Unverified Commit a69aa2a1 authored by rocking's avatar rocking Committed by GitHub
Browse files

layernorm and groupnorm backward data (#1083)

* rename folder

* Add type string

* Remove typo

* Add deviceOp to backward x

* Add comment to describe the behavior of backward normalization

* Add kernel function, prepare to implement

* implement generic kernel

* Check vector size

* Add sweep once pipeline for small reduce size

* Fix bug of KRaw_ error

* Fix bug of dx stride

* sanity check for mean and rstd

* backward x for groupnorm

* Add bwd x instance

* add layernorm 2d bwd gamma beta instances

* Change save mean var type from f32 to f16 in f16 mode

* Change the example to f16

* Add groupnorm bwd gamma beta instance

* Add groupnorm bwd x instance

* Fix naming

* Add layernorm bwd x ckprofiler

* Add groupnorm bwd x profiler

* clang format

* Rename bwd x to bwd data

* Fix bug of verification in profiler

* Add test of layernorm and groupnorm bwd data

* Add missing cmake

* Add layernorm2d bwd data

* rename fwd example

* Add groupnorm client example

* Fix typo. replace Invarient with Invariant

* Add checking before running the best instance
parent ad0a8e4c
......@@ -185,6 +185,7 @@ int main(int argc, char* argv[])
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
if(found)
{
auto& op_ptr = op_ptrs[best_op_id];
......
......@@ -204,6 +204,7 @@ int main(int argc, char* argv[])
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
if(found)
{
auto& op_ptr = op_ptrs[best_op_id];
......
......@@ -197,6 +197,7 @@ int main(int argc, char* argv[])
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
if(found)
{
auto& op_ptr = op_ptrs[best_op_id];
......
......@@ -190,6 +190,7 @@ int main(int argc, char* argv[])
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
if(found)
{
auto& op_ptr = op_ptrs[best_op_id];
......
......@@ -200,6 +200,7 @@ int main(int argc, char* argv[])
<< best_op_name << std::endl;
// run the best intance
if(found)
{
auto& op_ptr = op_ptrs[best_op_id];
......
add_executable(client_layernorm2d_bwd_data layernorm2d_bwd_data.cpp)
target_link_libraries(client_layernorm2d_bwd_data PRIVATE composable_kernel::device_other_operations)
add_executable(client_layernorm2d_fwd layernorm2d_fwd.cpp)
target_link_libraries(client_layernorm2d_fwd PRIVATE composable_kernel::device_other_operations)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization_bwd_data.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/layernorm_bwd_data.hpp"
using DYDataType = float;
using XDataType = float;
using GammaDataType = float;
using MeanInvStdDataType = float;
using DXDataType = float;
constexpr int Rank = 2;
constexpr int NumReduceDim = 1;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
ck::index_t M = 1024;
ck::index_t N = 1024;
SimpleDeviceMem dy_dev(sizeof(DYDataType) * M * N);
SimpleDeviceMem x_dev(sizeof(XDataType) * M * N);
SimpleDeviceMem gamma_dev(sizeof(GammaDataType) * N);
SimpleDeviceMem mean_dev(sizeof(MeanInvStdDataType) * M);
SimpleDeviceMem inv_std_dev(sizeof(MeanInvStdDataType) * M);
SimpleDeviceMem dx_dev(sizeof(DXDataType) * M * N);
using DeviceOp = ck::tensor_operation::device::DeviceNormalizationBwdData<DYDataType,
XDataType,
GammaDataType,
MeanInvStdDataType,
DXDataType,
Rank,
NumReduceDim>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer({M, N}, // lengths
{N, 1}, // dyStrides
{N, 1}, // xStrides
{0, 1}, // gammaStrides
{1, 0}, // meanStrides
{1, 0}, // invStdStrides
{N, 1}, // dxStrides
{1}, // reduceDims
dy_dev.GetDeviceBuffer(),
x_dev.GetDeviceBuffer(),
gamma_dev.GetDeviceBuffer(),
mean_dev.GetDeviceBuffer(),
inv_std_dev.GetDeviceBuffer(),
dx_dev.GetDeviceBuffer());
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
size_t workspace_sz = op_ptr->GetWorkSpaceSize(argument_ptr.get());
SimpleDeviceMem workspace(workspace_sz);
op_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace.GetDeviceBuffer());
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t num_byte = sizeof(DYDataType) * M * N + sizeof(XDataType) * M * N +
sizeof(GammaDataType) * N + sizeof(MeanInvStdDataType) * M * 2 +
sizeof(DXDataType) * M * N;
float gb_per_sec = num_byte / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, "
<< op_name << std::endl;
if(ave_time < best_ave_time)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_op_name << std::endl;
// run the best intance
if(found)
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer({M, N}, // lengths
{N, 1}, // dyStrides
{N, 1}, // xStrides
{0, 1}, // gammaStrides
{1, 0}, // meanStrides
{1, 0}, // invStdStrides
{N, 1}, // dxStrides
{1}, // reduceDims
dy_dev.GetDeviceBuffer(),
x_dev.GetDeviceBuffer(),
gamma_dev.GetDeviceBuffer(),
mean_dev.GetDeviceBuffer(),
inv_std_dev.GetDeviceBuffer(),
dx_dev.GetDeviceBuffer());
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
size_t workspace_sz = op_ptr->GetWorkSpaceSize(argument_ptr.get());
SimpleDeviceMem workspace(workspace_sz);
op_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace.GetDeviceBuffer());
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
......@@ -16,7 +16,7 @@ using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using SaveMeanInvStdDataType = float;
using SaveMeanInvStdDataType = ck::half_t;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
#define SAVE_MEAN_INV_STD
......@@ -150,6 +150,7 @@ int main(int argc, char* argv[])
<< best_op_name << std::endl;
// run the best intance
if(found)
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
......
......@@ -16,7 +16,7 @@ using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using SaveMeanInvStdDataType = float;
using SaveMeanInvStdDataType = ck::half_t;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
#define SAVE_MEAN_INV_STD
......@@ -155,6 +155,7 @@ int main(int argc, char* argv[])
<< best_op_name << std::endl;
// run the best intance
if(found)
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
......
......@@ -140,6 +140,7 @@ int main(int argc, char* argv[])
<< best_op_name << std::endl;
// run the best intance
if(found)
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
......
......@@ -142,6 +142,7 @@ int main()
<< best_op_name << std::endl;
// run the best intance
if(found)
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
......
......@@ -204,6 +204,7 @@ int main(int argc, char* argv[])
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
if(found)
{
auto& op_ptr = op_ptrs[best_op_id];
......
add_executable(client_groupnorm_swish groupnorm_swish.cpp)
target_link_libraries(client_groupnorm_swish PRIVATE composable_kernel::device_other_operations)
add_executable(client_groupnorm_bwd_data groupnorm_bwd_data.cpp)
target_link_libraries(client_groupnorm_bwd_data PRIVATE composable_kernel::device_other_operations)
add_executable(client_groupnorm_swish_fwd groupnorm_swish_fwd.cpp)
target_link_libraries(client_groupnorm_swish_fwd PRIVATE composable_kernel::device_other_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization_bwd_data.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/groupnorm_bwd_data.hpp"
using DYDataType = float;
using XDataType = float;
using GammaDataType = float;
using MeanInvStdDataType = float;
using DXDataType = float;
constexpr int Rank = 5;
constexpr int NumReduceDim = 3;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
ck::index_t N = 32;
ck::index_t H = 16;
ck::index_t W = 16;
ck::index_t G = 64;
ck::index_t C = 128;
std::size_t length = N * H * W * G * C;
std::vector<ck::index_t> strideDy = {H * W * G * C, W * G * C, G * C, C, 1};
std::vector<ck::index_t> strideX = strideDy;
std::vector<ck::index_t> strideDx = strideDy;
std::vector<ck::index_t> strideGamma = {0, 0, 0, C, 1};
std::vector<ck::index_t> strideMeanInvStd = {G, 0, 0, 1, 0};
SimpleDeviceMem dy_dev(sizeof(DYDataType) * length);
SimpleDeviceMem x_dev(sizeof(XDataType) * length);
SimpleDeviceMem gamma_dev(sizeof(GammaDataType) * G * C);
SimpleDeviceMem mean_dev(sizeof(MeanInvStdDataType) * N * G);
SimpleDeviceMem inv_std_dev(sizeof(MeanInvStdDataType) * N * G);
SimpleDeviceMem dx_dev(sizeof(DXDataType) * length);
using DeviceOp = ck::tensor_operation::device::DeviceNormalizationBwdData<DYDataType,
XDataType,
GammaDataType,
MeanInvStdDataType,
DXDataType,
Rank,
NumReduceDim>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer({N, H, W, G, C},
strideDy,
strideX,
strideGamma,
strideMeanInvStd,
strideMeanInvStd,
strideDx,
{1, 2, 4}, // reduceDims
dy_dev.GetDeviceBuffer(),
x_dev.GetDeviceBuffer(),
gamma_dev.GetDeviceBuffer(),
mean_dev.GetDeviceBuffer(),
inv_std_dev.GetDeviceBuffer(),
dx_dev.GetDeviceBuffer());
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
size_t workspace_sz = op_ptr->GetWorkSpaceSize(argument_ptr.get());
SimpleDeviceMem workspace(workspace_sz);
op_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace.GetDeviceBuffer());
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t num_byte = sizeof(DYDataType) * length + sizeof(XDataType) * length +
sizeof(GammaDataType) * G * C +
sizeof(MeanInvStdDataType) * N * G * 2 +
sizeof(DXDataType) * length;
float gb_per_sec = num_byte / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, "
<< op_name << std::endl;
if(ave_time < best_ave_time)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
// run the best intance
if(found)
{
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_op_name << std::endl;
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer({N, H, W, G, C},
strideDy,
strideX,
strideGamma,
strideMeanInvStd,
strideMeanInvStd,
strideDx,
{1, 2, 4}, // reduceDims
dy_dev.GetDeviceBuffer(),
x_dev.GetDeviceBuffer(),
gamma_dev.GetDeviceBuffer(),
mean_dev.GetDeviceBuffer(),
inv_std_dev.GetDeviceBuffer(),
dx_dev.GetDeviceBuffer());
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
size_t workspace_sz = op_ptr->GetWorkSpaceSize(argument_ptr.get());
SimpleDeviceMem workspace(workspace_sz);
op_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace.GetDeviceBuffer());
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
......@@ -191,6 +191,7 @@ int main(int argc, char* argv[])
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
if(found)
{
auto& op_ptr = op_ptrs[best_op_id];
......
......@@ -117,6 +117,7 @@ int main()
<< best_op_name << std::endl;
// run the best intance
if(found)
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
......
add_example_executable(example_layernorm2d_bwd_fp32 layernorm2d_bwd_fp32.cpp)
......@@ -15,16 +15,17 @@
#include "ck/library/utility/literals.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_data_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_gamma_beta_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm_bwd.hpp"
using DYDataType = ck::half_t;
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using DYDataType = float;
using XDataType = float;
using GammaDataType = float;
using MeanInvStdDataType = float;
using DGammaDataType = ck::half_t;
using DBetaDataType = ck::half_t;
using DXDataType = ck::half_t;
using DGammaDataType = float;
using DBetaDataType = float;
using DXDataType = float;
using ComputeDataType = float;
constexpr int Rank = 2;
......@@ -39,6 +40,7 @@ constexpr int NumReduceDim = 1;
// inv_std: [M, 1]
// Output shape
// dx: [M, N]
// dgamma: [1, N]
// dbeta: [1, N]
......@@ -46,8 +48,34 @@ constexpr int NumReduceDim = 1;
// dbeta = reduce_sum(dy, axis=0)
// [CAUSION]
// In DeviceNormalizationBwdGammaBetaImpl, M is invarient dimension, K is reduced dimension
// Hence, M in this example and DeviceNormalizationBwdGammaBetaImpl is different
// In DeviceNormalizationBwdDataImpl & DeviceNormalizationBwdGammaBetaImpl, M is Invariant
// dimension, K is reduced dimension Hence, M in this example and
// DeviceNormalizationBwdGammaBetaImpl is different
using XDeviceInstance = ck::tensor_operation::device::DeviceNormalizationBwdDataImpl<
DYDataType,
XDataType,
GammaDataType,
MeanInvStdDataType,
ComputeDataType,
DXDataType,
Rank,
NumReduceDim,
256, // BlockSize
8, // MThreadClusterSize
32, // KThreadClusterSize
1, // MThreadSliceSize
4, // KThreadSliceSize
true, // IsDYFastestDimReduced
4, // DYSrcVectorSize
true, // IsXFastestDimReduced
4, // XSrcVectorSize
true, // IsGammaFastestDimReduced
4, // GammaSrcVectorSize
false, // IsMeanInvStdFastestDimReduced
1, // MeanInvStdSrcVectorSize
true, // IsDXFastestDimReduced
4>; // DXDstVectorSize
using GammaBetaDeviceInstance = ck::tensor_operation::device::DeviceNormalizationBwdGammaBetaImpl<
DYDataType,
XDataType,
......@@ -58,18 +86,18 @@ using GammaBetaDeviceInstance = ck::tensor_operation::device::DeviceNormalizatio
Rank,
NumReduceDim,
256, // BlockSize
8, // ClusterInvarient
32, // ClusterReduce
8, // SliceInvarient
1, // SliceReduce
8, // MThreadClusterSize
32, // KThreadClusterSize
4, // MThreadSliceSize
1, // KThreadSliceSize
false, // IsDYFastestDimReduced
8, // DYSrcVectorSize
4, // DYSrcVectorSize
false, // IsXFastestDimReduced
8, // XSrcVectorSize
4, // XSrcVectorSize
true, // IsMeanInvStdFastestDimReduced
1, // MeanInvStdSrcVectorSize
1, // DGammaDstVectorSize
1>; // DBetaDstVectorSize
4, // DGammaDstVectorSize
4>; // DBetaDstVectorSize
int main()
{
......@@ -96,16 +124,48 @@ int main()
DeviceMem dy_dev(sizeof(DYDataType) * dy.mDesc.GetElementSpaceSize());
DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
DeviceMem mean_dev(sizeof(MeanInvStdDataType) * mean.mDesc.GetElementSpaceSize());
DeviceMem inv_std_dev(sizeof(MeanInvStdDataType) * inv_std.mDesc.GetElementSpaceSize());
DeviceMem dx_dev(sizeof(DXDataType) * dx.mDesc.GetElementSpaceSize());
DeviceMem dgamma_dev(sizeof(DGammaDataType) * dgamma.mDesc.GetElementSpaceSize());
DeviceMem dbeta_dev(sizeof(DBetaDataType) * dbeta.mDesc.GetElementSpaceSize());
dy_dev.ToDevice(dy.mData.data());
x_dev.ToDevice(x.mData.data());
gamma_dev.ToDevice(gamma.mData.data());
mean_dev.ToDevice(mean.mData.data());
inv_std_dev.ToDevice(inv_std.mData.data());
// backward x
auto x_device_instance = XDeviceInstance{};
auto x_argument_ptr = x_device_instance.MakeArgumentPointer({M, N}, // lengths
{N, 1}, // dyStrides
{N, 1}, // xStrides
{0, 1}, // gammaStrides
{1, 0}, // meanStrides
{1, 0}, // invStdStrides
{N, 1}, // dxStrides
{1}, // reduceDims
dy_dev.GetDeviceBuffer(),
x_dev.GetDeviceBuffer(),
gamma_dev.GetDeviceBuffer(),
mean_dev.GetDeviceBuffer(),
inv_std_dev.GetDeviceBuffer(),
dx_dev.GetDeviceBuffer());
if(!x_device_instance.IsSupportedArgument(x_argument_ptr.get()))
{
std::cout << "The runtime parameters are not supported." << __FILE__ << ":" << __LINE__
<< std::endl;
return 1;
};
auto x_invoker_ptr = x_device_instance.MakeInvokerPointer();
x_invoker_ptr->Run(x_argument_ptr.get(), StreamConfig{nullptr, time_kernel});
// backward gamma & beta
auto gamma_beta_device_instance = GammaBetaDeviceInstance{};
auto gamma_beta_argument_ptr =
gamma_beta_device_instance.MakeArgumentPointer({M, N}, // inLengths
......@@ -126,7 +186,8 @@ int main()
if(!gamma_beta_device_instance.IsSupportedArgument(gamma_beta_argument_ptr.get()))
{
std::cout << "The runtime parameters are not supported" << std::endl;
std::cout << "The runtime parameters are not supported." << __FILE__ << ":" << __LINE__
<< std::endl;
return 1;
};
......@@ -156,9 +217,11 @@ int main()
dgamma_dev.FromDevice(dgamma.mData.data());
dbeta_dev.FromDevice(dbeta.mData.data());
dx_dev.FromDevice(dx.mData.data());
pass &= ck::utils::check_err(dgamma, host_dgamma, "Error: Incorrect dgamma", 1e-3, 1e-3);
pass &= ck::utils::check_err(dbeta, host_dbeta, "Error: Incorrect dbeta", 1e-3, 1e-3);
pass &= ck::utils::check_err(dx, host_dx, "Error: Incorrect dx", 1e-3, 1e-3);
}
return (pass ? 0 : 1);
......
add_example_executable(example_layernorm2d_bwd_fp16 layernorm2d_bwd_fp16.cpp)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment