Commit a8c17ab8 authored by root's avatar root
Browse files

create several new files for int4/int8 dequantization

parent 109852e3
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <initializer_list>
#include <iostream>
#include <numeric>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3_b_scale.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/utility/blkgemmpipe_scheduler.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using FP16 = ck::half_t;
using FP8 = ck::f8_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
// using A0DataType = FP8;
using A0DataType = FP16;
// using A1DataType = F32;
// using B0DataType = FP8;
// using B1DataType = F32;
using B0DataType = uint8_t;
using B1DataType = FP16;
using AccDataType = F32;
using CShuffleDataType = F32;
using DsDataType = ck::Tuple<>;
using EDataType = FP16;
using A0Layout = Row;
using B0Layout = Col;
using D0Layout = Row;
using D1Layout = Col;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
// static constexpr ck::index_t Scale_Block_M = 128;
static constexpr ck::index_t Scale_Block_N = 128;
static constexpr ck::index_t Scale_Block_K = 128;
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_BScale_Xdl_CShuffle_V3
// clang-format off
<Row, Col, DsLayout, ELayout,
A0DataType, B0DataType, B1DataType, DsDataType, EDataType, AccDataType, CShuffleDataType,
AElementOp, BElementOp, CDEElementOp, GemmSpec,
256, Scale_Block_N, Scale_Block_K,
128,
128, 128,
// 16, 16,
8, 8,
16, 16,
4, 4,
// S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0,
// S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0,
1, 2, S<1, 32, 1, 8>, S<8, 8, 1>,
ck::BlockGemmPipelineScheduler::Intrawave, ck::BlockGemmPipelineVersion::v3, FP8>;
// clang-format on
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = K;
ck::index_t StrideB = K;
ck::index_t StrideE = N;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 10)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideE = std::stoi(argv[9]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE\n");
exit(0);
}
// ck::index_t Scale_Stride_AM = (K + Scale_Block_K - 1) / Scale_Block_K;
ck::index_t Scale_Stride_BN = (K + Scale_Block_K - 1) / Scale_Block_K;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<A0DataType> a0_m_k(f_host_tensor_descriptor(M, K, StrideA, A0Layout{}));
// Tensor<A1DataType> a1_m_k(f_host_tensor_descriptor((M + Scale_Block_M - 1) / Scale_Block_M,
// (K + Scale_Block_K - 1) / Scale_Block_K,
// Scale_Stride_AM,
// A0Layout{}));
Tensor<B0DataType> b0_k_n(f_host_tensor_descriptor(K, N, StrideB, B0Layout{}));
Tensor<B1DataType> b1_k_n(f_host_tensor_descriptor((K + Scale_Block_K - 1) / Scale_Block_K,
(N + Scale_Block_N - 1) / Scale_Block_N,
Scale_Stride_BN,
B0Layout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a0_m_k: " << a0_m_k.mDesc << std::endl;
// std::cout << "a1_m_k: " << a1_m_k.mDesc << std::endl;
std::cout << "b0_k_n: " << b0_k_n.mDesc << std::endl;
std::cout << "b1_k_n: " << b1_k_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_host_result.mDesc << std::endl;
#if 1
switch(init_method)
{
case 0: break;
case 1:
a0_m_k.GenerateTensorValue(GeneratorTensor_2<A0DataType>{-2, 2});
b0_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
// a1_m_k.GenerateTensorValue(GeneratorTensor_3<A1DataType>{0, 1.0});
b1_k_n.GenerateTensorValue(GeneratorTensor_3<B1DataType>{0, 1.0});
break;
case 2:
a0_m_k.GenerateTensorValue(GeneratorTensor_1<A0DataType>{});
b0_k_n.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
// a1_m_k.GenerateTensorValue(GeneratorTensor_1<A1DataType>{});
b1_k_n.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 3:
a0_m_k.GenerateTensorValue(GeneratorTensor_2<A0DataType>{-2, 2});
b0_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
// a1_m_k.GenerateTensorValue(GeneratorTensor_1<A1DataType>{});
b1_k_n.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 4:
a0_m_k.GenerateTensorValue(GeneratorTensor_1<A0DataType>{});
b0_k_n.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
// a1_m_k.GenerateTensorValue(GeneratorTensor_3<A1DataType>{0, 1.0});
b1_k_n.GenerateTensorValue(GeneratorTensor_3<B1DataType>{0, 1.0});
break;
default:
a0_m_k.GenerateTensorValue(GeneratorTensor_3<A0DataType>{-0.5, 0.5});
b0_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{-0.5, 0.5});
// a1_m_k.GenerateTensorValue(GeneratorTensor_3<A1DataType>{0, 1.0});
b1_k_n.GenerateTensorValue(GeneratorTensor_3<B1DataType>{0, 1.0});
}
#endif
DeviceMem a0_device_buf(sizeof(A0DataType) * a0_m_k.mDesc.GetElementSpaceSize());
// DeviceMem a1_device_buf(sizeof(A1DataType) * a1_m_k.mDesc.GetElementSpaceSize());
DeviceMem b0_device_buf(sizeof(B0DataType) * b0_k_n.mDesc.GetElementSpaceSize());
DeviceMem b1_device_buf(sizeof(B1DataType) * b1_k_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a0_device_buf.ToDevice(a0_m_k.mData.data());
// a1_device_buf.ToDevice(a1_m_k.mData.data());
b0_device_buf.ToDevice(b0_k_n.mData.data());
b1_device_buf.ToDevice(b1_k_n.mData.data());
e_device_buf.ToDevice(e_m_n_device_result.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
constexpr ck::index_t NumDTensor = DsDataType::Size();
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument = device_op.MakeArgument(a0_device_buf.GetDeviceBuffer(),
b0_device_buf.GetDeviceBuffer(),
std::array<const void*, NumDTensor>{},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, NumDTensor>{},
StrideE,
// a1_device_buf.GetDeviceBuffer(),
b1_device_buf.GetDeviceBuffer(),
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel, 20, 50});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(A0DataType) * M * K + sizeof(B0DataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
if(do_verification)
{
Tensor<AccDataType> c_m_n({M, N});
Tensor<float> a_m_k({M, K});
Tensor<float> b_k_n({K, N});
for(int m = 0; m < M; m++)
{
for(int k = 0; k < K; k++)
{
a_m_k(m, k) = ck::type_convert<float>(a0_m_k(m, k));
}
}
for(int n = 0; n < N; n++)
{
for(int k = 0; k < K; k++)
{
b_k_n(k, n) = ck::type_convert<float>(b0_k_n(k, n)) *
b1_k_n(k / Scale_Block_K, n / Scale_Block_N);
}
}
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<float,
float,
CShuffleDataType,
AccDataType,
PassThrough,
PassThrough,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, PassThrough{}, PassThrough{}, PassThrough{});
ref_invoker.Run(ref_argument);
#if 1
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
e_m_n_host_result(m, n) = ck::type_convert<EDataType>(c_m_n(m, n));
}
}
#endif
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
return ck::utils::check_err(
e_m_n_device_result, e_m_n_host_result, "Error: Incorrect results!", 5e-2, 5e-2)
? 0
: 1;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
// #include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_v1_ab_scale.hpp"
// #include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_v2_ab_scale.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_v3_b_scale.hpp"
namespace ck {
enum struct BlockGemmPipelineVersion
{
v1, // Naive
v2, // Mem
v3, // Comp
};
template <BlockGemmPipelineVersion BlkGemmPipelineVer,
BlockGemmPipelineScheduler BlkGemmPipeSche,
index_t BlockSize,
typename ADataType,
typename BDataType,
typename ComputeDataType,
typename AccDataType,
typename ATileDesc,
typename BTileDesc,
typename AMmaTileDesc,
typename BMmaTileDesc,
index_t ABlockTransferSrcScalarPerVector,
index_t BBlockTransferSrcScalarPerVector,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPack>
constexpr auto BlockGemmBScalePipeline_Selector()
{
printf("I'm Here\n");
return BlockwiseGemmXdlops_pipeline_v3_b_scale<BlkGemmPipeSche,
BlockSize,
ADataType,
BDataType,
ComputeDataType,
AccDataType,
ATileDesc,
BTileDesc,
AMmaTileDesc,
BMmaTileDesc,
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
KPack>{};
}
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_description/cluster_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/utility/common_header.hpp"
// #include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v3r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v3r1_b_scale.hpp"
namespace ck {
/**
* @brief Blockwise data transfer
*
* This version does following things to avoid scratch memory issue
* 1. Use StaticallyIndexedArray instead of C array for thread buffer
* 2. ThreadwiseTensorSliceTransfer_v3 does not keep reference to tensor descriptor
* 3. ThreadwiseTensorSliceTransfer_v3::Run() does not construct new tensor coordinate
*
*/
template <typename ThreadGroup,
typename SrcElementwiseOperation,
typename DstElementwiseOperation,
InMemoryDataOperationEnum DstInMemOp,
typename BlockSliceLengths,
typename ThreadClusterLengths,
typename ThreadClusterArrangeOrder,
typename SrcData,
typename DstData,
typename SrcDesc,
typename DstDesc,
typename SrcDimAccessOrder,
typename DstDimAccessOrder,
index_t SrcVectorDim,
index_t DstVectorDim,
index_t SrcScalarPerVector,
index_t DstScalarPerVector,
index_t SrcScalarStrideInVector,
index_t DstScalarStrideInVector,
bool ThreadTransferSrcResetCoordinateAfterRun,
bool ThreadTransferDstResetCoordinateAfterRun,
index_t NumThreadScratch = 1>
struct ThreadGroupTensorSliceTransfer_v4r1_b_scale
{
static constexpr index_t nDim = remove_reference_t<SrcDesc>::GetNumOfDimension();
static constexpr auto thread_slice_lengths = BlockSliceLengths{} / ThreadClusterLengths{};
using Index = MultiIndex<nDim>;
__device__ constexpr ThreadGroupTensorSliceTransfer_v4r1_b_scale(
const SrcDesc& src_desc,
const Index& src_block_slice_origin,
const SrcElementwiseOperation& src_element_op,
const DstDesc& dst_desc,
const Index& dst_block_slice_origin,
const DstElementwiseOperation& dst_element_op)
: threadwise_transfer_(src_desc,
make_zero_multi_index<nDim>(),
src_element_op,
dst_desc,
make_zero_multi_index<nDim>(),
dst_element_op)
{
static_assert(nDim == remove_cvref_t<SrcDesc>::GetNumOfDimension() &&
nDim == remove_cvref_t<DstDesc>::GetNumOfDimension() &&
nDim == ThreadClusterLengths::Size() &&
nDim == ThreadClusterArrangeOrder::Size() &&
nDim == SrcDimAccessOrder::Size() && nDim == DstDimAccessOrder::Size(),
"wrong! nDim not consistent");
static_assert(
is_same<BlockSliceLengths, decltype(thread_slice_lengths * ThreadClusterLengths{})>{},
"wrong! threads should be mapped to cover entire slicing window");
static_assert(ThreadGroup::GetNumOfThread() >= thread_cluster_desc_.GetElementSize(),
"wrong! ThreadGroup::GetNumOfThread() too small");
if(ThreadGroup::GetNumOfThread() == thread_cluster_desc_.GetElementSize() or
ThreadGroup::GetThreadId() < thread_cluster_desc_.GetElementSize())
{
const auto thread_cluster_idx = thread_cluster_desc_.CalculateBottomIndex(
make_multi_index(ThreadGroup::GetThreadId()));
const auto thread_data_idx_begin = thread_cluster_idx * thread_slice_lengths;
threadwise_transfer_.SetSrcSliceOrigin(src_desc,
src_block_slice_origin + thread_data_idx_begin);
threadwise_transfer_.SetDstSliceOrigin(dst_desc,
dst_block_slice_origin + thread_data_idx_begin);
}
}
__device__ void SetSrcSliceOrigin(const SrcDesc& src_desc, const Index& src_block_slice_origin)
{
if(ThreadGroup::GetNumOfThread() == thread_cluster_desc_.GetElementSize() or
ThreadGroup::GetThreadId() < thread_cluster_desc_.GetElementSize())
{
const auto thread_cluster_idx = thread_cluster_desc_.CalculateBottomIndex(
make_multi_index(ThreadGroup::GetThreadId()));
const auto thread_data_idx_begin = thread_cluster_idx * thread_slice_lengths;
threadwise_transfer_.SetSrcSliceOrigin(src_desc,
src_block_slice_origin + thread_data_idx_begin);
}
}
template <typename SrcBuffer, index_t ThreadScratchId = 0>
__device__ void RunRead(const SrcDesc& src_desc,
const SrcBuffer& src_buf,
Number<ThreadScratchId> thread_scratch_id = Number<ThreadScratchId>{})
{
if(ThreadGroup::GetNumOfThread() == thread_cluster_desc_.GetElementSize() or
ThreadGroup::GetThreadId() < thread_cluster_desc_.GetElementSize())
{
threadwise_transfer_.RunRead(src_desc, src_buf, thread_scratch_id);
}
}
template <typename DstBuffer, index_t ThreadScratchId = 0>
__device__ void RunWrite(const DstDesc& dst_desc,
DstBuffer& dst_buf,
Number<ThreadScratchId> thread_scratch_id = Number<ThreadScratchId>{})
{
if(ThreadGroup::GetNumOfThread() == thread_cluster_desc_.GetElementSize() or
ThreadGroup::GetThreadId() < thread_cluster_desc_.GetElementSize())
{
threadwise_transfer_.RunWrite(dst_desc, dst_buf, thread_scratch_id);
}
}
template <typename SrcBuffer, typename DstBuffer, index_t ThreadScratchId>
__device__ void Run(const SrcDesc& src_desc,
const SrcBuffer& src_buf,
const DstDesc& dst_desc,
DstBuffer& dst_buf,
Number<ThreadScratchId> thread_scratch_id)
{
RunRead(src_desc, src_buf, thread_scratch_id);
RunWrite(dst_desc, dst_buf, thread_scratch_id);
}
__device__ void MoveSrcSliceWindow(const SrcDesc& src_desc, const Index& step)
{
if(ThreadGroup::GetNumOfThread() == thread_cluster_desc_.GetElementSize() or
ThreadGroup::GetThreadId() < thread_cluster_desc_.GetElementSize())
{
threadwise_transfer_.MoveSrcSliceWindow(src_desc, step);
}
}
__device__ void MoveDstSliceWindow(const DstDesc& dst_desc, const Index& step)
{
if(ThreadGroup::GetNumOfThread() == thread_cluster_desc_.GetElementSize() or
ThreadGroup::GetThreadId() < thread_cluster_desc_.GetElementSize())
{
threadwise_transfer_.MoveDstSliceWindow(dst_desc, step);
}
}
private:
static constexpr auto thread_cluster_desc_ =
make_cluster_descriptor(ThreadClusterLengths{}, ThreadClusterArrangeOrder{});
using ThreadwiseTransfer =
ThreadwiseTensorSliceTransfer_v3r1_b_scale<decltype(thread_slice_lengths),
SrcElementwiseOperation,
DstElementwiseOperation,
DstInMemOp,
SrcData,
DstData,
SrcDesc,
DstDesc,
SrcDimAccessOrder,
DstDimAccessOrder,
SrcVectorDim,
DstVectorDim,
SrcScalarPerVector,
DstScalarPerVector,
SrcScalarStrideInVector,
DstScalarStrideInVector,
ThreadTransferSrcResetCoordinateAfterRun,
ThreadTransferDstResetCoordinateAfterRun,
NumThreadScratch>;
ThreadwiseTransfer threadwise_transfer_;
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// GEMM:
// input : A[M, K], B[K, N],
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// D0, D1, ... and E have the same layout
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename ADataType,
// typename AScaleType,
typename BDataType,
typename BScaleType,
typename DsDataType,
typename EDataType,
// index_t ScaleBlockM,
index_t ScaleBlockN,
index_t ScaleBlockK,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation>
struct DeviceGemmMultipleD_ABScale : public BaseOperator
{
static constexpr index_t NumDTensor = DsDataType::Size();
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_e,
const ck::index_t M,
const ck::index_t N,
const ck::index_t K,
const ck::index_t StrideA,
const ck::index_t StrideB,
const std::array<ck::index_t, NumDTensor> StrideDs,
const ck::index_t StrideE,
// const void* p_a_scale,
const void* p_b_scale,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment