Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
a8a82e0c
Commit
a8a82e0c
authored
Feb 11, 2025
by
coderfeli
Browse files
fix warnings and impl scale for gemm2, build ok
parent
69f54ee8
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
76 additions
and
50 deletions
+76
-50
example/65_gemm_multiply_multiply/moe_gemm1.cpp
example/65_gemm_multiply_multiply/moe_gemm1.cpp
+4
-1
example/65_gemm_multiply_multiply/moe_gemm2.cpp
example/65_gemm_multiply_multiply/moe_gemm2.cpp
+47
-41
include/ck/tensor_operation/gpu/device/impl/device_moe_gemm.hpp
...e/ck/tensor_operation/gpu/device/impl/device_moe_gemm.hpp
+1
-1
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v3r1_gather.hpp
...u/thread/threadwise_tensor_slice_transfer_v3r1_gather.hpp
+1
-1
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v7r3_scatter.hpp
.../thread/threadwise_tensor_slice_transfer_v7r3_scatter.hpp
+1
-1
library/include/ck/library/reference_tensor_operation/cpu/reference_moe_gemm2.hpp
...ry/reference_tensor_operation/cpu/reference_moe_gemm2.hpp
+22
-5
No files found.
example/65_gemm_multiply_multiply/moe_gemm1.cpp
View file @
a8a82e0c
...
...
@@ -152,6 +152,9 @@ static constexpr ck::index_t MXDLPerWave = MPerBlock / 32; //todo fix this const
static
constexpr
ck
::
index_t
AK1
=
16
/
sizeof
(
A0DataType
);
static
constexpr
ck
::
index_t
BK1
=
16
/
sizeof
(
B0DataType
);
static
constexpr
ck
::
index_t
EVec
=
16
/
sizeof
(
EDataType
);
static
constexpr
ck
::
index_t
D0Vec
=
1
;
static
constexpr
ck
::
index_t
D1Vec
=
1
;
static
constexpr
ck
::
index_t
D2Vec
=
1
;
// using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_Xdl_CShuffle_V3
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceMoeGemm
// clang-format off
...
...
@@ -181,7 +184,7 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceMoeGemm
// CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
S
<
EVec
,
E
Vec
,
1
,
E
Vec
>
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
S
<
EVec
,
D0
Vec
,
D1Vec
,
D2
Vec
>
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v1
,
true
,
A0DataType
>
;
// kernel 2: 128->32x128x128
// < Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 128, 32, 128, 128, 16, 16, 32, 32, 1, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Interwave, ck::BlockGemmPipelineVersion::v1, EDataType>;
...
...
example/65_gemm_multiply_multiply/moe_gemm2.cpp
View file @
a8a82e0c
...
...
@@ -40,9 +40,8 @@ using AccDataType = F32;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
F32
;
using
D1DataType
=
F32
;
using
D2DataType
=
EDataType
;
// using DsDataTypeGate = ck::Tuple<D0DataType, D1DataType>;
using
DsDataTypeUp
=
ck
::
Tuple
<
D0DataType
,
D1DataType
,
D2DataType
>
;
using
D2DataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
,
D1DataType
,
D2DataType
>
;
using
A0Layout
=
Row
;
using
B0Layout
=
Col
;
...
...
@@ -51,35 +50,39 @@ using D0Layout = Row;
using
D1Layout
=
Col
;
using
D2Layout
=
ELayout
;
// using DsLayoutGate = ck::Tuple<D0Layout, D1Layout>;
using
DsLayout
Up
=
ck
::
Tuple
<
D0Layout
,
D1Layout
,
D2Layout
>
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
,
D1Layout
,
D2Layout
>
;
struct
MultiplyMultiply
// d0: ascale, d1: bscale, d2:expert weight
struct
MulABScaleExpertWeight
{
template
<
typename
E
,
typename
C
,
typename
D0
,
typename
D1
,
typename
D2
>
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D0
&
d0
,
const
D1
&
d1
,
const
D2
&
d2
)
const
;
//gpu
template
<
>
__host__
__device__
constexpr
void
operator
()
<
EDataType
,
float
,
float
,
float
,
D2DataType
>
__host__
__device__
constexpr
void
operator
()
<
EDataType
,
float
,
float
,
float
,
float
>
(
EDataType
&
e
,
const
float
&
c
,
const
float
&
d0
,
const
float
&
d1
,
const
D2DataType
&
d2
)
const
const
float
&
d2
)
const
{
// const float x0_f = c * d0 * d1;
(
void
)
d0
;
(
void
)
d1
;
(
void
)
d2
;
const
float
x0_f
=
c
;
e
=
ck
::
type_convert
<
EDataType
>
(
x0_f
);
e
=
ck
::
type_convert
<
EDataType
>
(
c
*
d0
*
d1
*
d2
);
}
// for reference
template
<
>
__host__
__device__
constexpr
void
operator
()
<
float
,
float
,
float
,
float
,
float
>
(
float
&
e
,
const
float
&
c
,
const
float
&
d0
,
const
float
&
d1
,
const
float
&
d2
)
const
{
e
=
ck
::
type_convert
<
EDataType
>
(
c
*
d0
*
d1
*
d2
);
}
};
// using DsLayout = DsLayoutGate;
// using DsDataType = DsDataTypeGate;
using
DsLayout
=
DsLayoutUp
;
using
DsDataType
=
DsDataTypeUp
;
using
CDEElementOp
=
MultiplyMultiply
;
using
CDEElementOp
=
MulABScaleExpertWeight
;
void
preShuffleBuffer
(
const
B0DataType
*
src
,
B0DataType
*
dst
,
int
N
,
int
K
,
int
NXdl
)
{
...
...
@@ -115,7 +118,7 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Mul
tiplyMultiply
;
using
CDEElementOp
=
Mul
ABScaleExpertWeight
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
ck
::
index_t
MPerBlock
=
32
;
...
...
@@ -126,6 +129,9 @@ static constexpr ck::index_t CShuffleMXDLPerWave = MPerBlock / 32;
static
constexpr
ck
::
index_t
AK1
=
16
/
sizeof
(
A0DataType
);
static
constexpr
ck
::
index_t
BK1
=
16
/
sizeof
(
B0DataType
);
static
constexpr
ck
::
index_t
EVec
=
16
/
sizeof
(
EDataType
);
static
constexpr
ck
::
index_t
D0Vec
=
1
;
static
constexpr
ck
::
index_t
D1Vec
=
1
;
static
constexpr
ck
::
index_t
D2Vec
=
1
;
// using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_Xdl_CShuffle_V3
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceMoeGemm
// clang-format off
...
...
@@ -155,7 +161,7 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceMoeGemm
// CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
CShuffleMXDLPerWave
,
1
,
S
<
1
,
16
,
1
,
16
>
,
S
<
EVec
,
E
Vec
,
1
,
E
Vec
>
,
CShuffleMXDLPerWave
,
1
,
S
<
1
,
16
,
1
,
16
>
,
S
<
EVec
,
D0
Vec
,
D1Vec
,
D2
Vec
>
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v1
,
false
,
A0DataType
>
;
// kernel 2: 128->32x128x128
// < Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 128, 32, 128, 128, 16, 16, 32, 32, 1, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Interwave, ck::BlockGemmPipelineVersion::v1, EDataType>;
...
...
@@ -232,16 +238,16 @@ int main(int argc, char* argv[])
Tensor
<
A0DataType
>
a0_m_k
(
HostTensorDescriptor
({
SORTED_SIZE
,
K
},
{
K
,
1
}));
Tensor
<
B0DataType
>
b0_e_n_k
(
HostTensorDescriptor
({
experts
,
N
,
K
},
{
N
*
K
,
K
,
1
}));
Tensor
<
B0DataType
>
b0_preshuffled
(
HostTensorDescriptor
({
experts
,
N
,
K
},
{
N
*
K
,
K
,
1
}));
Tensor
<
D0DataType
>
d0_t_n
(
HostTensorDescriptor
({
N
,
1
},
{
1
,
0
}));
Tensor
<
D1DataType
>
d1_
m
_n
(
HostTensorDescriptor
({
SORTED_SIZE
,
N
},
{
N
,
1
}));
Tensor
<
D2DataType
>
d2_
m
_n
(
HostTensorDescriptor
({
SORTED_SIZE
,
N
},
{
N
,
1
}));
Tensor
<
D0DataType
>
d0_t_n
(
HostTensorDescriptor
({
SORTED_SIZE
,
N
},
{
0
,
0
}));
Tensor
<
D1DataType
>
d1_
e
_n
(
HostTensorDescriptor
({
experts
,
N
},
{
0
,
0
}));
Tensor
<
D2DataType
>
d2_
e
_n
(
HostTensorDescriptor
({
experts
,
1
},
{
1
,
0
}));
Tensor
<
EDataType
>
e_t_n_host_result
(
HostTensorDescriptor
({
tokens
,
N
},
{
N
,
1
}));
Tensor
<
EDataType
>
e_t_n_device_result
(
HostTensorDescriptor
({
tokens
,
N
},
{
N
,
1
}));
e_t_n_device_result
.
SetZero
();
std
::
cout
<<
"a0_m_k: "
<<
a0_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_e_n_k: "
<<
b0_e_n_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d2_
m
_n: "
<<
d2_
m
_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_
m
_n: "
<<
d1_
m
_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d2_
e
_n: "
<<
d2_
e
_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_
e
_n: "
<<
d1_
e
_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_t_n: "
<<
d0_t_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_t_n: "
<<
e_t_n_host_result
.
mDesc
<<
std
::
endl
;
...
...
@@ -252,38 +258,38 @@ int main(int argc, char* argv[])
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
A0DataType
>
{
-
2
,
2
});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
0
,
2
});
d0_t_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
2
,
2
});
d1_
m
_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D1DataType
>
{
-
2
,
2
});
d2_
m
_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D2DataType
>
{
-
2
,
2
});
d1_
e
_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D1DataType
>
{
-
2
,
2
});
d2_
e
_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D2DataType
>
{
-
2
,
2
});
break
;
case
2
:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
A0DataType
>
{});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
d0_t_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D0DataType
>
{});
d1_
m
_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D1DataType
>
{});
d2_
m
_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D2DataType
>
{});
d1_
e
_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D1DataType
>
{});
d2_
e
_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D2DataType
>
{});
break
;
default:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
-
0.5
,
0.5
});
d0_t_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
0.0
,
1.0
});
d1_
m
_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
0.0
,
1.0
});
d2_
m
_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D2DataType
>
{
0.0
,
1.0
});
d1_
e
_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
0.0
,
1.0
});
d2_
e
_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D2DataType
>
{
0.0
,
1.0
});
}
DeviceMem
sorted_token_ids_dev
(
sizeof
(
ck
::
index_t
)
*
sorted_token_ids
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
expert_ids_dev
(
sizeof
(
ck
::
index_t
)
*
expert_ids
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
a0_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
b0_e_n_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
d0_t_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_
m
_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d2_device_buf
(
sizeof
(
D2DataType
)
*
d2_
m
_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_
e
_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d2_device_buf
(
sizeof
(
D2DataType
)
*
d2_
e
_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_t_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a0_m_k
.
savetxt
(
"a.txt"
);
sorted_token_ids_dev
.
ToDevice
(
sorted_token_ids
.
mData
.
data
());
expert_ids_dev
.
ToDevice
(
expert_ids
.
mData
.
data
());
a0_device_buf
.
ToDevice
(
a0_m_k
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_t_n
.
mData
.
data
());
d1_device_buf
.
ToDevice
(
d1_
m
_n
.
mData
.
data
());
d2_device_buf
.
ToDevice
(
d2_
m
_n
.
mData
.
data
());
d1_device_buf
.
ToDevice
(
d1_
e
_n
.
mData
.
data
());
d2_device_buf
.
ToDevice
(
d2_
e
_n
.
mData
.
data
());
e_device_buf
.
ToDevice
(
e_t_n_device_result
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
...
...
@@ -358,26 +364,26 @@ int main(int argc, char* argv[])
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceMoeGemm2
<
A0DataType
,
B0DataType
,
D0DataType
,
D1DataType
,
D2DataType
,
CShuffleDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
CDEElementOp
>
;
auto
ref_moe_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_moe_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_moe_gemm
.
MakeArgument
(
sorted_token_ids
,
expert_ids
,
sorted_tile_size
,
a0_m_k
,
b0_e_n_k
,
c_t_n
,
PassThrough
{},
PassThrough
{},
PassThrough
{}
);
sorted_token_ids
,
expert_ids
,
sorted_tile_size
,
a0_m_k
,
b0_e_n_k
,
d0_t_n
,
d1_e_n
,
d2_e_n
,
c_t_n
,
PassThrough
{},
PassThrough
{},
cde_element_op
);
ref_invoker
.
Run
(
ref_argument
);
for
(
int
t
=
0
;
t
<
tokens
;
++
t
)
{
// const int t = sorted_token_ids(m);
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_t_n_host_result
(
t
,
n
)
,
c_t_n
(
t
,
n
),
d0_t_n
(
t
,
n
),
d1_m_n
(
t
,
n
),
d2_m
_n
(
t
,
n
));
e_t_n_host_result
(
t
,
n
)
=
ck
::
type_convert
<
EDataType
>
(
c_t
_n
(
t
,
n
));
}
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_moe_gemm.hpp
View file @
a8a82e0c
...
...
@@ -535,7 +535,7 @@ struct DeviceMoeGemm
index_t
KBatch
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
CElementwiseOperation
c_element_op
)
override
{
// assert(0, "no impl");
return
std
::
make_unique
<
Argument
>
(
nullptr
,
nullptr
,
...
...
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v3r1_gather.hpp
View file @
a8a82e0c
...
...
@@ -901,9 +901,9 @@ struct ThreadwiseTensorSliceTransfer_v3r1_gather
SrcCoord
src_coord_
;
DstCoord
dst_coord_
;
StaticallyIndexedArray
<
index_t
,
gather_num
>
gather_offsets_
;
const
SrcElementwiseOperation
src_element_op_
;
const
DstElementwiseOperation
dst_element_op_
;
StaticallyIndexedArray
<
index_t
,
gather_num
>
gather_offsets_
;
};
}
// namespace ck
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v7r3_scatter.hpp
View file @
a8a82e0c
...
...
@@ -687,10 +687,10 @@ struct ThreadwiseTensorSliceTransfer_v7r3_scatter
using
OOBVectorTuple
=
StaticallyIndexedArray
<
bool
,
src_num_access
>
;
StaticallyIndexedArray
<
OOBVectorTuple
,
NumThreadScratch
>
oob_vectors_tuple_
;
StaticallyIndexedArray
<
index_t
,
scatter_num
>
scatter_offsets_
;
SrcCoords
src_coords_
;
DstCoords
dst_coords_
;
const
ElementwiseOperation
element_op_
;
StaticallyIndexedArray
<
index_t
,
scatter_num
>
scatter_offsets_
;
};
}
// namespace ck
library/include/ck/library/reference_tensor_operation/cpu/reference_moe_gemm2.hpp
View file @
a8a82e0c
...
...
@@ -17,6 +17,9 @@ namespace host {
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
D0DataType
,
typename
D1DataType
,
typename
D2DataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
...
...
@@ -33,6 +36,9 @@ struct ReferenceMoeGemm2 : public device::BaseOperator
const
index_t
sorted_tile_size
,
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
BDataType
>&
b_e_n_k
,
const
Tensor
<
D0DataType
>&
d0
,
const
Tensor
<
D1DataType
>&
d1
,
const
Tensor
<
D2DataType
>&
d2
,
Tensor
<
CDataType
>&
c_t_n
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
...
...
@@ -42,6 +48,9 @@ struct ReferenceMoeGemm2 : public device::BaseOperator
sorted_tile_size_
{
sorted_tile_size
},
a_m_k_
{
a_m_k
},
b_e_n_k_
{
b_e_n_k
},
d0_
{
d0
},
d1_
{
d1
},
d2_
{
d2
},
c_t_n_
{
c_t_n
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
...
...
@@ -49,16 +58,19 @@ struct ReferenceMoeGemm2 : public device::BaseOperator
{
}
const
Tensor
<
ck
::
index_t
>&
expert_ids_
;
const
Tensor
<
ck
::
index_t
>&
sorted_token_ids_
;
const
Tensor
<
ck
::
index_t
>&
expert_ids_
;
index_t
sorted_tile_size_
;
const
Tensor
<
ADataType
>&
a_m_k_
;
const
Tensor
<
BDataType
>&
b_e_n_k_
;
const
Tensor
<
D0DataType
>&
d0_
;
const
Tensor
<
D1DataType
>&
d1_
;
const
Tensor
<
D2DataType
>&
d2_
;
Tensor
<
CDataType
>&
c_t_n_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
index_t
sorted_tile_size_
;
};
// Invoker
...
...
@@ -106,8 +118,10 @@ struct ReferenceMoeGemm2 : public device::BaseOperator
ck
::
type_convert
<
AccDataType
>
(
v_a
)
*
ck
::
type_convert
<
AccDataType
>
(
v_b
);
}
CDataType
v_c
{
0
};
arg
.
c_element_op_
(
v_c
,
v_acc
);
D0DataType
v_d0
=
arg
.
d0_
(
m
,
n
);
// a
D0DataType
v_d1
=
arg
.
d1_
(
e
,
n
);
// b
D0DataType
v_d2
=
arg
.
d2_
(
e
,
0
);
//expert
arg
.
c_element_op_
(
v_c
,
v_acc
,
v_d0
,
v_d1
,
v_d2
);
arg
.
c_t_n_
(
t
,
n
)
+=
v_c
;
}
...
...
@@ -140,12 +154,15 @@ struct ReferenceMoeGemm2 : public device::BaseOperator
const
index_t
sorted_tile_size
,
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
BDataType
>&
b_e_n_k
,
const
Tensor
<
D0DataType
>&
d0
,
const
Tensor
<
D1DataType
>&
d1
,
const
Tensor
<
D2DataType
>&
d2
,
Tensor
<
CDataType
>&
c_t_n
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
sorted_token_ids
,
expert_ids
,
sorted_tile_size
,
a_m_k
,
b_e_n_k
,
c_t_n
,
a_element_op
,
b_element_op
,
c_element_op
};
return
Argument
{
sorted_token_ids
,
expert_ids
,
sorted_tile_size
,
a_m_k
,
b_e_n_k
,
d0
,
d1
,
d2
,
c_t_n
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment