm2d_fwd_<trait_<data_type, 1, 4, 1, 1024, 1, true, false, false>>(s, a);
}
else if(a.n > 4096) {
if (a.n % 8 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 2, 1, 256, 8, true, false, true>>(s, a);
else if (a.n % 4 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 4, 1, 256, 4, true, false, true>>(s, a);
else if (a.n % 2 == 0)
r = layernorm2d_fwd_<trait_<data_type, 1, 2, 1, 1024, 2, true, false, true>>(s, a);
else
r = layernorm2d_fwd_<trait_<data_type, 1, 4, 1, 1024, 1, true, false, true>>(s, a);
}
return r;
#else
return layernorm2d_fwd_<trait_<data_type, 1, 1, 1, 256, 4, true, false, false>>(s, a);
#endif
// clang-format on
}
float layernorm2d_fwd(layernorm2d_fwd_traits t,
layernorm2d_fwd_args a,
const ck_tile::stream_config& s)
{
float r = -1;
if(t.data_type.compare("fp16") == 0)
{
return layernorm2d_fwd_b16_<ck_tile::fp16_t>(t, a, s);
}
else if(t.data_type.compare("bf16") == 0)
{
return layernorm2d_fwd_b16_<ck_tile::bf16_t>(t, a, s);
}
if(r < 0)
throw std::runtime_error("Without supported instances!");
return r;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
#if 0
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 4, 64, 8, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 4, 64, 4, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 8, 4, 64, 2, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 16, 4, 64, 1, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 1, 256, 4, true , false, false>>(const S&, A);
#endif
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 2, 128, 8, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 2, 128, 4, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 2, 128, 2, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 1, 256, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 4, 64, 8, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 2, 128, 4, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 1, 256, 2, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 6, 1, 256, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 1, 256, 8, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 1, 256, 4, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 1, 256, 2, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 8, 1, 256, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 4, 64, 4, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 4, 64, 2, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 4, 64, 1, true , false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 1, 128, 8, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 1, 256, 4, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 6, 1, 256, 2, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 1, 1024, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 1, 256, 8, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 1, 256, 4, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 1, 1024, 2, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 1, 1024, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 1, 256, 8, true, false, true>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 1, 256, 4, true, false, true>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 1, 1024, 2, true, false, true>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 1, 1024, 1, true, false, true>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 4, 64, 8, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 4, 64, 4, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 4, 4, 64, 2, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 8, 4, 64, 1, true , false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 4, 64, 1, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 1, 4, 64, 2, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 2, 4, 64, 1, true , false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 3, 4, 64, 4, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 6, 4, 64, 2, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::bf16_t, 1, 12, 4, 64, 1, true , false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
#if 0
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 2, 4, 64, 8, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 4, 64, 4, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 8, 4, 64, 2, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 16, 4, 64, 1, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 1, 1, 256, 4, true , false, false>>(const S&, A);
#endif
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 1, 2, 128, 8, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 2, 2, 128, 4, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 2, 128, 2, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 1, 256, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 3, 4, 64, 8, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 3, 2, 128, 4, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 3, 1, 256, 2, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 6, 1, 256, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 1, 1, 256, 8, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 2, 1, 256, 4, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 1, 256, 2, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 8, 1, 256, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 1, 4, 64, 4, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 2, 4, 64, 2, true , false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 4, 64, 1, true , false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 3, 1, 128, 8, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 3, 1, 256, 4, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 6, 1, 256, 2, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 3, 1, 1024, 1, true, false, false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "layernorm2d_fwd_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd mv 2p
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 2, 1, 256, 8, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 1, 256, 4, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 2, 1, 1024, 2, true, false, false>>(const S&, A);
template float layernorm2d_fwd_<trait_<ck_tile::fp16_t, 1, 4, 1, 1024, 1, true, false, false>>(const S&, A);
// clang-format on
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment