"...git@developer.sourcefind.cn:OpenDAS/mmdetection3d.git" did not exist on "4eca6606bcdfb7e2b446469560cf3c10a2779e2d"
Unverified Commit ba86eadc authored by jakpiase's avatar jakpiase Committed by GitHub
Browse files

Add support for mixed-precision f16bf16_int8 gemm (#1127)

parent 753cef78
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
...@@ -75,6 +75,15 @@ struct Add ...@@ -75,6 +75,15 @@ struct Add
y = ck::type_convert<bhalf_t>(y_tmp); y = ck::type_convert<bhalf_t>(y_tmp);
} }
template <>
__host__ __device__ constexpr void
operator()<bhalf_t>(bhalf_t& y, const float& x0, const bhalf_t& x1) const
{
const float x2_tmp = ck::type_convert<float>(x1);
const float y_tmp = x0 + x2_tmp;
y = ck::type_convert<bhalf_t>(y_tmp);
}
template <> template <>
__host__ __device__ constexpr void __host__ __device__ constexpr void
operator()<int8_t>(int8_t& y, const int8_t& x0, const int8_t& x1) const operator()<int8_t>(int8_t& y, const int8_t& x0, const int8_t& x1) const
...@@ -264,6 +273,14 @@ struct AddRelu ...@@ -264,6 +273,14 @@ struct AddRelu
y = a > 0.0f ? a : 0.0f; y = a > 0.0f ? a : 0.0f;
}; };
template <>
__host__ __device__ constexpr void
operator()<bhalf_t, float, bhalf_t>(bhalf_t& y, const float& x0, const bhalf_t& x1) const
{
const float a = x0 + type_convert<float>(x1);
y = a > type_convert<bhalf_t>(0.0f) ? a : type_convert<bhalf_t>(0.0f);
};
template <> template <>
__host__ __device__ constexpr void __host__ __device__ constexpr void
operator()<int, int, int8_t>(int& y, const int& x0, const int8_t& x1) const operator()<int, int, int8_t>(int& y, const int& x0, const int8_t& x1) const
...@@ -354,6 +371,70 @@ struct AddFastGelu ...@@ -354,6 +371,70 @@ struct AddFastGelu
e = type_convert<half_t>(x1_f); e = type_convert<half_t>(x1_f);
} }
template <>
__host__ __device__ constexpr void
operator()<bhalf_t, float, bhalf_t>(bhalf_t& e, const float& c, const bhalf_t& d) const
{
const float x0_f = c + type_convert<float>(d);
float x1_f = 0;
FastGelu{}.template operator()<float, float>(x1_f, x0_f);
e = type_convert<bhalf_t>(x1_f);
}
};
// E = Silu(C + D)
struct AddSilu
{
template <typename E, typename C, typename D>
__host__ __device__ constexpr void operator()(E& e, const C& c, const D& d) const;
template <>
__host__ __device__ constexpr void
operator()<float, float, float>(float& e, const float& c, const float& d) const
{
const float x = c + d;
Silu{}.template operator()<float>(e, x);
}
template <>
__host__ __device__ constexpr void
operator()<half_t, half_t, half_t>(half_t& e, const half_t& c, const half_t& d) const
{
const half_t x = c + d;
Silu{}.template operator()<half_t>(e, x);
}
template <>
__host__ __device__ constexpr void
operator()<half_t, float, half_t>(half_t& e, const float& c, const half_t& d) const
{
const float x0_f = c + d;
float x1_f = 0;
Silu{}.template operator()<float>(x1_f, x0_f);
e = type_convert<half_t>(x1_f);
}
template <>
__host__ __device__ constexpr void
operator()<bhalf_t, float, bhalf_t>(bhalf_t& e, const float& c, const bhalf_t& d) const
{
const float x0_f = c + type_convert<float>(d);
float x1_f = 0;
Silu{}.template operator()<float>(x1_f, x0_f);
e = type_convert<bhalf_t>(x1_f);
}
}; };
} // namespace element_wise } // namespace element_wise
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
...@@ -156,6 +156,12 @@ struct PassThrough ...@@ -156,6 +156,12 @@ struct PassThrough
y = type_convert<half_t>(x); y = type_convert<half_t>(x);
} }
template <>
__host__ __device__ void operator()<bhalf_t, int8_t>(bhalf_t& y, const int8_t& x) const
{
y = type_convert<bhalf_t>(x);
}
template <> template <>
__host__ __device__ void operator()<int8_t, int32_t>(int8_t& y, const int32_t& x) const __host__ __device__ void operator()<int8_t, int32_t>(int8_t& y, const int32_t& x) const
{ {
...@@ -551,6 +557,19 @@ struct Sigmoid ...@@ -551,6 +557,19 @@ struct Sigmoid
}; };
}; };
struct Silu
{
template <typename T>
__host__ __device__ void operator()(T& y, const T& x) const
{
static_assert(is_same_v<T, float> || is_same_v<T, double> || is_same_v<T, ck::half_t> ||
is_same_v<T, int8_t> || is_same_v<T, int32_t>,
"Data type is not supported by this operation!");
constexpr T one = type_convert<T>(1);
y = x * (one / (one + ck::math::exp(-x)));
};
};
struct TanH struct TanH
{ {
template <typename T> template <typename T>
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
...@@ -98,6 +98,8 @@ using Scale = ck::tensor_operation::element_wise::Scale; ...@@ -98,6 +98,8 @@ using Scale = ck::tensor_operation::element_wise::Scale;
using Bilinear = ck::tensor_operation::element_wise::Bilinear; using Bilinear = ck::tensor_operation::element_wise::Bilinear;
using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu; using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu;
using AddFastGelu = ck::tensor_operation::element_wise::AddFastGelu; using AddFastGelu = ck::tensor_operation::element_wise::AddFastGelu;
using AddRelu = ck::tensor_operation::element_wise::AddRelu;
using AddSilu = ck::tensor_operation::element_wise::AddSilu;
using AddReluAdd = ck::tensor_operation::element_wise::AddReluAdd; using AddReluAdd = ck::tensor_operation::element_wise::AddReluAdd;
using FastGelu = ck::tensor_operation::element_wise::FastGelu; using FastGelu = ck::tensor_operation::element_wise::FastGelu;
using AddMultiply = ck::tensor_operation::element_wise::AddMultiply; using AddMultiply = ck::tensor_operation::element_wise::AddMultiply;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
F16,
I8,
F16_Tuple,
F16,
PassThrough,
PassThrough,
Add>>>&);
void add_device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
BF16,
I8,
BF16_Tuple,
BF16,
PassThrough,
PassThrough,
Add>>>&);
// GEMM + Add +
template <typename ALayout,
typename BLayout,
typename D0Layout,
typename ELayout,
typename ADataType,
typename BDataType,
typename D0DataType,
typename EDataType>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceGemmMultipleD<ALayout,
BLayout,
ck::Tuple<D0Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType>,
EDataType,
PassThrough,
PassThrough,
Add>>
{
using DeviceOp = DeviceGemmMultipleD<ALayout,
BLayout,
ck::Tuple<D0Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType>,
EDataType,
PassThrough,
PassThrough,
Add>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
#if defined(CK_ENABLE_INT8) && defined(CK_ENABLE_FP16)
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, int8_t> &&
is_same_v<D0DataType, half_t> && is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<D0Layout, Row> && is_same_v<ELayout, Row>)
{
add_device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances(op_ptrs);
}
}
#endif
#if defined(CK_ENABLE_INT8) && defined(CK_ENABLE_BF16)
if constexpr(is_same_v<ADataType, ck::bhalf_t> && is_same_v<BDataType, int8_t> &&
is_same_v<D0DataType, ck::bhalf_t> && is_same_v<EDataType, ck::bhalf_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<D0Layout, Row> && is_same_v<ELayout, Row>)
{
add_device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances(op_ptrs);
}
}
#endif
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
...@@ -68,6 +68,32 @@ void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_inst ...@@ -68,6 +68,32 @@ void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_inst
PassThrough, PassThrough,
AddFastGelu>>>&); AddFastGelu>>>&);
void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
F16,
I8,
F16_Tuple,
F16,
PassThrough,
PassThrough,
AddFastGelu>>>&);
void add_device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
BF16,
I8,
BF16_Tuple,
BF16,
PassThrough,
PassThrough,
AddFastGelu>>>&);
// GEMM + Add + FastGelu // GEMM + Add + FastGelu
template <typename ALayout, template <typename ALayout,
typename BLayout, typename BLayout,
...@@ -106,6 +132,32 @@ struct DeviceOperationInstanceFactory< ...@@ -106,6 +132,32 @@ struct DeviceOperationInstanceFactory<
{ {
std::vector<std::unique_ptr<DeviceOp>> op_ptrs; std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
#if defined(CK_ENABLE_INT8) && defined(CK_ENABLE_FP16)
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, int8_t> &&
is_same_v<D0DataType, half_t> && is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<D0Layout, Row> && is_same_v<ELayout, Row>)
{
add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances(
op_ptrs);
}
}
#endif
#if defined(CK_ENABLE_BF16) && defined(CK_ENABLE_INT8)
if constexpr(is_same_v<ADataType, bhalf_t> && is_same_v<BDataType, int8_t> &&
is_same_v<D0DataType, bhalf_t> && is_same_v<EDataType, bhalf_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<D0Layout, Row> && is_same_v<ELayout, Row>)
{
add_device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances(
op_ptrs);
}
}
#endif
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> && if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<D0DataType, half_t> && is_same_v<EDataType, half_t>) is_same_v<D0DataType, half_t> && is_same_v<EDataType, half_t>)
{ {
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
F16,
I8,
F16_Tuple,
F16,
PassThrough,
PassThrough,
AddRelu>>>&);
void add_device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
BF16,
I8,
BF16_Tuple,
BF16,
PassThrough,
PassThrough,
AddRelu>>>&);
// GEMM + Add + Relu
template <typename ALayout,
typename BLayout,
typename D0Layout,
typename ELayout,
typename ADataType,
typename BDataType,
typename D0DataType,
typename EDataType>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceGemmMultipleD<ALayout,
BLayout,
ck::Tuple<D0Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType>,
EDataType,
PassThrough,
PassThrough,
AddRelu>>
{
using DeviceOp = DeviceGemmMultipleD<ALayout,
BLayout,
ck::Tuple<D0Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType>,
EDataType,
PassThrough,
PassThrough,
AddRelu>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
#if defined(CK_ENABLE_INT8) && defined(CK_ENABLE_FP16)
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, int8_t> &&
is_same_v<D0DataType, half_t> && is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<D0Layout, Row> && is_same_v<ELayout, Row>)
{
add_device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances(
op_ptrs);
}
}
#endif
#if defined(CK_ENABLE_INT8) && defined(CK_ENABLE_BF16)
if constexpr(is_same_v<ADataType, ck::bhalf_t> && is_same_v<BDataType, int8_t> &&
is_same_v<D0DataType, ck::bhalf_t> && is_same_v<EDataType, ck::bhalf_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<D0Layout, Row> && is_same_v<ELayout, Row>)
{
add_device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances(
op_ptrs);
}
}
#endif
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_add_silu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
F16,
I8,
F16_Tuple,
F16,
PassThrough,
PassThrough,
AddSilu>>>&);
void add_device_gemm_add_silu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
BF16,
I8,
BF16_Tuple,
BF16,
PassThrough,
PassThrough,
AddSilu>>>&);
// GEMM + Add + Silu
template <typename ALayout,
typename BLayout,
typename D0Layout,
typename ELayout,
typename ADataType,
typename BDataType,
typename D0DataType,
typename EDataType>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceGemmMultipleD<ALayout,
BLayout,
ck::Tuple<D0Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType>,
EDataType,
PassThrough,
PassThrough,
AddSilu>>
{
using DeviceOp = DeviceGemmMultipleD<ALayout,
BLayout,
ck::Tuple<D0Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType>,
EDataType,
PassThrough,
PassThrough,
AddSilu>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
#if defined(CK_ENABLE_INT8) && defined(CK_ENABLE_FP16)
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, int8_t> &&
is_same_v<D0DataType, half_t> && is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<D0Layout, Row> && is_same_v<ELayout, Row>)
{
add_device_gemm_add_silu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances(
op_ptrs);
}
}
#endif
#if defined(CK_ENABLE_INT8) && defined(CK_ENABLE_BF16)
if constexpr(is_same_v<ADataType, ck::bhalf_t> && is_same_v<BDataType, int8_t> &&
is_same_v<D0DataType, ck::bhalf_t> && is_same_v<EDataType, ck::bhalf_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<D0Layout, Row> && is_same_v<ELayout, Row>)
{
add_device_gemm_add_silu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances(
op_ptrs);
}
}
#endif
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
add_instance_library(device_gemm_add_instance
device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instance.cpp
device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instance.cpp
)
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/utility/sequence.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e = elementwise((a * b), d0, d1)
// outout: e[m, n]
// input: a[m, k], b[k, n], d0[m, n], d1[m, n]
using device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_generic_instances = std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 1>
// clang-format on
>;
using device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances = std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 16, 128, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 64, 16, 16, 64, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
void add_device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
BF16,
I8,
BF16_Tuple,
BF16,
PassThrough,
PassThrough,
Add>>>& instances)
{
add_device_operation_instances(
instances, device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_generic_instances{});
add_device_operation_instances(
instances, device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/utility/sequence.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e = elementwise((a * b), d0, d1)
// outout: e[m, n]
// input: a[m, k], b[k, n], d0[m, n], d1[m, n]
using device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_generic_instances = std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 1>
// clang-format on
>;
using device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances = std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 16, 128, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 64, 16, 16, 64, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
void add_device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
F16,
I8,
F16_Tuple,
F16,
PassThrough,
PassThrough,
Add>>>& instances)
{
add_device_operation_instances(
instances, device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_generic_instances{});
add_device_operation_instances(
instances, device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
add_instance_library(device_gemm_add_fastgelu_instance add_instance_library(device_gemm_add_fastgelu_instance
device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instance.cpp
device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_kn_mn_mn_instance.cpp device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_kn_mn_mn_instance.cpp
device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_instance.cpp device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_instance.cpp
device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_kn_mn_mn_instance.cpp device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_kn_mn_mn_instance.cpp
device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instance.cpp device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instance.cpp
device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instance.cpp
) )
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/utility/sequence.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
// static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e = elementwise((a * b), d0, d1)
// outout: e[m, n]
// input: a[m, k], b[k, n], d0[m, n], d1[m, n]
using device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_generic_instances =
std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddFastGelu, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 1>
// clang-format on
>;
using device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances = std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddFastGelu, GemmMNKPadding, 1, 256, 16, 128, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddFastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddFastGelu, GemmMNKPadding, 1, 64, 16, 16, 64, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
void add_device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
BF16,
I8,
BF16_Tuple,
BF16,
PassThrough,
PassThrough,
AddFastGelu>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_generic_instances{});
add_device_operation_instances(
instances,
device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/utility/sequence.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
// static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e = elementwise((a * b), d0, d1)
// outout: e[m, n]
// input: a[m, k], b[k, n], d0[m, n], d1[m, n]
using device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_generic_instances =
std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddFastGelu, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 1>
// clang-format on
>;
using device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances = std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddFastGelu, GemmMNKPadding, 1, 256, 16, 128, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddFastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddFastGelu, GemmMNKPadding, 1, 64, 16, 16, 64, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
F16,
I8,
F16_Tuple,
F16,
PassThrough,
PassThrough,
AddFastGelu>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_generic_instances{});
add_device_operation_instances(
instances, device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
add_instance_library(device_gemm_add_relu_instance
device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instance.cpp
device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instance.cpp
)
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/utility/sequence.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e = elementwise((a * b), d0, d1)
// outout: e[m, n]
// input: a[m, k], b[k, n], d0[m, n], d1[m, n]
using device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_generic_instances =
std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddRelu, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 1>
// clang-format on
>;
using device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances = std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddRelu, GemmMNKPadding, 1, 256, 16, 128, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddRelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddRelu, GemmMNKPadding, 1, 64, 16, 16, 64, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
void add_device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
BF16,
I8,
BF16_Tuple,
BF16,
PassThrough,
PassThrough,
AddRelu>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_generic_instances{});
add_device_operation_instances(
instances, device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/utility/sequence.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e = elementwise((a * b), d0, d1)
// outout: e[m, n]
// input: a[m, k], b[k, n], d0[m, n], d1[m, n]
using device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_generic_instances = std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddRelu, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 1>
// clang-format on
>;
using device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances = std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddRelu, GemmMNKPadding, 1, 256, 16, 128, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddRelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddRelu, GemmMNKPadding, 1, 64, 16, 16, 64, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
void add_device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
F16,
I8,
F16_Tuple,
F16,
PassThrough,
PassThrough,
AddRelu>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_generic_instances{});
add_device_operation_instances(
instances, device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
add_instance_library(device_gemm_add_silu_instance
device_gemm_add_silu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instance.cpp
device_gemm_add_silu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instance.cpp
)
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/utility/sequence.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e = elementwise((a * b), d0, d1)
// outout: e[m, n]
// input: a[m, k], b[k, n], d0[m, n], d1[m, n]
using device_gemm_add_silu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_generic_instances =
std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddSilu, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 1>
// clang-format on
>;
using device_gemm_add_silu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances = std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddSilu, GemmMNKPadding, 1, 256, 16, 128, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddSilu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, BF16, I8, F32, F32,BF16_Tuple, BF16, PassThrough, PassThrough, AddSilu, GemmMNKPadding, 1, 64, 16, 16, 64, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
void add_device_gemm_add_silu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
BF16,
I8,
BF16_Tuple,
BF16,
PassThrough,
PassThrough,
AddSilu>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_add_silu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_generic_instances{});
add_device_operation_instances(
instances, device_gemm_add_silu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/utility/sequence.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e = elementwise((a * b), d0, d1)
// outout: e[m, n]
// input: a[m, k], b[k, n], d0[m, n], d1[m, n]
using device_gemm_add_silu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_generic_instances = std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddSilu, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 1>
// clang-format on
>;
using device_gemm_add_silu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances = std::tuple<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddSilu, GemmMNKPadding, 1, 256, 16, 128, 32, 8, 8, 16, 16, 1, 2, S<4, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddSilu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row_Tuple, Row, F16, I8, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddSilu, GemmMNKPadding, 1, 64, 16, 16, 64, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
// clang-format on
>;
void add_device_gemm_add_silu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row_Tuple,
Row,
F16,
I8,
F16_Tuple,
F16,
PassThrough,
PassThrough,
AddSilu>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_add_silu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_generic_instances{});
add_device_operation_instances(
instances, device_gemm_add_silu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_add.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename AccDataType,
typename D0DataType,
typename EDataType,
typename ALayout,
typename BLayout,
typename D0Layout,
typename ELayout>
bool profile_gemm_add_impl(int do_verification,
int init_method,
bool /*do_log*/,
bool time_kernel,
int M,
int N,
int K,
int StrideA,
int StrideB,
int StrideD0,
int StrideE)
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<D0DataType> d0_m_n(f_host_tensor_descriptor(M, N, StrideD0, D0Layout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "d0_m_n: " << d0_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_device_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d0_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-5, 5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d0_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{0.0, 1.0});
}
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = Add;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{};
using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleD<
ALayout,
BLayout,
ck::Tuple<D0Layout>,
ELayout,
ADataType,
BDataType,
ck::Tuple<D0DataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::Add>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
// run reference
if(do_verification)
{
Tensor<AccDataType> c_m_n({M, N});
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), d0_m_n(m, n));
}
}
}
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem d0_m_n_device_buf(sizeof(D0DataType) * d0_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
d0_m_n_device_buf.ToDevice(d0_m_n.mData.data());
std::string best_op_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
bool pass = true;
// profile device operation instances
for(auto& op_ptr : op_ptrs)
{
auto argument_ptr = op_ptr->MakeArgumentPointer(
a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 1>{d0_m_n_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, 1>{StrideD0},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
// re-init E to zero before profiling a kernel
e_device_buf.SetZero();
float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
pass = pass && ck::utils::check_err(e_m_n_device_result, e_m_n_host_result);
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return pass;
}
} // namespace profiler
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment