Commit a4522ae3 authored by illsilin's avatar illsilin
Browse files

sync from public repo

parents 1f127242 e0594d08
......@@ -137,7 +137,7 @@ if(GPU_TARGETS)
else()
set(USER_GPU_TARGETS 0)
endif()
find_package(hip)
find_package(hip REQUIRED)
# No assumption that HIP kernels are launched with uniform block size for backward compatibility
# SWDEV-413293 and https://reviews.llvm.org/D155213
math(EXPR hip_VERSION_FLAT "(${hip_VERSION_MAJOR} * 1000 + ${hip_VERSION_MINOR}) * 100000 + ${hip_VERSION_PATCH}")
......@@ -145,20 +145,20 @@ message("hip_version_flat=${hip_VERSION_FLAT}")
message("checking which targets are supported")
#In order to build just the CK library (without tests and examples) for all supported GPU targets
#use -D GPU_ARCHS="gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
#use -D GPU_ARCHS="gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
#the GPU_TARGETS flag will be reset in this case in order to avoid conflicts.
#
#In order to build CK along with all tests and examples it should be OK to set GPU_TARGETS to just 1 or 2 similar architectures.
if(NOT ENABLE_ASAN_PACKAGING)
if(NOT WIN32 AND ${hip_VERSION_FLAT} LESS 600300000)
# WORKAROUND: compiler does not yet fully support gfx12 targets, need to fix version above
set(CK_GPU_TARGETS "gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx950")
set(CK_GPU_TARGETS "gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102")
else()
set(CK_GPU_TARGETS "gfx950")
endif()
else()
#build CK only for xnack-supported targets when using ASAN
set(CK_GPU_TARGETS "gfx908:xnack+;gfx90a:xnack+;gfx940:xnack+;gfx941:xnack+;gfx942:xnack+")
set(CK_GPU_TARGETS "gfx908:xnack+;gfx90a:xnack+;gfx942:xnack+")
endif()
#if user set GPU_ARCHS on the cmake command line, overwrite default target list with user's list
......@@ -170,7 +170,10 @@ else()
set(CK_GPU_TARGETS ${GPU_TARGETS})
endif()
endif()
#if the user did not set GPU_TARGETS, delete whatever was set by HIP package
if(NOT USER_GPU_TARGETS)
set(GPU_TARGETS "")
endif()
#make sure all the targets on the list are actually supported by the current compiler
rocm_check_target_ids(SUPPORTED_GPU_TARGETS
TARGETS ${CK_GPU_TARGETS})
......@@ -187,6 +190,10 @@ if (SUPPORTED_GPU_TARGETS MATCHES "gfx11" OR SUPPORTED_GPU_TARGETS MATCHES "gfx1
add_definitions(-DCK_USE_WMMA)
set(CK_USE_WMMA "ON")
endif()
option(CK_USE_FP8_ON_UNSUPPORTED_ARCH "Enable FP8 GEMM instances on older architectures" OFF)
if(CK_USE_FP8_ON_UNSUPPORTED_ARCH AND (SUPPORTED_GPU_TARGETS MATCHES "gfx90a" OR SUPPORTED_GPU_TARGETS MATCHES "gfx908"))
add_definitions(-DCK_USE_FP8_ON_UNSUPPORTED_ARCH)
endif()
# CK config file to record supported datatypes, etc.
configure_file(include/ck/config.h.in ${CMAKE_CURRENT_BINARY_DIR}/include/ck/config.h)
......@@ -198,6 +205,13 @@ if(NOT WIN32 AND ${hip_VERSION_FLAT} GREATER 500723302)
add_compile_options(-fno-offload-uniform-block)
endif()
endif()
if(NOT WIN32 AND ${hip_VERSION_FLAT} GREATER 500500000)
check_cxx_compiler_flag("-mllvm --lsr-drop-solution=1" HAS_LSR_DROP_SOLUTION)
if(HAS_LSR_DROP_SOLUTION)
message("Adding the lsr-drop-solution=1 compiler flag")
add_compile_options("SHELL: -mllvm --lsr-drop-solution=1")
endif()
endif()
if(NOT WIN32 AND ${hip_VERSION_FLAT} GREATER 600140090)
check_cxx_compiler_flag("-mllvm -enable-post-misched=0" HAS_ENABLE_POST_MISCHED)
if(HAS_ENABLE_POST_MISCHED)
......@@ -307,7 +321,6 @@ link_libraries(${OpenMP_gomp_LIBRARY})
link_libraries(${OpenMP_pthread_LIBRARY})
## HIP
find_package(HIP REQUIRED)
# Override HIP version in config.h, if necessary.
# The variables set by find_package() can't be overwritten,
# therefore let's use intermediate variables.
......
......@@ -795,6 +795,10 @@ pipeline {
name: "RUN_GROUPED_CONV_LARGE_CASES_TESTS",
defaultValue: false,
description: "Run the grouped conv large cases tests (default: OFF)")
booleanParam(
name: "RUN_CODEGEN_TESTS",
defaultValue: false,
description: "Run codegen tests (default: OFF)")
booleanParam(
name: "RUN_CK_TILE_FMHA_TESTS",
defaultValue: false,
......@@ -923,6 +927,29 @@ pipeline {
}
}
}
stage("Run Codegen Tests")
{
parallel
{
stage("Run Codegen Tests on gfx90a")
{
when {
beforeAgent true
expression { params.RUN_CODEGEN_TESTS.toBoolean() }
}
agent{ label rocmnode("gfx90a")}
environment{
setup_args = "NO_CK_BUILD"
execute_args = """ CXX=/opt/rocm/llvm/bin/clang++ cmake ../codegen && \
make -j64 check"""
}
steps{
buildHipClangJobAndReboot(setup_args:setup_args, no_reboot:true, build_type: 'Release', execute_cmd: execute_args)
cleanWs()
}
}
}
}
stage("Run CK_TILE_FMHA Tests")
{
parallel
......@@ -1063,11 +1090,11 @@ pipeline {
agent{ label rocmnode("gfx90a") }
environment{
setup_args = """ -DCMAKE_INSTALL_PREFIX=../install \
-DGPU_TARGETS="gfx908;gfx90a;gfx940;gfx941;gfx942" \
-DGPU_TARGETS="gfx908;gfx90a;gfx942" \
-DCMAKE_CXX_FLAGS=" -O3 " """
execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && \
cmake -DCMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" \
-DGPU_TARGETS="gfx908;gfx90a;gfx940;gfx941;gfx942" \
-DGPU_TARGETS="gfx908;gfx90a;gfx942" \
-DCMAKE_CXX_COMPILER="${build_compiler()}" \
-DCMAKE_CXX_FLAGS=" -O3 " .. && make -j """
}
......@@ -1127,7 +1154,7 @@ pipeline {
execute_args = """ cmake -D CMAKE_PREFIX_PATH=/opt/rocm \
-D CMAKE_CXX_COMPILER="${build_compiler()}" \
-D CMAKE_BUILD_TYPE=Release \
-D GPU_ARCHS="gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx1100;gfx1101;gfx1102" \
-D GPU_ARCHS="gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102" \
-D CMAKE_CXX_FLAGS=" -O3 " .. && make -j64 """
}
steps{
......
# Composable Kernel
> [!NOTE]
> The published documentation is available at [Composable Kernel](https://rocm.docs.amd.com/projects/composable_kernel/en/latest/) in an organized, easy-to-read format, with search and a table of contents. The documentation source files reside in the `docs` folder of this repository. As with all ROCm projects, the documentation is open source. For more information on contributing to the documentation, see [Contribute to ROCm documentation](https://rocm.docs.amd.com/en/latest/contribute/contributing.html).
The Composable Kernel (CK) library provides a programming model for writing performance-critical
kernels for machine learning workloads across multiple architectures (GPUs, CPUs, etc.). The CK library
uses general purpose kernel languages, such as HIP C++.
......@@ -134,12 +137,11 @@ Docker images are available on [DockerHub](https://hub.docker.com/r/rocm/composa
You can find instructions for running ckProfiler in [profiler](/profiler).
Note the `-j` option for building with multiple threads in parallel. This speeds up the build significantly.
Note the `-j` option for building with multiple threads in parallel, which speeds up the build significantly.
However, `-j` launches unlimited number of threads, which can cause the build to run out of memory and
crash. On average, you should expect each thread to use ~2Gb of RAM.
Depending on the number of CPU cores and the amount of RAM on your system, you may want to
limit the number of threads. For example, if you have a 128-core CPU and 64 Gb of RAM.
By default, `-j` launches one thread per CPU core, which can cause the build to run out of memory and
crash. In such cases, you can reduce the number of threads to 32 by using `-j32`.
limit the number of threads. For example, if you have a 128-core CPU and 128 Gb of RAM it's advisable to use `-j32`.
Additional cmake flags can be used to significantly speed-up the build:
......@@ -151,6 +153,11 @@ Additional cmake flags can be used to significantly speed-up the build:
`batched_gemm_multi_d_dl`. These instances are useful on architectures like the NAVI2x, as most
other platforms have faster instances, such as `xdl` or `wmma`, available.
* `CK_USE_FP8_ON_UNSUPPORTED_ARCH` (default is OFF) must be set to ON in order to build instances,
such as `gemm_universal` and `gemm_multiply_multiply` for fp8 data type for GPU targets which do not
have native support for fp8 data type, such as gfx908 or gfx90a. These instances are useful on
architectures like the MI100/MI200 for the functional support only.
## Using sccache for building
The default CK Docker images come with a pre-installed version of sccache, which supports clang
......
cmake_minimum_required(VERSION 3.16)
project(composable_kernel_host)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/lib)
......@@ -5,30 +8,24 @@ set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/lib)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
set(CK_ROOT ${CMAKE_CURRENT_SOURCE_DIR}/..)
add_compile_options(-std=c++17)
find_package(hip)
add_custom_target(codegen)
find_package(ROCM)
include(ROCMInstallTargets)
include(ROCMTest)
# add include directories
include_directories(BEFORE
${PROJECT_BINARY_DIR}/include
${PROJECT_SOURCE_DIR}/include
${PROJECT_SOURCE_DIR}/library/include
${HIP_INCLUDE_DIRS}
)
rocm_setup_version(VERSION 1.0)
list(APPEND CMAKE_MODULE_PATH ${CK_ROOT}/cmake)
include(Embed)
file(GLOB_RECURSE KERNEL_FILES CONFIGURE_DEPENDS
${CK_ROOT}/include/ck/*.hpp)
#printouts fot debug purposes
#message(STATUS "KERNEL_FILES: ${KERNEL_FILES}")
#message(STATUS "RELATIVE: ${CK_ROOT}/include")
# printouts fot debug purposes
# message(STATUS "KERNEL_FILES: ${KERNEL_FILES}")
# message(STATUS "RELATIVE: ${CK_ROOT}/include")
add_embed_library(ck_headers ${KERNEL_FILES} RELATIVE ${CK_ROOT}/include)
file(GLOB SOURCES CONFIGURE_DEPENDS src/*.cpp)
add_compile_options(-std=c++17)
##message(STATUS "SOURCE_FILES: ${SOURCES}")
file(GLOB SOURCES CONFIGURE_DEPENDS src/*.cpp)
# TODO: Use object library
add_library(ck_host STATIC ${SOURCES})
target_link_libraries(ck_host PRIVATE ck_headers)
......@@ -37,24 +34,25 @@ set_target_properties(ck_host PROPERTIES
LINKER_LANGUAGE CXX
POSITION_INDEPENDENT_CODE ON)
target_include_directories(ck_host PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:include>
)
# target_include_directories(ck_host PUBLIC
# $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
# )
add_executable(ck-template-driver driver/main.cpp)
target_link_libraries(ck-template-driver ck_host)
rocm_install(
rocm_install_targets(
TARGETS ck_host ck_headers
EXPORT ck_hostTargets
EXPORT ck_host_targets
INCLUDE include
PRIVATE
)
rocm_install(EXPORT ck_hostTargets
FILE composable_kernelck_hostTargets.cmake
rocm_export_targets(
EXPORT ck_host_targets
NAMESPACE composable_kernel::
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/composable_kernel)
rocm_install(DIRECTORY include/ck DESTINATION ${CMAKE_INSTALL_INCLUDEDIR})
)
if(BUILD_TESTING)
add_subdirectory(test)
endif()
list(APPEND CMAKE_PREFIX_PATH /opt/rocm)
add_subdirectory(rtc)
file(GLOB TEST_SRCS CONFIGURE_DEPENDS *.cpp)
# do not build the tests when we build the library for various targets
if(NOT GPU_ARCHS)
foreach(TEST_SRC ${TEST_SRCS})
set_source_files_properties(${TEST_SRC} PROPERTIES LANGUAGE HIP)
# TODO: These tests need to be refactored to remove dependency on main ck
# headers and device compilation.
set(TESTS_REQUIRE_DEVICE_COMPILE
grouped_conv_fwd_multiple_d_v1
grouped_conv_fwd_multiple_d_v2
grouped_conv_fwd_multiple_d_v3
grouped_conv_fwd_multiple_d_v4
)
find_package(hip)
foreach(TEST_SRC ${TEST_SRCS})
get_filename_component(BASE_NAME ${TEST_SRC} NAME_WE)
add_executable(codegen_test_${BASE_NAME} ${TEST_SRC})
if(CK_USE_ALTERNATIVE_PYTHON)
target_link_options(codegen_test_${BASE_NAME} PRIVATE -lstdc++fs)
endif()
add_dependencies(codegen codegen_test_${BASE_NAME})
add_dependencies(tests codegen_test_${BASE_NAME})
add_dependencies(check codegen_test_${BASE_NAME})
add_test(NAME codegen_test_${BASE_NAME} COMMAND codegen_test_${BASE_NAME})
message("adding test codegen_test_${BASE_NAME}")
rocm_add_test_executable(codegen_test_${BASE_NAME} ${TEST_SRC})
target_link_libraries(codegen_test_${BASE_NAME} ck_rtc ck_host)
target_include_directories(codegen_test_${BASE_NAME} PUBLIC ${CK_ROOT}/codegen/test/include)
target_include_directories(codegen_test_${BASE_NAME} PUBLIC include)
if(BASE_NAME IN_LIST TESTS_REQUIRE_DEVICE_COMPILE)
target_link_libraries(codegen_test_${BASE_NAME} hip::device)
target_include_directories(codegen_test_${BASE_NAME} PUBLIC ${CK_ROOT}/include)
target_include_directories(codegen_test_${BASE_NAME} PUBLIC ${CK_ROOT}/library/include)
endforeach()
endif()
endif()
endforeach()
find_package(hip)
file(GLOB RTC_SOURCES CONFIGURE_DEPENDS src/*.cpp)
add_library(ck_rtc ${RTC_SOURCES})
target_include_directories(ck_rtc PUBLIC include)
target_link_libraries(ck_rtc PUBLIC hip::host)
target_link_libraries(ck_rtc PUBLIC -lstdc++fs)
......@@ -2,14 +2,14 @@
#define GUARD_HOST_TEST_RTC_INCLUDE_RTC_COMPILE_KERNEL
#include <rtc/kernel.hpp>
#include <ck/filesystem.hpp>
#include <rtc/filesystem.hpp>
#include <string>
namespace rtc {
struct src_file
{
CK::fs::path path;
fs::path path;
std::string_view content;
};
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#ifndef GUARD_TEST_HOST_RTC_FILESYSTEM_HPP
#define GUARD_TEST_HOST_RTC_FILESYSTEM_HPP
#include <string>
#include <string_view>
// clang-format off
#if defined(CPPCHECK)
#define RTC_HAS_FILESYSTEM 1
#define RTC_HAS_FILESYSTEM_TS 1
#elif defined(_WIN32)
#if _MSC_VER >= 1920
#define RTC_HAS_FILESYSTEM 1
#define RTC_HAS_FILESYSTEM_TS 0
#elif _MSC_VER >= 1900
#define RTC_HAS_FILESYSTEM 0
#define RTC_HAS_FILESYSTEM_TS 1
#else
#define RTC_HAS_FILESYSTEM 0
#define RTC_HAS_FILESYSTEM_TS 0
#endif
#elif defined(__has_include)
#if __has_include(<filesystem>) && __cplusplus >= 201703L
#define RTC_HAS_FILESYSTEM 1
#else
#define RTC_HAS_FILESYSTEM 0
#endif
#if __has_include(<experimental/filesystem>) && __cplusplus >= 201103L
#define RTC_HAS_FILESYSTEM_TS 1
#else
#define RTC_HAS_FILESYSTEM_TS 0
#endif
#else
#define RTC_HAS_FILESYSTEM 0
#define RTC_HAS_FILESYSTEM_TS 0
#endif
// clang-format on
#if RTC_HAS_FILESYSTEM
#include <filesystem>
#elif RTC_HAS_FILESYSTEM_TS
#include <experimental/filesystem>
#else
#error "No filesystem include available"
#endif
namespace rtc {
#if RTC_HAS_FILESYSTEM
namespace fs = ::std::filesystem;
#elif RTC_HAS_FILESYSTEM_TS
namespace fs = ::std::experimental::filesystem;
#endif
} // namespace rtc
#endif // GUARD_RTC_FILESYSTEM_HPP_
......@@ -2,13 +2,13 @@
#define GUARD_HOST_TEST_RTC_INCLUDE_RTC_TMP_DIR
#include <string>
#include <ck/filesystem.hpp>
#include <rtc/filesystem.hpp>
namespace rtc {
struct tmp_dir
{
CK::fs::path path;
fs::path path;
tmp_dir(const std::string& prefix = "");
void execute(const std::string& cmd) const;
......
#include "rtc/hip.hpp"
#include <rtc/hip.hpp>
#include <rtc/compile_kernel.hpp>
#include <rtc/tmp_dir.hpp>
#include <stdexcept>
......@@ -70,9 +70,9 @@ kernel compile_kernel(const std::vector<src_file>& srcs, compile_options options
for(const auto& src : srcs)
{
CK::fs::path full_path = td.path / src.path;
CK::fs::path parent_path = full_path.parent_path();
CK::fs::create_directories(parent_path);
fs::path full_path = td.path / src.path;
fs::path parent_path = full_path.parent_path();
fs::create_directories(parent_path);
write_string(full_path.string(), src.content);
if(src.path.extension().string() == ".cpp")
{
......@@ -86,7 +86,7 @@ kernel compile_kernel(const std::vector<src_file>& srcs, compile_options options
td.execute(compiler() + options.flags);
auto out_path = td.path / out;
if(not CK::fs::exists(out_path))
if(not fs::exists(out_path))
throw std::runtime_error("Output file missing: " + out);
auto obj = read_buffer(out_path.string());
......
......@@ -31,10 +31,10 @@ std::string unique_string(const std::string& prefix)
}
tmp_dir::tmp_dir(const std::string& prefix)
: path(CK::fs::temp_directory_path() /
: path(fs::temp_directory_path() /
unique_string(prefix.empty() ? "ck-rtc" : "ck-rtc-" + prefix))
{
CK::fs::create_directories(this->path);
fs::create_directories(this->path);
}
void tmp_dir::execute(const std::string& cmd) const
......@@ -43,6 +43,6 @@ void tmp_dir::execute(const std::string& cmd) const
std::system(s.c_str());
}
tmp_dir::~tmp_dir() { CK::fs::remove_all(this->path); }
tmp_dir::~tmp_dir() { fs::remove_all(this->path); }
} // namespace rtc
rocm-docs-core==1.8.2
rocm-docs-core==1.8.3
sphinxcontrib-bibtex==2.6.3
......@@ -103,7 +103,7 @@ requests==2.32.3
# via
# pygithub
# sphinx
rocm-docs-core==1.8.2
rocm-docs-core==1.8.3
# via -r requirements.in
six==1.16.0
# via pybtex
......
......@@ -29,9 +29,9 @@ struct ProblemSize final
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 0;
ck::index_t StrideB = 0;
ck::index_t StrideC = 0;
ck::index_t StrideA = -1;
ck::index_t StrideB = -1;
ck::index_t StrideC = -1;
};
struct ProblemSizeStreamK final
......@@ -40,9 +40,9 @@ struct ProblemSizeStreamK final
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 0;
ck::index_t StrideB = 0;
ck::index_t StrideC = 0;
ck::index_t StrideA = -1;
ck::index_t StrideB = -1;
ck::index_t StrideC = -1;
ck::index_t NumSKBlocks = -1;
};
......@@ -52,9 +52,9 @@ struct ProblemSizeStreamK_universal final
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 0;
ck::index_t StrideB = 0;
ck::index_t StrideC = 0;
ck::index_t StrideA = -1;
ck::index_t StrideB = -1;
ck::index_t StrideC = -1;
ck::index_t Grid_size = -1; // defaults to max occupancy
ck::index_t Streamk_sel = 1; // defaults to 1-tile SK
......@@ -66,16 +66,17 @@ struct ProblemSizeSplitK final
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 0;
ck::index_t StrideB = 0;
ck::index_t StrideC = 0;
ck::index_t StrideA = -1;
ck::index_t StrideB = -1;
ck::index_t StrideC = -1;
ck::index_t KBatch = 1;
};
struct ExecutionConfig final
{
bool do_verification = true;
// 0 - no verification, 1 - CPU, 2 - GPU, 3 - CPU + GPU
int do_verification = 3;
int init_method = 2;
bool time_kernel = false;
};
......@@ -126,7 +127,7 @@ bool parse_cmd_args<ProblemSize>(int argc,
}
else
{
std::cerr << "arg1: verification (0=no, 1=CPU and GPU)" << std::endl
std::cerr << "arg1: verification (0=no, 1=CPU, 2=GPU, 3=CPU and GPU)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<< std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl
......@@ -176,7 +177,7 @@ bool parse_cmd_args<ProblemSizeStreamK_universal>(int argc,
else
{
std::cerr
<< "arg1: verification (0=no, 1=CPU and GPU)" << std::endl
<< "arg1: verification (0=no, 1=CPU, 2=GPU, 3=CPU and GPU)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)" << std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl
<< "arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC" << std::endl
......@@ -225,7 +226,7 @@ bool parse_cmd_args<ProblemSizeStreamK>(int argc,
}
else
{
std::cerr << "arg1: verification (0=no, 1=CPU and GPU)" << std::endl
std::cerr << "arg1: verification (0=no, 1=CPU, 2=GPU, 3=CPU and GPU)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<< std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl
......@@ -275,7 +276,7 @@ bool parse_cmd_args<ProblemSizeSplitK>(int argc,
}
else
{
std::cerr << "arg1: verification (0=no, 1=CPU and GPU)" << std::endl
std::cerr << "arg1: verification (0=no, 1=CPU, 2=GPU, 3=CPU and GPU)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<< std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl
......
......@@ -116,21 +116,21 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
};
auto f_get_default_stride =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(stride == 0)
[](std::size_t row, std::size_t col, ck::index_t stride, auto layout) {
if(stride == -1)
{
// give a chance if stride is zero, return a default packed stride
// give a chance if stride is -1, return a default packed stride
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return col;
return static_cast<std::size_t>(col);
}
else
{
return row;
return static_cast<std::size_t>(row);
}
}
else
return stride;
return static_cast<std::size_t>(stride);
};
StrideA = f_get_default_stride(M, K, StrideA, ALayout{});
......@@ -330,7 +330,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
bool pass = true;
if(config.do_verification)
if((config.do_verification == 1) || (config.do_verification == 3))
{
// CPU verification
auto ref_gemm = ReferenceGemmInstance{};
......@@ -353,13 +353,16 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
#else
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass &= !ck::utils::check_err(c_m_n_device_result,
pass &= ck::utils::check_err(c_m_n_device_result,
c_m_n_host_result,
"Error: Incorrect results!",
get_rtol<CDataType>(),
get_atol<CDataType>());
#endif
}
if((config.do_verification == 2) || (config.do_verification == 3))
{
// GPU verification
auto ref_gemm_gpu = ReferenceGemmInstanceGPU{};
auto ref_invoker_gpu = ref_gemm_gpu.MakeInvoker();
......@@ -381,14 +384,14 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
c_m_n_device_ref_buf.FromDevice(c_m_n_device_ref_result.mData.data());
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass &= !ck::utils::check_err(c_m_n_device_result,
pass &= ck::utils::check_err(c_m_n_device_result,
c_m_n_device_ref_result,
"Error: Incorrect results!",
get_rtol<CDataType>(),
get_atol<CDataType>());
}
return !pass;
return pass == true;
}
bool run_gemm_example(int argc, char* argv[])
......
......@@ -117,9 +117,9 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
auto f_get_default_stride =
[](std::size_t row, std::size_t col, ck::index_t stride, auto layout) {
if(stride == 0)
if(stride == -1)
{
// give a chance if stride is 0, return a default packed stride
// give a chance if stride is -1, return a default packed stride
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return static_cast<std::size_t>(col);
......@@ -241,7 +241,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
}
bool pass = true;
if(config.do_verification)
if((config.do_verification == 1) || (config.do_verification == 3))
{
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
......
......@@ -115,21 +115,21 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
};
auto f_get_default_stride =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(stride == 0)
[](std::size_t row, std::size_t col, ck::index_t stride, auto layout) {
if(stride == -1)
{
// give a chance if stride is zero, return a default packed stride
// give a chance if stride is -1, return a default packed stride
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return col;
return static_cast<std::size_t>(col);
}
else
{
return row;
return static_cast<std::size_t>(row);
}
}
else
return stride;
return static_cast<std::size_t>(stride);
};
StrideA = f_get_default_stride(M, K, StrideA, ALayout{});
......@@ -228,7 +228,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
}
bool pass = true;
if(config.do_verification)
if((config.do_verification == 1) || (config.do_verification == 3))
{
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
/*
Computes C_m_o = Relu(A0[m, k] * B0[n, k] + D00[m, n] + D01[mn]) * B1[n, o] + D1[m, o]
......@@ -60,14 +60,14 @@ struct AddAddRelu
{
const ck::half_t x = c + d0 + d1;
ck::tensor_operation::element_wise::Relu{}.template operator()<ck::half_t>(e, x);
ck::tensor_operation::element_wise::Relu{}.operator()(e, x);
}
__host__ __device__ void
operator()(float& e, const float& c, const ck::half_t& d0, const ck::half_t& d1) const
{
const float x = c + (d0 + d1);
ck::tensor_operation::element_wise::Relu{}.template operator()<float>(e, x);
ck::tensor_operation::element_wise::Relu{}.operator()(e, x);
}
};
......
......@@ -5,3 +5,4 @@ add_example_executable(example_elementwise_permute_4D_fp32_col elementwise_permu
add_example_executable(example_elementwise_permute_4D_fp16_col elementwise_permute_4D_fp16_col.cpp)
add_example_executable(example_elementwise_binary_4D_fp16 elementwise_binary_4D_fp16.cpp)
add_example_executable(example_elementwise_trinary_4D_fp16 elementwise_trinary_4D_fp16.cpp)
add_example_executable(elementwise_scale_permute_amax_2D_fp16_fp8 elementwise_scale_permute_amax_2D_fp16_fp8.cpp)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment