Unverified Commit a3d9a2cd authored by rocking's avatar rocking Committed by GitHub
Browse files

Layernorm4d (#1022)



* Rename folder

* Add layernorm 4d fwd example

* Rename original layernorm example

* Add layernorm 4d f16  test

* Add layernorm4d_fwd client example

* Support layernorm4D in ckProfiler

* Rename groupnorm to groupnorm fwd in example

* Rename layernorm and group fwd in test

* Rename normalization to normalization_fwd (instances)

* Add fwd to DeviceNormalization

* Rename external api header

* Rename folder, because we can also add bwd in this folder

* Add fwd in layernorm and groupnorm (profiler

* Fix compile error

---------
Co-authored-by: default avatarPo Yen Chen <PoYen.Chen@amd.com>
parent ce526211
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
#include "normalization_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
......@@ -10,8 +10,8 @@ namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_2_1_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, Pass, 2, 1>>>&
void add_device_normalization_fwd_rank_2_1_f16_instances(
std::vector<std::unique_ptr<DeviceNormalizationFwd<F16, F16, F16, F16, F32, Pass, 2, 1>>>&
instances)
{
add_device_operation_instances(instances,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
#include "normalization_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
......@@ -10,8 +10,8 @@ namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_2_1_f32_instances(
std::vector<std::unique_ptr<DeviceNormalization<F32, F32, F32, F32, F32, Pass, 2, 1>>>&
void add_device_normalization_fwd_rank_2_1_f32_instances(
std::vector<std::unique_ptr<DeviceNormalizationFwd<F32, F32, F32, F32, F32, Pass, 2, 1>>>&
instances)
{
add_device_operation_instances(instances,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
#include "normalization_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
......@@ -10,8 +10,8 @@ namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_4_3_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F16, F32, Pass, 4, 3>>>&
void add_device_normalization_fwd_rank_4_3_f16_instances(
std::vector<std::unique_ptr<DeviceNormalizationFwd<F16, F16, F16, F16, F32, Pass, 4, 3>>>&
instances)
{
add_device_operation_instances(instances,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "normalization_instance_common.hpp"
#include "normalization_fwd_instance_common.hpp"
namespace ck {
namespace tensor_operation {
......@@ -10,8 +10,8 @@ namespace instance {
using Pass = ck::tensor_operation::element_wise::PassThrough;
void add_device_normalization_rank_4_3_f32_instances(
std::vector<std::unique_ptr<DeviceNormalization<F32, F32, F32, F32, F32, Pass, 4, 3>>>&
void add_device_normalization_fwd_rank_4_3_f32_instances(
std::vector<std::unique_ptr<DeviceNormalizationFwd<F32, F32, F32, F32, F32, Pass, 4, 3>>>&
instances)
{
add_device_operation_instances(instances,
......
......@@ -7,7 +7,7 @@
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization_fwd.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
......@@ -88,14 +88,14 @@ bool profile_groupnorm_impl(int do_verification,
beta_dev.ToDevice(beta.mData.data());
// add device normalization instances
using DeviceOp = ck::tensor_operation::device::DeviceNormalization<XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
PassThrough,
5,
3>;
using DeviceOp = ck::tensor_operation::device::DeviceNormalizationFwd<XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
PassThrough,
5,
3>;
// get device op instances
const auto instance_ptrs =
......
......@@ -6,7 +6,7 @@
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization.hpp"
#include "ck/library/tensor_operation_instance/gpu/normalization_fwd.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
......@@ -94,14 +94,14 @@ bool profile_layernorm_impl(int do_verification,
constexpr int NumReduceDim = Rank - 1;
// add device normalization instances
using DeviceOp = ck::tensor_operation::device::DeviceNormalization<XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
PassThrough,
Rank,
NumReduceDim>;
using DeviceOp = ck::tensor_operation::device::DeviceNormalizationFwd<XDataType,
GammaDataType,
BetaDataType,
YDataType,
SaveMeanInvStdDataType,
PassThrough,
Rank,
NumReduceDim>;
// get device op instances
const auto instance_ptrs =
......
......@@ -16,8 +16,8 @@ set(PROFILER_SOURCES
profile_grouped_conv_fwd.cpp
profile_grouped_conv_bwd_weight.cpp
profile_reduce.cpp
profile_groupnorm.cpp
profile_layernorm.cpp
profile_groupnorm_fwd.cpp
profile_layernorm_fwd.cpp
profile_max_pool3d_fwd.cpp
profile_avg_pool3d_bwd.cpp
profile_max_pool3d_bwd.cpp
......@@ -77,7 +77,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_w
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_weight_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_softmax_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance)
......
......@@ -6,7 +6,7 @@
#include <unordered_map>
#include "profiler/data_type_enum.hpp"
#include "profiler/profile_groupnorm_impl.hpp"
#include "profiler/profile_groupnorm_fwd_impl.hpp"
#include "profiler_operation_registry.hpp"
using ck::index_t;
......
......@@ -6,7 +6,7 @@
#include <unordered_map>
#include "profiler/data_type_enum.hpp"
#include "profiler/profile_layernorm_impl.hpp"
#include "profiler/profile_layernorm_fwd_impl.hpp"
#include "profiler_operation_registry.hpp"
using ck::index_t;
......@@ -76,19 +76,46 @@ int profile_layernorm(int argc, char* argv[])
arg_parser(argc, argv);
const std::vector<index_t> length = arg_parser.long_opts["length"];
using F16 = ck::half_t;
using F32 = float;
constexpr int rank = 2;
using F16 = ck::half_t;
using F32 = float;
if(data_type == ck::DataTypeEnum::Half)
if(length.size() == 2)
{
ck::profiler::profile_layernorm_impl<F16, F16, F16, F32, F16, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
constexpr int rank = 2;
if(data_type == ck::DataTypeEnum::Half)
{
ck::profiler::profile_layernorm_impl<F16, F16, F16, F32, F16, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
}
else if(data_type == ck::DataTypeEnum::Float)
{
ck::profiler::profile_layernorm_impl<F32, F32, F32, F32, F32, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
}
else
{
throw std::runtime_error("not implemented yet");
}
}
else if(data_type == ck::DataTypeEnum::Float)
else if(length.size() == 4)
{
ck::profiler::profile_layernorm_impl<F32, F32, F32, F32, F32, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
constexpr int rank = 4;
if(data_type == ck::DataTypeEnum::Half)
{
ck::profiler::profile_layernorm_impl<F16, F16, F16, F32, F16, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
}
else if(data_type == ck::DataTypeEnum::Float)
{
ck::profiler::profile_layernorm_impl<F32, F32, F32, F32, F32, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
}
else
{
throw std::runtime_error("not implemented yet");
}
}
else
{
......
......@@ -139,7 +139,7 @@ add_subdirectory(grouped_convnd_fwd)
add_subdirectory(grouped_convnd_bwd_weight)
add_subdirectory(block_to_ctile_map)
add_subdirectory(softmax)
add_subdirectory(normalization)
add_subdirectory(normalization_fwd)
add_subdirectory(data_type)
add_subdirectory(elementwise_normalization)
add_subdirectory(batchnorm)
......
add_custom_target(test_normalization)
add_gtest_executable(test_layernorm2d_fp32 test_layernorm2d_fp32.cpp)
if(result EQUAL 0)
target_link_libraries(test_layernorm2d_fp32 PRIVATE utility device_normalization_instance)
add_dependencies(test_normalization test_layernorm2d_fp32)
endif()
add_gtest_executable(test_groupnorm_fp32 test_groupnorm_fp32.cpp)
if(result EQUAL 0)
target_link_libraries(test_groupnorm_fp32 PRIVATE utility device_normalization_instance)
add_dependencies(test_normalization test_groupnorm_fp32)
endif()
add_gtest_executable(test_layernorm2d_fp16 test_layernorm2d_fp16.cpp)
if(result EQUAL 0)
target_link_libraries(test_layernorm2d_fp16 PRIVATE utility device_normalization_instance)
add_dependencies(test_normalization test_layernorm2d_fp16)
endif()
add_gtest_executable(test_groupnorm_fp16 test_groupnorm_fp16.cpp)
if(result EQUAL 0)
target_link_libraries(test_groupnorm_fp16 PRIVATE utility device_normalization_instance)
add_dependencies(test_normalization test_groupnorm_fp16)
endif()
add_custom_target(test_normalization_fwd)
add_gtest_executable(test_layernorm2d_fwd_fp32 test_layernorm2d_fwd_fp32.cpp)
if(result EQUAL 0)
target_link_libraries(test_layernorm2d_fwd_fp32 PRIVATE utility device_normalization_fwd_instance)
add_dependencies(test_normalization_fwd test_layernorm2d_fwd_fp32)
endif()
add_gtest_executable(test_groupnorm_fwd_fp32 test_groupnorm_fwd_fp32.cpp)
if(result EQUAL 0)
target_link_libraries(test_groupnorm_fwd_fp32 PRIVATE utility device_normalization_fwd_instance)
add_dependencies(test_normalization_fwd test_groupnorm_fwd_fp32)
endif()
add_gtest_executable(test_layernorm2d_fwd_fp16 test_layernorm2d_fwd_fp16.cpp)
if(result EQUAL 0)
target_link_libraries(test_layernorm2d_fwd_fp16 PRIVATE utility device_normalization_fwd_instance)
add_dependencies(test_normalization_fwd test_layernorm2d_fwd_fp16)
endif()
add_gtest_executable(test_layernorm4d_fwd_fp16 test_layernorm4d_fwd_fp16.cpp)
if(result EQUAL 0)
target_link_libraries(test_layernorm4d_fwd_fp16 PRIVATE utility device_normalization_fwd_instance)
add_dependencies(test_normalization_fwd test_layernorm4d_fwd_fp16)
endif()
add_gtest_executable(test_groupnorm_fwd_fp16 test_groupnorm_fwd_fp16.cpp)
if(result EQUAL 0)
target_link_libraries(test_groupnorm_fwd_fp16 PRIVATE utility device_normalization_fwd_instance)
add_dependencies(test_normalization_fwd test_groupnorm_fwd_fp16)
endif()
......@@ -2,7 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_groupnorm_impl.hpp"
#include "profiler/profile_groupnorm_fwd_impl.hpp"
using F16 = ck::half_t;
using F32 = float;
......
......@@ -2,7 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_groupnorm_impl.hpp"
#include "profiler/profile_groupnorm_fwd_impl.hpp"
using F16 = ck::half_t;
using F32 = float;
......
......@@ -2,7 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_layernorm_impl.hpp"
#include "profiler/profile_layernorm_fwd_impl.hpp"
using F16 = ck::half_t;
using F32 = float;
......
......@@ -2,7 +2,7 @@
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_layernorm_impl.hpp"
#include "profiler/profile_layernorm_fwd_impl.hpp"
using F16 = ck::half_t;
using F32 = float;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_layernorm_fwd_impl.hpp"
using F16 = ck::half_t;
using F32 = float;
using ck::index_t;
template <typename Tuple>
class TestLayernorm4d : public ::testing::Test
{
protected:
using XDataType = std::tuple_element_t<0, Tuple>;
using GammaDataType = std::tuple_element_t<1, Tuple>;
using BetaDataType = std::tuple_element_t<2, Tuple>;
using ComputeDataType = std::tuple_element_t<3, Tuple>;
using YDataType = std::tuple_element_t<4, Tuple>;
using SaveMeanInvStdDataType = std::tuple_element_t<5, Tuple>;
void Run()
{
// [N, D], reduce D
std::vector<std::vector<ck::index_t>> lengths = {
{1, 1, 1, 1}, {7, 7, 7, 7}, {256, 16, 16, 8}};
for(auto length : lengths)
{
bool success = ck::profiler::profile_layernorm_impl<XDataType,
GammaDataType,
BetaDataType,
ComputeDataType,
YDataType,
SaveMeanInvStdDataType,
true,
4>(true, 2, false, false, length);
EXPECT_TRUE(success);
}
}
};
using KernelTypes = ::testing::Types<
// XDataType, GammaDataType, BetaDataType, ComputeDataType, YDataType>
std::tuple<F16, F16, F16, F32, F16, F32>>;
TYPED_TEST_SUITE(TestLayernorm4d, KernelTypes);
TYPED_TEST(TestLayernorm4d, Test_FP16) { this->Run(); }
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment