"benchmark/vscode:/vscode.git/clone" did not exist on "72c77763559317b2c8bddfd67e173b67aa1facb0"
Unverified Commit a199815a authored by Muhammed  Emin Ozturk's avatar Muhammed Emin Ozturk Committed by GitHub
Browse files

Merge branch 'develop' into muozturk_sk_padding

parents a9a3a3e2 2bef5501
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942 gfx950)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
......
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942 gfx950)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
......
add_custom_target(example_gemm_mx)
add_example_executable(example_gemm_mx_fp8 gemm_mx_fp8.cpp)
add_example_dependencies(example_gemm_mx example_gemm_mx_fp8)
# GEMM Examples for Microscaling Formats
## example_gemm_mx_fp8
```bash
# arg1: verification (0=no, 1=CPU)
# arg2: initialization (0=no init, 1=integer value, 2=decimal value)
# arg3: time kernel (0=no, 1=yes)
# arg4: verbosity (0=no info, 1=verbose info)
# arg5 to 10: M (16x), N(16x), K(16x), StrideA, StrideB, StrideC
./bin/example_gemm_mx_fp8 1 1 0 1
```
```bash
# Implies: ./bin/example_gemm_mx_fp8 1 2 0 0
./bin/example_gemm_mx_fp8
```
\ No newline at end of file
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3_ab_scale.hpp"
#include "ck/utility/blkgemmpipe_scheduler.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/utility/sequence.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/host_tensor.hpp"
using ScaleDataType = ck::e8m0_bexp_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
struct ExecutionConfig final
{
int do_verification = 1; // (0=no, 1=CPU)
int init_method = 2; // (0=no init, 1=integer value, 2=decimal value)
bool time_kernel = false; // (0=no, 1=yes)
int verbosity = 0; // (0=no info, 1=verbose info)
};
struct ProblemSize final
{
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = -1;
ck::index_t StrideB = -1;
ck::index_t StrideC = -1;
};
bool parse_cmd_args(int argc, char* argv[], ProblemSize& problem_size, ExecutionConfig& config)
{
if(argc == 1)
{
// use default case
}
else if(argc == 5)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
config.verbosity = std::stoi(argv[4]);
}
else if(argc == 11)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
config.verbosity = std::stoi(argv[4]);
problem_size.M = std::stoi(argv[5]);
problem_size.N = std::stoi(argv[6]);
problem_size.K = std::stoi(argv[7]);
problem_size.StrideA = std::stoi(argv[8]);
problem_size.StrideB = std::stoi(argv[9]);
problem_size.StrideC = std::stoi(argv[10]);
}
else
{
std::cerr << "arg1: verification (0=no, 1=CPU)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<< std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl
<< "arg4: verbosity (0=no info, 1=verbose info)" << std::endl
<< "arg5 to 10: M (16x), N(16x), K(16x), StrideA, StrideB, StrideC" << std::endl;
return false;
}
return true;
}
template <typename ADataType,
typename BDataType,
typename XDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout,
typename CElementWiseOp,
typename AccDataType,
typename CShuffleDataType,
ck::index_t MXVectorSize>
bool run_mx_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
using ELayout = CLayout;
using DsLayout = ck::Tuple<>;
using DsDataType = ck::Tuple<>;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = CElementWiseOp;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto BlkGemmPSched = ck::BlockGemmPipelineScheduler::Intrawave;
static constexpr auto BlkGemmPVer = ck::BlockGemmPipelineVersion::v3;
#if 1
// XXX: These parameters should not exist in MX-native GEMM kernel
static constexpr ck::index_t Scale_Block_M = 128;
static constexpr ck::index_t Scale_Block_N = 128;
#endif
static constexpr ck::index_t Scale_Block_K = MXVectorSize;
// XXX: DeviceGemmMultiD_ABScale_Xdl_CShuffle_V3 is not designed to utilize MX-specific MFMA
// instructions.
//
// XXX: DeviceGemmMultiD_ABScale_Xdl_CShuffle_V3 is not designed to utilize device-optimized
// scaled type convert functions.
//
// XXX: In DeviceGemmMultiD_ABScale_Xdl_CShuffle_V3, KPerBlock is expected to be equal to
// ScaleBlockK (aka MXVectorSize).
// Additionally, the following is also expected:
// static_assert(ScaleBlockM % MPerBlock == 0);
// static_assert(ScaleBlockN % NPerBlock == 0);
// In MX-native GEMM kernel these requirements should be relaxed.
//
// XXX: It appears, by default we are using mfma_f32_16x16x4xf32
// MfmaSelector<ComputeTypeA, MPerXdl, NPerXdl, ComputeTypeB>::selected_mfma.k_per_blk =
// MfmaSelector<float, 16, 16, float>::selected_mfma.k_per_blk = mfma_f32_16x16x4xf32
// XXX: GridwiseGemmMultiD_ABScale_xdl_cshuffle_v3 assumes scale type is float
// clang-format off
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_ABScale_Xdl_CShuffle_V3
// ######| ALayout| BLayout| DsLayout| CLayout| ADataType| AScale| BDataType| BScale| DsDataType| CDataType| GemmAcc| CShuffleDataType|AElementwise|BElementwise| CElementwise| GemmSpec|Block| ScaleBlockM| ScaleBlockN| ScaleBlockK| M| N| K| AK1| BK1| M| N|MXdl|NXdl|ABlockTransfer|ABlockTransfer|ABlockTransfer|ABlockTransfer|ABlockTransfer|ABlockTransfer| ABlock|BBlockTransfer|BBlockTransfer|BBlockTransfer|BBlockTransfer|BBlockTransfer|BBlockTransfer| BBlock| CShuffle| CShuffle|CShuffleBlockTransfer|CDEShuffleBlockTransfer| BlkGemm| BlkGemm|ComputeTypeA|ComputeTypeB|LDSTypeA|LDSTypeB|
// ######| | | | | | DataType| | DataType| | | DataType| | Operation| Operation| Operation| | Size| | | | Per| Per| Per| | | Per| Per| Per| Per| ThreadCluster| ThreadCluster|SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar|LdsExtraM| ThreadCluster| ThreadCluster|SrcAccessOrder| SrcVector| SrcScalar| DstScalar|LdsExtraN| MXdl| NXdl| ClusterLengths| Scalar| PipeSched| PipelineVer| | | | |
// ######| | | | | | | | | | | | | | | | | | | | |Block|Block| Block| | | XDL| XDL|Wave|Wave| Lengths| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths| ArrangeOrder| | Dim| PerVector| PerVector_BK1| | PerWave| PerWave| MBlock_MPerBlock| PerVectors| | | | | | |
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | AK0_M_AK1| | | | | | | BK0_N_BK1| | | | | |PerShuffle|PerShuffle| NBlock_NPerBlock| | | | | | | |
< ALayout, BLayout, DsLayout, ELayout, ADataType, XDataType, BDataType, XDataType, DsDataType, CDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 256, Scale_Block_M, Scale_Block_N, Scale_Block_K, 128, 128, 128, 16, 16, 16, 16, 4, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 2, S<1, 32, 1, 8>, S<8, 8, 1>, BlkGemmPSched, BlkGemmPVer, float, float, float, float>;
// clang-format on
auto M = problem_size.M;
auto N = problem_size.N;
auto K = problem_size.K;
auto StrideA = problem_size.StrideA;
auto StrideB = problem_size.StrideB;
auto StrideC = problem_size.StrideC;
auto f_host_tensor_descriptor =
[](ck::index_t row, ck::index_t col, ck::index_t stride, auto layout) {
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return HostTensorDescriptor({row, col}, {stride, 1});
}
else
{
return HostTensorDescriptor({row, col}, {1, stride});
}
};
auto f_get_default_stride =
[](ck::index_t row, ck::index_t col, ck::index_t stride, auto layout) {
if(stride == -1)
{
// give a chance if stride is -1, return a default packed stride
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return static_cast<ck::index_t>(col);
}
else
{
return static_cast<ck::index_t>(row);
}
}
else
return static_cast<ck::index_t>(stride);
};
StrideA = f_get_default_stride(M, K, StrideA, ALayout{});
StrideB = f_get_default_stride(K, N, StrideB, BLayout{});
StrideC = f_get_default_stride(M, N, StrideC, CLayout{});
if(K % Scale_Block_K != 0)
{
throw std::runtime_error("wrong! K must be multiple of Scale_Block_K (16 or 32)");
};
auto Scale_Stride_AM = f_get_default_stride(M, K / Scale_Block_K, StrideA, ALayout{});
auto Scale_Stride_BN = f_get_default_stride(K / Scale_Block_K, N, StrideB, BLayout{});
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<XDataType> a_m_k_scale(
f_host_tensor_descriptor(M, K / Scale_Block_K, Scale_Stride_AM, ALayout{})); // scales for A
Tensor<XDataType> b_k_n_scale(
f_host_tensor_descriptor(K / Scale_Block_K, N, Scale_Stride_BN, BLayout{})); // scales for B
Tensor<CDataType> c_m_n_host_result(
f_host_tensor_descriptor(M, N, StrideC, CLayout{})); // host verification
Tensor<CDataType> c_m_n_device_result(
f_host_tensor_descriptor(M, N, StrideC, CLayout{})); // device result downloaded to host
if(config.verbosity >= 0)
{
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "a_m_k_scale: " << a_m_k_scale.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "b_k_n_scale: " << b_k_n_scale.mDesc << std::endl;
std::cout << "c_m_n_device_result: " << c_m_n_device_result.mDesc << std::endl;
}
switch(config.init_method)
{
case 0:
if(config.verbosity > 0)
{
std::cout << "NOTE: No input data initialization." << std::endl;
}
break;
case 1:
case 2:
ck::utils::FillConstant<ADataType>{ck::type_convert<ADataType>(1.0f)}(a_m_k);
ck::utils::FillConstant<XDataType>{ck::type_convert<XDataType>(0.5f)}(a_m_k_scale);
ck::utils::FillConstant<BDataType>{ck::type_convert<BDataType>(1.0f)}(b_k_n);
ck::utils::FillConstant<XDataType>{ck::type_convert<XDataType>(2.0f)}(b_k_n_scale);
if(config.verbosity > 0)
{
std::cout << "Init A = {1}" << std::endl;
std::cout << "Init A scale = {0.5}" << std::endl;
std::cout << "Init B = {1}" << std::endl;
std::cout << "Init B scale = {2.0}" << std::endl;
std::cout << "Expect C = {K}" << std::endl;
}
break;
default:
if(config.verbosity > 0)
{
std::cout << "NOTE: No input data initialization." << std::endl;
}
}
if(config.verbosity > 0)
std::cout << "Device memory allocation..." << std::endl;
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem a_scale_device_buf(sizeof(XDataType) * a_m_k_scale.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem b_scale_device_buf(sizeof(XDataType) * b_k_n_scale.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
if(config.verbosity > 0)
std::cout << "Upload data to device..." << std::endl;
a_device_buf.ToDevice(a_m_k.mData.data());
a_scale_device_buf.ToDevice(a_m_k_scale.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
b_scale_device_buf.ToDevice(b_k_n_scale.mData.data());
if(config.verbosity > 0)
std::cout << "Done." << std::endl;
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
constexpr ck::index_t NumDTensor = DsDataType::Size();
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument = device_op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, NumDTensor>{},
c_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, NumDTensor>{},
StrideC,
a_scale_device_buf.GetDeviceBuffer(),
b_scale_device_buf.GetDeviceBuffer(),
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error("wrong!\n"
"Provided combination of compilation and runtime parameters is "
"not consistent with the supported device_gemm arguments.");
}
if(config.verbosity > 0)
std::cout << "Computing GEMM on device..." << std::endl;
float ave_time =
invoker.Run(argument, StreamConfig{nullptr, config.time_kernel, config.verbosity, 20, 50});
bool res_verified = true;
if(config.do_verification > 0)
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
if(config.verbosity > 0)
{
std::cout << "Done." << std::endl;
std::cout << "Computing GEMM on host..." << std::endl;
}
Tensor<CDataType> c({M, N});
Tensor<float> a({M, K});
Tensor<float> b({K, N});
for(int m = 0; m < M; m++)
{
for(int k = 0; k < K; k++)
{
a(m, k) = ck::type_convert<float>(a_m_k(m, k)) *
ck::type_convert<float>(a_m_k_scale(m, k / Scale_Block_K));
}
}
for(int n = 0; n < N; n++)
{
for(int k = 0; k < K; k++)
{
b(k, n) = ck::type_convert<float>(b_k_n(k, n)) *
ck::type_convert<float>(b_k_n_scale(k / Scale_Block_K, n));
}
}
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<float,
float,
CShuffleDataType,
CDataType,
PassThrough,
PassThrough,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a, b, c, PassThrough{}, PassThrough{}, PassThrough{});
ref_invoker.Run(ref_argument);
if(config.verbosity > 0)
{
std::cout << "Done." << std::endl;
std::cout << "Comparing results..." << std::endl;
}
if(config.init_method == 1)
{
res_verified =
res_verified && std::abs(static_cast<float>(K) - c_m_n_device_result(0, 0)) <= 0.0f;
std::cout << "Expected vs Computed: " << 1.0f * K << " vs " << c_m_n_device_result(0, 0)
<< ((res_verified) ? " (PASSED!)" : " (FAILED!)") << std::endl;
}
res_verified = res_verified &&
ck::utils::check_err(c_m_n_device_result, c, "Error: Incorrect results!");
if(config.verbosity > 0 && res_verified)
std::cout << "Done." << std::endl;
}
else
{
if(config.verbosity > 0)
std::cout << "Done." << std::endl;
}
if(config.time_kernel)
{
std::size_t flop = std::size_t(2) * M * N * K + M * K + K * N; // GEMM + A scale + B scale
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(CDataType) * M * N +
sizeof(XDataType) * (M * K + K * N) / Scale_Block_K;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s" << std::endl;
}
return res_verified;
}
template <typename ADataType,
typename BDataType,
typename XDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout,
typename CElementWiseOp,
typename AccDataType,
typename CShuffleDataType,
ck::index_t MXVectorSize>
bool run_mx_gemm_example(int argc, char* argv[])
{
ProblemSize problem_size;
ExecutionConfig config;
return parse_cmd_args(argc, argv, problem_size, config) &&
run_mx_gemm<ADataType,
BDataType,
XDataType,
CDataType,
ALayout,
BLayout,
CLayout,
CElementWiseOp,
AccDataType,
CShuffleDataType,
MXVectorSize>(problem_size, config);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "gemm_mx_common.hpp"
using ADataType = ck::f8_t;
using BDataType = ck::f8_t;
#if 1
// XXX: MX-native GEMM kernel will work with e8m0_bexp_t scale type
using XDataType = float;
#else
using XDataType = ck::e8m0_bexp_t;
#endif
using AccDataType = float;
using CShuffleDataType = float;
using CDataType = float;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using CElementOp = PassThrough; // elementwise transformation for C matrix
constexpr ck::index_t mx_vector_size = 128; // scaling block size
int main(int argc, char* argv[])
{
return run_mx_gemm_example<ADataType,
BDataType,
XDataType,
CDataType,
ALayout,
BLayout,
CLayout,
CElementOp,
AccDataType,
CShuffleDataType,
mx_vector_size>(argc, argv)
? 0
: -1;
}
......@@ -23,34 +23,34 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME)
message("adding example ${EXAMPLE_NAME}")
set(result 1)
if(DEFINED DTYPES)
foreach(source IN LISTS FILE_NAME)
set(test 0)
if((source MATCHES "_fp16" OR source MATCHES "_f16") AND NOT "fp16" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_fp32" OR source MATCHES "_f32") AND NOT "fp32" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_fp64" OR source MATCHES "_f64") AND NOT "fp64" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_fp8" OR source MATCHES "_f8") AND NOT "fp8" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_bf8" OR source MATCHES "_bf8") AND NOT "bf8" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_bf16" OR source MATCHES "_b16") AND NOT "bf16" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_int8" OR source MATCHES "_i8") AND NOT "int8" IN_LIST DTYPES)
set(test 1)
endif()
if(test EQUAL 1)
message("removing example source file ${source} ")
list(REMOVE_ITEM FILE_NAME "${source}")
endif()
endforeach()
foreach(source IN LISTS FILE_NAME)
set(test 0)
if((source MATCHES "_fp16" OR source MATCHES "_f16") AND NOT "fp16" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_fp32" OR source MATCHES "_f32") AND NOT "fp32" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_fp64" OR source MATCHES "_f64") AND NOT "fp64" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_fp8" OR source MATCHES "_f8") AND NOT "fp8" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_bf8" OR source MATCHES "_bf8") AND NOT "bf8" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_bf16" OR source MATCHES "_b16") AND NOT "bf16" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_int8" OR source MATCHES "_i8") AND NOT "int8" IN_LIST DTYPES)
set(test 1)
endif()
if(test EQUAL 1)
message("removing example source file ${source} ")
list(REMOVE_ITEM FILE_NAME "${source}")
endif()
endforeach()
endif()
set(EX_TARGETS ${SUPPORTED_GPU_TARGETS})
......@@ -83,6 +83,13 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME)
list(REMOVE_ITEM FILE_NAME "${source}")
endif()
endforeach()
#Do not build any microscaling examples if gfx950 target is not on the list
foreach(source IN LISTS FILE_NAME)
if(NOT EX_TARGETS MATCHES "gfx950" AND source MATCHES "_mx")
message("removing microscaling example ${source} ")
list(REMOVE_ITEM FILE_NAME "${source}")
endif()
endforeach()
#Do not build any FP8 examples if CK_ENABLE_FP8 not set
foreach(source IN LISTS FILE_NAME)
if(NOT DEFINED CK_ENABLE_FP8 AND source MATCHES "_fp8")
......@@ -102,7 +109,9 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME)
if(FILE_NAME MATCHES "_xdl")
list(REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx906:xnack- gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201 gfx10.3-generic gfx11-generic gfx12-generic)
elseif(FILE_NAME MATCHES "_wmma")
list(REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx906:xnack- gfx908:xnack+ gfx908:xnack- gfx90a:xnack+ gfx90a:xnack- gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030)
list(REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx906:xnack- gfx908:xnack+ gfx908:xnack- gfx90a:xnack+ gfx90a:xnack- gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030 gfx950)
elseif(FILE_NAME MATCHES "_mx") #only build mx example for gfx950
list(REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx906:xnack- gfx908:xnack+ gfx908:xnack- gfx90a:xnack+ gfx90a:xnack- gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201 gfx10.3-generic gfx11-generic gfx12-generic)
endif()
set_source_files_properties(${FILE_NAME} PROPERTIES LANGUAGE HIP)
add_executable(${EXAMPLE_NAME} ${FILE_NAME})
......@@ -195,7 +204,7 @@ function(add_example_executable_no_testing EXAMPLE_NAME FILE_NAME)
if(FILE_NAME MATCHES "_xdl")
list(REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx906:xnack- gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201 gfx10.3-generic gfx11-generic gfx12-generic)
elseif(FILE_NAME MATCHES "_wmma")
list(REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx906:xnack- gfx908:xnack+ gfx908:xnack- gfx90a:xnack+ gfx90a:xnack- gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030)
list(REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx906:xnack- gfx908:xnack+ gfx908:xnack- gfx90a:xnack+ gfx90a:xnack- gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030 gfx950)
endif()
set_source_files_properties(${FILE_NAME} PROPERTIES LANGUAGE HIP)
add_executable(${EXAMPLE_NAME} ${FILE_NAME})
......
[Back to the main page](../../README.md)
# Composable Kernel supported operations
## Supported device operations
* [Average pooling]()
* [Batched contraction]()
* [Batched gemm]()
* [Batchnorm]()
* [CGEMM]()
* [Contraction]()
* [Convolution]()
* [Image to Column and Column to Image]()
* [Elementwise]()
* [GEMM]()
* [Max pooling]()
* [Reduce]()
* [Normalization]()
* [Permute]()
* [Put]()
* [Softmax]()
<!-- * [Average pooling](../../docs/markdown/tensor_operation/average_pooling.md) -->
<!-- * [Batched contraction](../../docs/markdown/tensor_operation/batched_contraction.md) -->
<!-- * [Batched gemm](../../docs/markdown/tensor_operation/batched_gemm.md) -->
<!-- * [Batchnorm](../../docs/markdown/tensor_operation/batchnorm.md) -->
<!-- * [CGEMM](../../docs/markdown/tensor_operation/cgemm.md) -->
<!-- * [Contraction](../../docs/markdown/tensor_operation/contraction.md) -->
<!-- * [Convolution](../../docs/markdown/tensor_operation/convolution.md) -->
<!-- * [Elementwise](../../docs/markdown/tensor_operation/elementwise.md) -->
* [GEMM](../../client_example/01_gemm/README.md)
* [Grouped Convolution Forward](../../client_example/07_grouped_convnd_fwd/README.md)
* [Grouped Convolution Backward Data](../../client_example/10_grouped_convnd_bwd_data/README.md)
* [Grouped Convolution Backward Weight](../../client_example/11_grouped_conv_bwd_weight/README.md)
<!-- * [Grouped GEMM](../../docs/markdown/tensor_operation/grouped_gemm.md) -->
<!-- * [Image to Column and Column to Image](../../docs/markdown/tensor_operation/img2col.md) -->
<!-- * [Max pooling](../../docs/markdown/tensor_operation/max_pooling.md) -->
<!-- * [Reduce](../../docs/markdown/tensor_operation/reduce.md) -->
<!-- * [Normalization](../../docs/markdown/tensor_operation/normalization.md) -->
<!-- * [Permute](../../docs/markdown/tensor_operation/permute.md) -->
<!-- * [Put](../../docs/markdown/tensor_operation/put.md) -->
<!-- * [Softmax](../../docs/markdown/tensor_operation/softmax.md) -->
......@@ -55,10 +55,10 @@ CK_DECLARE_ENV_VAR_BOOL(CK_LOGGING)
// define general macros for various architectures
#if defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || \
defined(__gfx942__)
defined(__gfx942__) || defined(__gfx950__)
#define __gfx9__
#endif
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) || defined(__gfx950__)
#define __gfx94__
#endif
#if defined(__gfx1010__) || defined(__gfx1011__) || defined(__gfx1012__)
......@@ -163,6 +163,16 @@ CK_DECLARE_ENV_VAR_BOOL(CK_LOGGING)
// set rounding to nearest even as default for f8 conversions
#define CK_USE_SR_F8_CONVERSION 0
// set rounding to nearest even as default for f6 conversions
#define CK_USE_SR_F6_CONVERSION 0
// set rounding to nearest even as default for f4 conversions
#define CK_USE_SR_F4_CONVERSION 0
// shuffle pk_i4 values during conversion to optimize number of binary
// operations
#define CK_USE_PK4_LAYOUT_SHUFFLE 1
// block synchronization only s_wait lgkmcnt(0), not vmcnt(0)
#define CK_EXPERIMENTAL_BLOCK_SYNC_LDS_WITHOUT_SYNC_VMEM 1
......
......@@ -131,6 +131,10 @@
#cmakedefine CK_USE_FP8_ON_UNSUPPORTED_ARCH @CK_USE_FP8_ON_UNSUPPORTED_ARCH@
#endif
#ifndef CK_USE_NATIVE_MX_SUPPORT
#cmakedefine CK_USE_NATIVE_MX_SUPPORT @CK_USE_NATIVE_MX_SUPPORT@
#endif
// clang-format on
#endif // CK_CONFIG_H_IN
......@@ -55,20 +55,21 @@ inline bool is_xdl_supported()
{
return ck::get_device_name() == "gfx908" || ck::get_device_name() == "gfx90a" ||
ck::get_device_name() == "gfx940" || ck::get_device_name() == "gfx941" ||
ck::get_device_name() == "gfx942";
ck::get_device_name() == "gfx942" || ck::get_device_name() == "gfx950";
}
inline bool is_lds_direct_load_supported()
{
// Check if direct loads from global memory to LDS are supported.
return ck::get_device_name() == "gfx90a" || ck::get_device_name() == "gfx940" ||
ck::get_device_name() == "gfx941" || ck::get_device_name() == "gfx942";
ck::get_device_name() == "gfx941" || ck::get_device_name() == "gfx942" ||
ck::get_device_name() == "gfx950";
}
inline bool is_bf16_atomic_supported()
{
return ck::get_device_name() == "gfx940" || ck::get_device_name() == "gfx941" ||
ck::get_device_name() == "gfx942";
ck::get_device_name() == "gfx942" || ck::get_device_name() == "gfx950";
}
inline bool is_gfx101_supported()
......
......@@ -26,6 +26,7 @@ namespace utils {
template <typename ComputeDataType, typename OutDataType, typename AccDataType = ComputeDataType>
double get_relative_threshold(const int number_of_accumulations = 1)
{
using F4 = ck::f4_t;
using F8 = ck::f8_t;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
......@@ -33,10 +34,10 @@ double get_relative_threshold(const int number_of_accumulations = 1)
using I8 = int8_t;
using I32 = int32_t;
static_assert(is_same_v<ComputeDataType, F8> || is_same_v<ComputeDataType, F16> ||
is_same_v<ComputeDataType, BF16> || is_same_v<ComputeDataType, F32> ||
is_same_v<ComputeDataType, I8> || is_same_v<ComputeDataType, I32> ||
is_same_v<ComputeDataType, int>,
static_assert(is_same_v<ComputeDataType, F4> || is_same_v<ComputeDataType, F8> ||
is_same_v<ComputeDataType, F16> || is_same_v<ComputeDataType, BF16> ||
is_same_v<ComputeDataType, F32> || is_same_v<ComputeDataType, I8> ||
is_same_v<ComputeDataType, I32> || is_same_v<ComputeDataType, int>,
"Warning: Unhandled ComputeDataType for setting up the relative threshold!");
double compute_error = 0;
if constexpr(is_same_v<ComputeDataType, I8> || is_same_v<ComputeDataType, I32> ||
......@@ -49,10 +50,10 @@ double get_relative_threshold(const int number_of_accumulations = 1)
compute_error = std::pow(2, -NumericUtils<ComputeDataType>::mant) * 0.5;
}
static_assert(is_same_v<OutDataType, F8> || is_same_v<OutDataType, F16> ||
is_same_v<OutDataType, BF16> || is_same_v<OutDataType, F32> ||
is_same_v<OutDataType, I8> || is_same_v<OutDataType, I32> ||
is_same_v<OutDataType, int>,
static_assert(is_same_v<OutDataType, F4> || is_same_v<OutDataType, F8> ||
is_same_v<OutDataType, F16> || is_same_v<OutDataType, BF16> ||
is_same_v<OutDataType, F32> || is_same_v<OutDataType, I8> ||
is_same_v<OutDataType, I32> || is_same_v<OutDataType, int>,
"Warning: Unhandled OutDataType for setting up the relative threshold!");
double output_error = 0;
if constexpr(is_same_v<OutDataType, I8> || is_same_v<OutDataType, I32> ||
......@@ -66,10 +67,10 @@ double get_relative_threshold(const int number_of_accumulations = 1)
}
double midway_error = std::max(compute_error, output_error);
static_assert(is_same_v<AccDataType, F8> || is_same_v<AccDataType, F16> ||
is_same_v<AccDataType, BF16> || is_same_v<AccDataType, F32> ||
is_same_v<AccDataType, I8> || is_same_v<AccDataType, I32> ||
is_same_v<AccDataType, int>,
static_assert(is_same_v<AccDataType, F4> || is_same_v<AccDataType, F8> ||
is_same_v<AccDataType, F16> || is_same_v<AccDataType, BF16> ||
is_same_v<AccDataType, F32> || is_same_v<AccDataType, I8> ||
is_same_v<AccDataType, I32> || is_same_v<AccDataType, int>,
"Warning: Unhandled AccDataType for setting up the relative threshold!");
double acc_error = 0;
if constexpr(is_same_v<AccDataType, I8> || is_same_v<AccDataType, I32> ||
......@@ -87,6 +88,7 @@ double get_relative_threshold(const int number_of_accumulations = 1)
template <typename ComputeDataType, typename OutDataType, typename AccDataType = ComputeDataType>
double get_absolute_threshold(const double max_possible_num, const int number_of_accumulations = 1)
{
using F4 = ck::f4_t;
using F8 = ck::f8_t;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
......@@ -94,10 +96,10 @@ double get_absolute_threshold(const double max_possible_num, const int number_of
using I8 = int8_t;
using I32 = int32_t;
static_assert(is_same_v<ComputeDataType, F8> || is_same_v<ComputeDataType, F16> ||
is_same_v<ComputeDataType, BF16> || is_same_v<ComputeDataType, F32> ||
is_same_v<ComputeDataType, I8> || is_same_v<ComputeDataType, I32> ||
is_same_v<ComputeDataType, int>,
static_assert(is_same_v<ComputeDataType, F4> || is_same_v<ComputeDataType, F8> ||
is_same_v<ComputeDataType, F16> || is_same_v<ComputeDataType, BF16> ||
is_same_v<ComputeDataType, F32> || is_same_v<ComputeDataType, I8> ||
is_same_v<ComputeDataType, I32> || is_same_v<ComputeDataType, int>,
"Warning: Unhandled ComputeDataType for setting up the absolute threshold!");
auto expo = std::log2(std::abs(max_possible_num));
double compute_error = 0;
......@@ -111,10 +113,10 @@ double get_absolute_threshold(const double max_possible_num, const int number_of
compute_error = std::pow(2, expo - NumericUtils<ComputeDataType>::mant) * 0.5;
}
static_assert(is_same_v<OutDataType, F8> || is_same_v<OutDataType, F16> ||
is_same_v<OutDataType, BF16> || is_same_v<OutDataType, F32> ||
is_same_v<OutDataType, I8> || is_same_v<OutDataType, I32> ||
is_same_v<OutDataType, int>,
static_assert(is_same_v<OutDataType, F4> || is_same_v<OutDataType, F8> ||
is_same_v<OutDataType, F16> || is_same_v<OutDataType, BF16> ||
is_same_v<OutDataType, F32> || is_same_v<OutDataType, I8> ||
is_same_v<OutDataType, I32> || is_same_v<OutDataType, int>,
"Warning: Unhandled OutDataType for setting up the absolute threshold!");
double output_error = 0;
if constexpr(is_same_v<OutDataType, I8> || is_same_v<OutDataType, I32> ||
......@@ -128,10 +130,10 @@ double get_absolute_threshold(const double max_possible_num, const int number_of
}
double midway_error = std::max(compute_error, output_error);
static_assert(is_same_v<AccDataType, F8> || is_same_v<AccDataType, F16> ||
is_same_v<AccDataType, BF16> || is_same_v<AccDataType, F32> ||
is_same_v<AccDataType, I8> || is_same_v<AccDataType, I32> ||
is_same_v<AccDataType, int>,
static_assert(is_same_v<AccDataType, F4> || is_same_v<AccDataType, F8> ||
is_same_v<AccDataType, F16> || is_same_v<AccDataType, BF16> ||
is_same_v<AccDataType, F32> || is_same_v<AccDataType, I8> ||
is_same_v<AccDataType, I32> || is_same_v<AccDataType, int>,
"Warning: Unhandled AccDataType for setting up the absolute threshold!");
double acc_error = 0;
if constexpr(is_same_v<AccDataType, I8> || is_same_v<AccDataType, I32> ||
......@@ -450,5 +452,54 @@ check_err(const Range& out,
return res;
}
template <typename Range, typename RefRange>
std::enable_if_t<(std::is_same_v<ranges::range_value_t<Range>, ranges::range_value_t<RefRange>> &&
std::is_same_v<ranges::range_value_t<Range>, f4_t>),
bool>
check_err(const Range& out,
const RefRange& ref,
const std::string& msg = "Error: Incorrect results!",
double rtol = 0.5,
double atol = 0.5)
{
if(out.size() != ref.size())
{
std::cerr << msg << " out.size() != ref.size(), :" << out.size() << " != " << ref.size()
<< std::endl;
return false;
}
bool res{true};
int err_count = 0;
double err = 0;
double max_err = std::numeric_limits<float>::min();
for(std::size_t i = 0; i < ref.size(); ++i)
{
const double o = type_convert<float>(*std::next(std::begin(out), i));
const double r = type_convert<float>(*std::next(std::begin(ref), i));
err = std::abs(o - r);
if(err > atol + rtol * std::abs(r) || !std::isfinite(o) || !std::isfinite(r))
{
max_err = err > max_err ? err : max_err;
err_count++;
if(err_count < 5)
{
std::cerr << msg << std::setw(12) << std::setprecision(7) << " out[" << i
<< "] != ref[" << i << "]: " << o << " != " << r << std::endl;
}
res = false;
}
}
if(!res)
{
std::cerr << std::setw(12) << std::setprecision(7) << "max err: " << max_err
<< " number of errors: " << err_count << std::endl;
}
return res;
}
} // namespace utils
} // namespace ck
......@@ -69,6 +69,18 @@ struct GeneratorTensor_1<ck::f8_t>
};
#endif
template <>
struct GeneratorTensor_1<ck::f4_t>
{
float value = 1.0;
template <typename... Is>
ck::f4_t operator()(Is...)
{
return ck::type_convert<ck::f4_t>(value);
}
};
template <>
struct GeneratorTensor_1<int8_t>
{
......@@ -183,6 +195,20 @@ struct GeneratorTensor_2<ck::bf8_t>
};
#endif
template <>
struct GeneratorTensor_2<ck::f4_t>
{
int min_value = 0;
int max_value = 1;
template <typename... Is>
ck::f4_t operator()(Is...)
{
float tmp = (std::rand() % (max_value - min_value)) + min_value;
return ck::type_convert<ck::f4_t>(tmp);
}
};
template <typename T>
struct GeneratorTensor_3
{
......@@ -253,6 +279,23 @@ struct GeneratorTensor_3<ck::bf8_t>
};
#endif
template <>
struct GeneratorTensor_3<ck::f4_t>
{
float min_value = 0;
float max_value = 1;
template <typename... Is>
ck::f4_t operator()(Is...)
{
float tmp = float(std::rand()) / float(RAND_MAX);
float fp32_tmp = min_value + tmp * (max_value - min_value);
return ck::type_convert<ck::f4_t>(fp32_tmp);
}
};
template <typename T>
struct GeneratorTensor_4
{
......
......@@ -94,8 +94,7 @@ __device__ void device_grouped_conv_fwd_multiple_abd_xdl_cshuffle(
const Block2ETileMap block_2_ctile_map,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
// offset base pointer for each work-group
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
......
......@@ -56,8 +56,7 @@ __global__ void
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch,
const Block2ETileMap block_2_etile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
const index_t num_blocks_per_batch =
......
......@@ -74,8 +74,7 @@ __global__ void
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch,
const Block2ETileMap block_2_etile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
......
......@@ -60,8 +60,7 @@ __global__ void
const index_t batch_count,
const ComputeBasePtrOfStridedBatch compute_base_ptr_of_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
......@@ -108,7 +107,7 @@ __global__ void
ignore = block_2_ctile_map;
ignore = batch_count;
ignore = compute_base_ptr_of_batch;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
#endif // end of if (defined(__gfx9__))
}
// Computes C = A * B0 * B1
......
......@@ -83,8 +83,7 @@ __global__ void
const Block2ETileMap block_2_etile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
......
......@@ -68,8 +68,7 @@ __global__ void
const index_t batch_count,
const ComputeBasePtrOfStridedBatch compute_base_ptr_of_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
......
......@@ -59,8 +59,7 @@ __global__ void
const ComputeBasePrtOfBatch compute_base_ptr_of_batch_,
const Block2CTileMap block_2_ctile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment