Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
a0432459
Commit
a0432459
authored
Feb 15, 2025
by
mtgu0705
Browse files
Added moe_pk_i4_gemm2, function pass.
parent
a09f038c
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
504 additions
and
17 deletions
+504
-17
example/65_gemm_multiply_multiply/CMakeLists.txt
example/65_gemm_multiply_multiply/CMakeLists.txt
+1
-0
example/65_gemm_multiply_multiply/moe_pk_i4_gemm1.cpp
example/65_gemm_multiply_multiply/moe_pk_i4_gemm1.cpp
+3
-1
example/65_gemm_multiply_multiply/moe_pk_i4_gemm2.cpp
example/65_gemm_multiply_multiply/moe_pk_i4_gemm2.cpp
+435
-0
include/ck/tensor_operation/gpu/grid/gridwise_moe_gemm_scatter.hpp
...k/tensor_operation/gpu/grid/gridwise_moe_gemm_scatter.hpp
+26
-7
library/include/ck/library/reference_tensor_operation/cpu/reference_moe_gemm.hpp
...ary/reference_tensor_operation/cpu/reference_moe_gemm.hpp
+1
-1
library/include/ck/library/reference_tensor_operation/cpu/reference_moe_gemm2.hpp
...ry/reference_tensor_operation/cpu/reference_moe_gemm2.hpp
+38
-8
No files found.
example/65_gemm_multiply_multiply/CMakeLists.txt
View file @
a0432459
...
@@ -6,3 +6,4 @@ add_example_executable(example_gemm_multiply_multiply_xdl_int8 gemm_multiply_mul
...
@@ -6,3 +6,4 @@ add_example_executable(example_gemm_multiply_multiply_xdl_int8 gemm_multiply_mul
add_example_executable
(
example_moe_gemm1 moe_gemm1.cpp
)
add_example_executable
(
example_moe_gemm1 moe_gemm1.cpp
)
add_example_executable
(
example_moe_gemm2 moe_gemm2.cpp
)
add_example_executable
(
example_moe_gemm2 moe_gemm2.cpp
)
add_example_executable
(
example_moe_pk_i4_gemm1 moe_pk_i4_gemm1.cpp
)
add_example_executable
(
example_moe_pk_i4_gemm1 moe_pk_i4_gemm1.cpp
)
add_example_executable
(
example_moe_pk_i4_gemm2 moe_pk_i4_gemm2.cpp
)
example/65_gemm_multiply_multiply/moe_pk_i4_gemm1.cpp
View file @
a0432459
...
@@ -92,7 +92,7 @@ struct MulABScaleSilu
...
@@ -92,7 +92,7 @@ struct MulABScaleSilu
using
CDEElementOp
=
MulABScale
;
using
CDEElementOp
=
MulABScale
;
#if 1
#if 1
void
preShuffleBuffer
(
const
B0DataType
*
src
,
B0DataType
*
dst
,
int
N
,
int
K
,
int
NXdl
)
void
preShuffleBuffer
(
const
I4
*
src
,
I4
*
dst
,
int
N
,
int
K
,
int
NXdl
)
{
{
int
KPack
=
32
;
int
KPack
=
32
;
int
NLane
=
NXdl
;
int
NLane
=
NXdl
;
...
@@ -124,6 +124,7 @@ void preShuffleBuffer(const B0DataType* src, B0DataType* dst, int N, int K, int
...
@@ -124,6 +124,7 @@ void preShuffleBuffer(const B0DataType* src, B0DataType* dst, int N, int K, int
}
}
#endif
#endif
#if 0
float i4_to_f32_gfx9(uint8_t i4)
float i4_to_f32_gfx9(uint8_t i4)
{
{
static std::unordered_map<uint8_t, float> u = {{0b1000, -0.5000f},
static std::unordered_map<uint8_t, float> u = {{0b1000, -0.5000f},
...
@@ -145,6 +146,7 @@ float i4_to_f32_gfx9(uint8_t i4)
...
@@ -145,6 +146,7 @@ float i4_to_f32_gfx9(uint8_t i4)
return u[i4];
return u[i4];
}
}
#endif
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
...
...
example/65_gemm_multiply_multiply/moe_pk_i4_gemm2.cpp
0 → 100644
View file @
a0432459
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_moe_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_moe_gemm2.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/utility/blkgemmpipe_scheduler.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
I4
=
ck
::
pk_i4_t
;
using
F16
=
ck
::
half_t
;
using
F8
=
ck
::
f8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
A0DataType
=
F8
;
using
B0DataType
=
I4
;
using
EDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
F32
;
using
D1DataType
=
F32
;
using
D2DataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
,
D1DataType
,
D2DataType
>
;
using
A0Layout
=
Row
;
using
B0Layout
=
Col
;
using
ELayout
=
Row
;
using
D0Layout
=
Row
;
using
D1Layout
=
Col
;
using
D2Layout
=
ELayout
;
// using DsLayoutGate = ck::Tuple<D0Layout, D1Layout>;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
,
D1Layout
,
D2Layout
>
;
// d0: ascale, d1: bscale, d2:expert weight
struct
MulABScaleExpertWeight
{
template
<
typename
E
,
typename
C
,
typename
D0
,
typename
D1
,
typename
D2
>
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D0
&
d0
,
const
D1
&
d1
,
const
D2
&
d2
)
const
;
//real kernel use
template
<
>
__host__
__device__
constexpr
void
operator
()
<
EDataType
,
float
,
float
,
float
,
float
>
(
EDataType
&
e
,
const
float
&
c
,
const
float
&
d0
,
const
float
&
d1
,
const
float
&
d2
)
const
{
e
=
ck
::
type_convert
<
EDataType
>
(
c
*
d0
*
d1
*
d2
);
}
// for reference
template
<
>
__host__
__device__
constexpr
void
operator
()
<
float
,
float
,
float
,
float
,
float
>
(
float
&
e
,
const
float
&
c
,
const
float
&
d0
,
const
float
&
d1
,
const
float
&
d2
)
const
{
e
=
ck
::
type_convert
<
EDataType
>
(
c
*
d0
*
d1
*
d2
);
}
};
using
CDEElementOp
=
MulABScaleExpertWeight
;
void
preShuffleBuffer
(
const
I4
*
src
,
I4
*
dst
,
int
N
,
int
K
,
int
NXdl
)
{
int
KPack
=
32
;
int
NLane
=
NXdl
;
int
KLane
=
64
/
NLane
;
int
K0
=
K
/
(
KLane
*
KPack
);
// K -> K0 KLane KPack
// N -> N0 NLane
// N, K -> N0 K0 KLane NLane KPack
int
tempk
;
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
int
n0
=
n
/
NLane
;
int
n1
=
n
%
NLane
;
int
k0
=
k
/
(
KLane
*
KPack
);
tempk
=
k
%
(
KLane
*
KPack
);
int
k1
=
tempk
/
KPack
;
int
k2
=
tempk
%
KPack
;
int
outputIndex
=
n0
*
KPack
*
NLane
*
KLane
*
K0
+
k0
*
KPack
*
NLane
*
KLane
+
k1
*
KPack
*
NLane
+
n1
*
KPack
+
k2
;
dst
[
outputIndex
/
2
]
=
src
[(
n
*
K
+
k
)
/
2
];
}
}
}
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
MulABScaleExpertWeight
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
ck
::
index_t
MPerBlock
=
64
;
static
constexpr
ck
::
index_t
BLOCKSIZE
=
256
;
static
constexpr
ck
::
index_t
NPerBlock
=
128
;
static
constexpr
ck
::
index_t
MNPerXDL
=
32
;
static
constexpr
ck
::
index_t
KPerBlock
=
256
/
sizeof
(
A0DataType
);
static
constexpr
ck
::
index_t
MXDLPerWave
=
MPerBlock
/
32
;
//todo fix this constraint
static
constexpr
ck
::
index_t
CShuffleMXDLPerWave
=
MPerBlock
/
32
;
static
constexpr
ck
::
index_t
CShuffleNLane
=
NPerBlock
/
2
;
static
constexpr
ck
::
index_t
CShuffleMLane
=
BLOCKSIZE
/
CShuffleNLane
;
static
constexpr
ck
::
index_t
AK1
=
16
/
sizeof
(
A0DataType
);
static
constexpr
ck
::
index_t
BK1
=
16
/
sizeof
(
B0DataType
);
static
constexpr
ck
::
index_t
EVec
=
2
;
static
constexpr
ck
::
index_t
D0Vec
=
1
;
static
constexpr
ck
::
index_t
D1Vec
=
1
;
static
constexpr
ck
::
index_t
D2Vec
=
1
;
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceMoeGemm
// clang-format off
<
Row
,
Col
,
DsLayout
,
ELayout
,
A0DataType
,
B0DataType
,
DsDataType
,
EDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
BLOCKSIZE
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MNPerXDL
,
MNPerXDL
,
MXDLPerWave
,
1
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
AK1
,
AK1
,
0
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
AK1
,
AK1
,
0
,
CShuffleMXDLPerWave
,
1
,
S
<
1
,
CShuffleMLane
,
1
,
CShuffleNLane
>
,
S
<
EVec
,
D0Vec
,
D1Vec
,
D2Vec
>
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v1
,
false
,
A0DataType
>
;
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
// tokens = 1
// topk = 1
// experts = 8
// per expert:
// GEMM shape
ck
::
index_t
N
=
6144
;
ck
::
index_t
K
=
8192
;
ck
::
index_t
experts
=
8
;
ck
::
index_t
sorted_tile_num
=
8
;
ck
::
index_t
sorted_tile_size
=
MPerBlock
;
ck
::
index_t
SORTED_SIZE
=
sorted_tile_num
*
sorted_tile_size
;
ck
::
index_t
tokens
=
64
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
6
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
N
=
std
::
stoi
(
argv
[
4
]);
K
=
std
::
stoi
(
argv
[
5
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 5: N, K
\n
"
);
exit
(
0
);
}
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
K
;
ck
::
index_t
StrideE
=
N
;
constexpr
ck
::
index_t
NumDTensor
=
DsDataType
::
Size
();
constexpr
auto
StrideDs
=
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
0
,
0
,
0
};
ck
::
index_t
KBatch
=
1
;
// const ck::index_t experts = 8;
Tensor
<
ck
::
index_t
>
expert_ids
(
HostTensorDescriptor
({
experts
},
{
1
}));
Tensor
<
ck
::
index_t
>
sorted_token_ids
(
HostTensorDescriptor
({
SORTED_SIZE
},
{
1
}));
for
(
int
i
=
0
;
i
<
sorted_tile_num
;
i
++
)
{
expert_ids
.
mData
[
i
]
=
i
;
}
int
token_per_tile
=
tokens
/
sorted_tile_num
;
int
tokenid
=
0
;
// sorted_token_ids.mData[0] = 0;
for
(
int
i
=
0
;
i
<
SORTED_SIZE
;
i
++
)
{
int
tile_off
=
i
%
sorted_tile_size
;
if
(
tile_off
<
token_per_tile
)
sorted_token_ids
.
mData
[
i
]
=
tokenid
++
;
else
sorted_token_ids
.
mData
[
i
]
=
tokens
;
}
Tensor
<
A0DataType
>
a0_m_k
(
HostTensorDescriptor
({
SORTED_SIZE
,
K
},
{
K
,
1
}));
Tensor
<
B0DataType
>
b0_e_n_k
(
HostTensorDescriptor
({
experts
,
K
,
N
},
{
N
*
K
,
1
,
K
}));
Tensor
<
B0DataType
>
b0_preshuffled
(
HostTensorDescriptor
({
experts
,
K
,
N
},
{
N
*
K
,
1
,
K
}));
Tensor
<
D0DataType
>
d0_m_n
(
HostTensorDescriptor
({
SORTED_SIZE
,
N
},
{
StrideDs
[
0
],
0
}));
Tensor
<
D1DataType
>
d1_e_n
(
HostTensorDescriptor
({
experts
,
N
},
{
1
,
StrideDs
[
1
]}));
Tensor
<
D2DataType
>
d2_e_n
(
HostTensorDescriptor
({
SORTED_SIZE
,
N
},
{
1
,
0
}));
Tensor
<
EDataType
>
e_t_n_host_result
(
HostTensorDescriptor
({
tokens
,
N
},
{
N
,
1
}));
Tensor
<
EDataType
>
e_t_n_device_result
(
HostTensorDescriptor
({
tokens
,
N
},
{
N
,
1
}));
e_t_n_device_result
.
SetZero
();
std
::
cout
<<
"a0_m_k: "
<<
a0_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_e_n_k: "
<<
b0_e_n_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d2_e_n: "
<<
d2_e_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_e_n: "
<<
d1_e_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_m_n: "
<<
d0_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_t_n: "
<<
e_t_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
A0DataType
>
{
-
2
,
2
});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
0
,
2
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
2
,
2
});
d1_e_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D1DataType
>
{
-
2
,
2
});
d2_e_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D2DataType
>
{
-
2
,
2
});
break
;
case
2
:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
A0DataType
>
{});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D0DataType
>
{});
d1_e_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D1DataType
>
{});
d2_e_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D2DataType
>
{});
break
;
default:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
-
0.5
,
0.5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
0.0
,
1.0
});
d1_e_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
0.0
,
1.0
});
d2_e_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D2DataType
>
{
0.0
,
1.0
});
}
DeviceMem
sorted_token_ids_dev
(
sizeof
(
ck
::
index_t
)
*
sorted_token_ids
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
expert_ids_dev
(
sizeof
(
ck
::
index_t
)
*
expert_ids
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
a0_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
b0_e_n_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
d0_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_e_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d2_device_buf
(
sizeof
(
D2DataType
)
*
d2_e_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_t_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a0_m_k
.
savetxt
(
"a.txt"
);
expert_ids
.
savetxt
(
"expert_ids.txt"
,
"int"
);
sorted_token_ids
.
savetxt
(
"sorted_token_ids.txt"
,
"int"
);
d0_m_n
.
savetxt
(
"d0_m_n.txt"
,
"int"
);
d1_e_n
.
savetxt
(
"d1_e_n.txt"
,
"int"
);
d2_e_n
.
savetxt
(
"d2_e_n.txt"
,
"int"
);
sorted_token_ids_dev
.
ToDevice
(
sorted_token_ids
.
mData
.
data
());
expert_ids_dev
.
ToDevice
(
expert_ids
.
mData
.
data
());
a0_device_buf
.
ToDevice
(
a0_m_k
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_m_n
.
mData
.
data
());
d1_device_buf
.
ToDevice
(
d1_e_n
.
mData
.
data
());
d2_device_buf
.
ToDevice
(
d2_e_n
.
mData
.
data
());
e_device_buf
.
ToDevice
(
e_t_n_device_result
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
preShuffleBuffer
(
b0_e_n_k
.
mData
.
data
(),
b0_preshuffled
.
mData
.
data
(),
N
*
experts
,
K
,
device_op
.
GetPreShuffleParameters
());
// vector pk_i4x4 permute
for
(
int
e
=
0
;
e
<
experts
;
e
++
)
{
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
for
(
int
j
=
0
;
j
<
K
;
j
+=
8
)
{
int
input
[
8
];
for
(
int
k
=
0
;
k
<
4
;
k
++
)
{
int
i4x2
=
b0_preshuffled
(
e
,
j
+
k
*
2
,
i
).
data
;
input
[
k
*
2
+
0
]
=
(
i4x2
>>
4
)
&
0xf
;
input
[
k
*
2
+
1
]
=
(
i4x2
>>
0
)
&
0xf
;
}
// permute 01234567->20643175
{
int
hi
=
input
[
2
];
int
lo
=
input
[
0
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b0_preshuffled
(
e
,
j
+
0
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
6
];
int
lo
=
input
[
4
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b0_preshuffled
(
e
,
j
+
2
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
3
];
int
lo
=
input
[
1
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b0_preshuffled
(
e
,
j
+
4
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
7
];
int
lo
=
input
[
5
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b0_preshuffled
(
e
,
j
+
6
,
i
)
=
i4x2
;
}
}
}
}
b0_device_buf
.
ToDevice
(
b0_preshuffled
.
mData
.
data
());
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
sorted_token_ids_dev
.
GetDeviceBuffer
(),
expert_ids_dev
.
GetDeviceBuffer
(),
a0_device_buf
.
GetDeviceBuffer
(),
b0_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
NumDTensor
>
{
d0_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
(),
d2_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
tokens
,
SORTED_SIZE
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideE
,
KBatch
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
if
(
time_kernel
)
{
// not result correct here because output buf not setzero
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
SORTED_SIZE
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
SORTED_SIZE
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
*
experts
+
sizeof
(
EDataType
)
*
SORTED_SIZE
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
device_op
.
GetTypeString
()
<<
std
::
endl
;
}
if
(
do_verification
)
{
//gemm2 use atomic, so need to reinit outputs
e_device_buf
.
ToDevice
(
e_t_n_device_result
.
mData
.
data
());
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
,
0
,
0
,
1
});
Tensor
<
CShuffleDataType
>
c_t_n
({
tokens
,
N
});
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceMoeGemm2
<
A0DataType
,
B0DataType
,
D0DataType
,
D1DataType
,
D2DataType
,
CShuffleDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
CDEElementOp
>
;
auto
ref_moe_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_moe_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_moe_gemm
.
MakeArgument
(
sorted_token_ids
,
expert_ids
,
sorted_tile_size
,
a0_m_k
,
b0_e_n_k
,
d0_m_n
,
d1_e_n
,
d2_e_n
,
c_t_n
,
PassThrough
{},
PassThrough
{},
cde_element_op
);
ref_invoker
.
Run
(
ref_argument
);
for
(
int
t
=
0
;
t
<
tokens
;
++
t
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
e_t_n_host_result
(
t
,
n
)
=
ck
::
type_convert
<
EDataType
>
(
c_t_n
(
t
,
n
));
}
}
e_device_buf
.
FromDevice
(
e_t_n_device_result
.
mData
.
data
());
e_t_n_device_result
.
savetxt
(
"out.txt"
);
e_t_n_host_result
.
savetxt
(
"ref.txt"
);
return
ck
::
utils
::
check_err
(
e_t_n_device_result
,
e_t_n_host_result
,
"Error: Incorrect results!"
,
1e-3
,
5e-2
)
?
0
:
1
;
}
return
0
;
}
include/ck/tensor_operation/gpu/grid/gridwise_moe_gemm_scatter.hpp
View file @
a0432459
...
@@ -194,6 +194,20 @@ struct GridwiseMoeGemmScatter
...
@@ -194,6 +194,20 @@ struct GridwiseMoeGemmScatter
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
static
constexpr
index_t
APackedSize
=
[]()
{
if
constexpr
(
is_same_v
<
remove_cvref_t
<
ADataType
>
,
pk_i4_t
>
)
return
2
;
else
return
1
;
}();
static
constexpr
index_t
BPackedSize
=
[]()
{
if
constexpr
(
is_same_v
<
remove_cvref_t
<
BDataType
>
,
pk_i4_t
>
)
return
2
;
else
return
1
;
}();
__host__
static
auto
CalculateGridSize
(
index_t
M
,
index_t
N
)
__host__
static
auto
CalculateGridSize
(
index_t
M
,
index_t
N
)
{
{
return
std
::
make_tuple
(
math
::
integer_divide_ceil
(
N
,
NPerBlock
),
return
std
::
make_tuple
(
math
::
integer_divide_ceil
(
N
,
NPerBlock
),
...
@@ -381,6 +395,10 @@ struct GridwiseMoeGemmScatter
...
@@ -381,6 +395,10 @@ struct GridwiseMoeGemmScatter
using
GemmSpecialization
=
tensor_operation
::
device
::
GemmSpecialization
;
using
GemmSpecialization
=
tensor_operation
::
device
::
GemmSpecialization
;
static_assert
(
!
(
is_same_v
<
remove_cvref_t
<
ADataType
>
,
pk_i4_t
>
&&
GemmSpec
!=
GemmSpecialization
::
Default
),
"pk_i4_t does not support padding"
);
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NKPadding
||
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
{
...
@@ -670,7 +688,7 @@ struct GridwiseMoeGemmScatter
...
@@ -670,7 +688,7 @@ struct GridwiseMoeGemmScatter
{
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
{
a_k_split_offset
=
k_id
*
karg
.
KRead
;
a_k_split_offset
=
k_id
*
karg
.
KRead
/
APackedSize
;
}
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
{
...
@@ -684,7 +702,7 @@ struct GridwiseMoeGemmScatter
...
@@ -684,7 +702,7 @@ struct GridwiseMoeGemmScatter
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>
)
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>
)
{
{
// KPack * NLane * KLane * K0 * N0
// KPack * NLane * KLane * K0 * N0
b_k_split_offset
=
k_id
*
karg
.
KRead
*
NLane
;
b_k_split_offset
=
k_id
*
karg
.
KRead
*
NLane
/
BPackedSize
;
}
}
if
(
k_id
<
karg
.
KBatch
-
1
)
if
(
k_id
<
karg
.
KBatch
-
1
)
...
@@ -714,7 +732,7 @@ struct GridwiseMoeGemmScatter
...
@@ -714,7 +732,7 @@ struct GridwiseMoeGemmScatter
// in some cases.
// in some cases.
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
{
constexpr
auto
MLdsLayer
=
32
*
4
/
KPerBlock
/
sizeof
(
LDSTypeA
)
<
1
constexpr
auto
MLdsLayer
=
32
*
4
/
KPerBlock
/
sizeof
(
LDSTypeA
)
/
APackedSize
<
1
?
1
?
1
:
32
*
4
/
KPerBlock
/
sizeof
(
LDSTypeA
);
:
32
*
4
/
KPerBlock
/
sizeof
(
LDSTypeA
);
constexpr
auto
a_lds_block_desc
=
make_naive_tensor_descriptor
(
constexpr
auto
a_lds_block_desc
=
make_naive_tensor_descriptor
(
...
@@ -864,8 +882,8 @@ struct GridwiseMoeGemmScatter
...
@@ -864,8 +882,8 @@ struct GridwiseMoeGemmScatter
BlkGemmPipelineVer
,
BlkGemmPipelineVer
,
BlkGemmPipeSched
,
BlkGemmPipeSched
,
BlockSize
,
BlockSize
,
LDS
Type
A
,
AData
Type
,
LDS
Type
B
,
BData
Type
,
ComputeTypeA
,
ComputeTypeA
,
AccDataType
,
AccDataType
,
decltype
(
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()),
decltype
(
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()),
...
@@ -1158,7 +1176,7 @@ struct GridwiseMoeGemmScatter
...
@@ -1158,7 +1176,7 @@ struct GridwiseMoeGemmScatter
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_grid_desc_ak0_m_ak1
.
GetElementSpaceSize
());
p_a_grid
,
a_grid_desc_ak0_m_ak1
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
+
expert_id
*
expert_stride
,
b_grid_desc_bpreshuffled
.
GetElementSpaceSize
());
p_b_grid
+
expert_id
*
expert_stride
/
BPackedSize
,
b_grid_desc_bpreshuffled
.
GetElementSpaceSize
());
// if(threadIdx.x==0)
// if(threadIdx.x==0)
// printf("tid %d eid %d expert_stride %d bufsize %d\n",
// printf("tid %d eid %d expert_stride %d bufsize %d\n",
// threadIdx.x, expert_id, expert_stride, a_grid_desc_ak0_m_ak1.GetElementSpaceSize());
// threadIdx.x, expert_id, expert_stride, a_grid_desc_ak0_m_ak1.GetElementSpaceSize());
...
@@ -1211,7 +1229,8 @@ struct GridwiseMoeGemmScatter
...
@@ -1211,7 +1229,8 @@ struct GridwiseMoeGemmScatter
decltype
(
b_grid_desc_bpreshuffled
),
decltype
(
b_grid_desc_bpreshuffled
),
decltype
(
b_block_desc_bk0_n_bk1
),
decltype
(
b_block_desc_bk0_n_bk1
),
Sequence
<
Number
<
NXdlPerWave
>
{},
I1
,
Number
<
KRepeat
>
{},
Number
<
BK1Value
>
{}
>
,
Sequence
<
Number
<
NXdlPerWave
>
{},
I1
,
Number
<
KRepeat
>
{},
Number
<
BK1Value
>
{}
>
,
Sequence
<
0
,
1
,
2
,
3
>
,
// Sequence<0, 1, 2, 3>,
Sequence
<
1
,
2
,
0
,
3
>
,
3
,
3
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferSrcScalarPerVector
,
BThreadTransferSrcResetCoordinateAfterRun
,
BThreadTransferSrcResetCoordinateAfterRun
,
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_moe_gemm.hpp
View file @
a0432459
...
@@ -110,7 +110,7 @@ struct ReferenceMoeGemm : public device::BaseOperator
...
@@ -110,7 +110,7 @@ struct ReferenceMoeGemm : public device::BaseOperator
}
}
else
else
{
{
arg
.
b_element_op_
(
v_b
,
arg
.
b_e_n_k_
(
e
,
n
,
k
));
arg
.
b_element_op_
(
v_b
,
arg
.
b_e_n_k_
(
e
,
k
,
n
));
}
}
v_acc
+=
v_acc
+=
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_moe_gemm2.hpp
View file @
a0432459
...
@@ -98,21 +98,29 @@ struct ReferenceMoeGemm2 : public device::BaseOperator
...
@@ -98,21 +98,29 @@ struct ReferenceMoeGemm2 : public device::BaseOperator
if
(
t
<
token_cnt
)
{
if
(
t
<
token_cnt
)
{
for
(
int
k
=
0
;
k
<
K
;
++
k
)
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
{
// use PassThrough instead of ConvertBF16RTN for reference calculation
if
constexpr
(
is_same_v
<
ADataType
,
pk_i4_t
>
)
if
constexpr
(
is_same_v
<
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
ConvertBF16RTN
>
)
{
{
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}(
v_a
,
arg
.
a_t_k_k_
(
t
,
topk_id
,
k
));
uint8_t
i4x2
=
arg
.
a_t_k_
(
m
,
k
).
data
;
uint8_t
i4
=
0
;
if
(
k
%
2
==
1
)
i4
=
(
i4x2
>>
0
)
&
0xf
;
else
i4
=
(
i4x2
>>
4
)
&
0xf
;
v_a
=
i4_to_f32_gfx9
(
i4
);
}
}
else
else
{
{
arg
.
a_element_op_
(
v_a
,
arg
.
a_t_k_k_
(
t
,
topk_id
,
k
));
arg
.
a_element_op_
(
v_a
,
arg
.
a_t_k_k_
(
t
,
topk_id
,
k
));
}
}
// same for B matrix
if
constexpr
(
is_same_v
<
BDataType
,
pk_i4_t
>
)
if
constexpr
(
is_same_v
<
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
ConvertBF16RTN
>
)
{
{
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}(
v_b
,
arg
.
b_e_n_k_
(
e
,
n
,
k
));
uint8_t
i4x2
=
arg
.
b_e_n_k_
(
e
,
k
,
n
).
data
;
uint8_t
i4
=
0
;
if
(
k
%
2
==
1
)
i4
=
(
i4x2
>>
0
)
&
0xf
;
else
i4
=
(
i4x2
>>
4
)
&
0xf
;
v_b
=
i4_to_f32_gfx9
(
i4
);
}
}
else
else
{
{
...
@@ -189,6 +197,28 @@ struct ReferenceMoeGemm2 : public device::BaseOperator
...
@@ -189,6 +197,28 @@ struct ReferenceMoeGemm2 : public device::BaseOperator
return
str
.
str
();
return
str
.
str
();
}
}
static
float
i4_to_f32_gfx9
(
uint8_t
i4
)
{
static
std
::
unordered_map
<
uint8_t
,
float
>
u
=
{{
0b1000
,
-
0.5000
f
},
{
0b1001
,
-
0.4375
f
},
{
0b1010
,
-
0.3750
f
},
{
0b1011
,
-
0.3125
f
},
{
0b1100
,
-
0.2500
f
},
{
0b1101
,
-
0.1875
f
},
{
0b1110
,
-
0.1250
f
},
{
0b1111
,
-
0.0625
f
},
{
0b0
,
+
0.0000
f
},
{
0b1
,
+
0.0625
f
},
{
0b10
,
+
0.1250
f
},
{
0b11
,
+
0.1875
f
},
{
0b100
,
+
0.2500
f
},
{
0b101
,
+
0.3125
f
},
{
0b110
,
+
0.3750
f
},
{
0b111
,
+
0.4375
f
}};
return
u
[
i4
];
}
};
};
}
// namespace host
}
// namespace host
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment