Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
9ef5ba27
Unverified
Commit
9ef5ba27
authored
Dec 02, 2024
by
rocking
Committed by
GitHub
Dec 02, 2024
Browse files
Merge branch 'develop' into ck_tile/pure_quant
parents
e9576baa
44828b7c
Changes
21
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
225 additions
and
0 deletions
+225
-0
test/ck_tile/batched_gemm/test_batched_gemm_util.hpp
test/ck_tile/batched_gemm/test_batched_gemm_util.hpp
+225
-0
No files found.
test/ck_tile/batched_gemm/test_batched_gemm_util.hpp
0 → 100644
View file @
9ef5ba27
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <sstream>
#include <gtest/gtest.h>
#include "ck_tile/core.hpp"
#include "ck_tile/host.hpp"
#include "ck_tile/host/kernel_launch.hpp"
#include "ck_tile/ops/epilogue.hpp"
#include "ck_tile/ops/gemm.hpp"
#include "ck_tile/ops/gemm/kernel/batched_gemm_kernel.hpp"
template
<
typename
Tuple
>
class
TestCkTileBatchedGemm
:
public
::
testing
::
Test
{
protected:
using
ALayout
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
BLayout
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
CLayout
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
ADataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
BDataType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
using
AccDataType
=
std
::
tuple_element_t
<
5
,
Tuple
>
;
using
CDataType
=
std
::
tuple_element_t
<
6
,
Tuple
>
;
struct
batched_gemm_kargs
:
public
ck_tile
::
BatchedGemmHostArgs
{
};
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
>
void
invoke_batched_gemm
(
const
batched_gemm_kargs
&
args
,
const
ck_tile
::
stream_config
&
s
)
{
// The kPadM, kPadN, kPadK & kBlockPerCu should also come from the Codegen part.
constexpr
bool
kPadM
=
false
;
constexpr
bool
kPadN
=
false
;
constexpr
bool
kPadK
=
false
;
constexpr
bool
kTilePermute
=
false
;
// The rank and permutation will also be generate out by the CodeGen part.
constexpr
ck_tile
::
index_t
kOutputRank
=
2
;
constexpr
int
kBlockPerCu
=
1
;
// This part comes from the Codegen
constexpr
ck_tile
::
index_t
M_Tile
=
128
;
constexpr
ck_tile
::
index_t
N_Tile
=
128
;
constexpr
ck_tile
::
index_t
K_Tile
=
32
;
constexpr
ck_tile
::
index_t
M_Warp
=
2
;
constexpr
ck_tile
::
index_t
N_Warp
=
2
;
constexpr
ck_tile
::
index_t
K_Warp
=
1
;
constexpr
ck_tile
::
index_t
M_Warp_Tile
=
32
;
constexpr
ck_tile
::
index_t
N_Warp_Tile
=
32
;
constexpr
ck_tile
::
index_t
K_Warp_Tile
=
8
;
// Whether doing the CShuffle (transpose before the global memory), depending on the output
// layout.
constexpr
bool
CShuffleEpilogue
=
std
::
is_same_v
<
CLayout
,
ck_tile
::
tensor_layout
::
gemm
::
ColumnMajor
>
;
using
CodegenGemmShape
=
ck_tile
::
TileGemmShape
<
ck_tile
::
sequence
<
M_Tile
,
N_Tile
,
K_Tile
>
,
ck_tile
::
sequence
<
M_Warp
,
N_Warp
,
K_Warp
>
,
ck_tile
::
sequence
<
M_Warp_Tile
,
N_Warp_Tile
,
K_Warp_Tile
>>
;
using
TilePartitioner
=
ck_tile
::
GemmTilePartitioner
<
CodegenGemmShape
>
;
using
GemmEpilogue
=
std
::
conditional_t
<
CShuffleEpilogue
,
ck_tile
::
CShuffleEpilogue
<
ck_tile
::
CShuffleEpilogueProblem
<
AccDataType
,
CDataType
,
kPadM
,
kPadN
,
kTilePermute
,
kOutputRank
,
1
,
0
,
TilePartitioner
::
kM
,
TilePartitioner
::
kN
>>
,
ck_tile
::
Default2DEpilogue
<
ck_tile
::
Default2DEpilogueProblem
<
AccDataType
,
CDataType
,
kPadM
,
kPadN
>>>
;
using
CodegenGemmTraits
=
ck_tile
::
TileGemmTraits
<
kPadM
,
kPadN
,
kPadK
,
ALayout
,
BLayout
,
CLayout
>
;
using
CodegenPipelineProblem
=
ck_tile
::
GemmPipelineProblem
<
ADataType
,
BDataType
,
AccDataType
,
CodegenGemmShape
,
CodegenGemmTraits
>
;
using
CodegenGemmPipeline
=
ck_tile
::
GemmPipelineAGmemBGmemCRegV1
<
CodegenPipelineProblem
>
;
using
Kernel
=
ck_tile
::
BatchedGemmKernel
<
TilePartitioner
,
CodegenGemmPipeline
,
GemmEpilogue
>
;
auto
kargs
=
Kernel
::
MakeKargs
(
args
);
const
dim3
grids
=
Kernel
::
GridSize
(
args
);
constexpr
dim3
blocks
=
Kernel
::
BlockSize
();
if
(
s
.
log_level_
>
0
)
{
std
::
cout
<<
"Launching kernel with args:"
<<
" grid: {"
<<
grids
.
x
<<
", "
<<
grids
.
y
<<
", "
<<
grids
.
z
<<
"}"
<<
", blocks: {"
<<
blocks
.
x
<<
", "
<<
blocks
.
y
<<
", "
<<
blocks
.
z
<<
"}"
<<
std
::
endl
;
}
ck_tile
::
launch_kernel
(
s
,
ck_tile
::
make_kernel
<
blocks
.
x
,
kBlockPerCu
>
(
Kernel
{},
grids
,
blocks
,
0
,
kargs
));
}
public:
void
Run
(
const
int
M
,
const
int
N
,
const
int
K
,
int
StrideA
=
128
,
int
StrideB
=
128
,
int
StrideC
=
128
,
const
int
BatchStrideA
=
32768
,
const
int
BatchStrideB
=
16384
,
const
int
BatchStrideC
=
32768
,
const
int
BatchCount
=
16
)
{
using
namespace
ck_tile
::
literals
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count_
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
if
constexpr
(
std
::
is_same_v
<
decltype
(
layout
),
ck_tile
::
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
ck_tile
::
HostTensorDescriptor
({
batch_count_
,
row
,
col
},
{
batch_stride
,
stride
,
1
_uz
});
}
else
{
return
ck_tile
::
HostTensorDescriptor
({
batch_count_
,
row
,
col
},
{
batch_stride
,
1
_uz
,
stride
});
}
};
auto
f_get_default_stride
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
stride
==
0
)
{
// give a chance if stride is zero, return a default packed stride
if
constexpr
(
std
::
is_same_v
<
decltype
(
layout
),
ck_tile
::
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
col
;
}
else
{
return
row
;
}
}
else
return
stride
;
};
StrideA
=
f_get_default_stride
(
M
,
K
,
StrideA
,
ALayout
{});
StrideB
=
f_get_default_stride
(
K
,
N
,
StrideB
,
BLayout
{});
StrideC
=
f_get_default_stride
(
M
,
N
,
StrideC
,
CLayout
{});
ck_tile
::
HostTensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
K
,
StrideA
,
BatchStrideA
,
ALayout
{}));
ck_tile
::
HostTensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
BatchCount
,
K
,
N
,
StrideB
,
BatchStrideB
,
BLayout
{}));
ck_tile
::
HostTensor
<
CDataType
>
c_m_n_dev_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
StrideC
,
BatchStrideC
,
CLayout
{}));
ck_tile
::
FillUniformDistribution
<
ADataType
>
{
-
5.
f
,
5.
f
}(
a_m_k
);
ck_tile
::
FillUniformDistribution
<
BDataType
>
{
-
5.
f
,
5.
f
}(
b_k_n
);
ck_tile
::
DeviceMem
a_m_k_dev_buf
(
a_m_k
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
b_k_n_dev_buf
(
b_k_n
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
c_m_n_dev_buf
(
c_m_n_dev_result
.
get_element_space_size_in_bytes
());
a_m_k_dev_buf
.
ToDevice
(
a_m_k
.
data
());
b_k_n_dev_buf
.
ToDevice
(
b_k_n
.
data
());
c_m_n_dev_buf
.
SetZero
();
c_m_n_dev_result
.
SetZero
();
batched_gemm_kargs
kargs
{
a_m_k_dev_buf
.
GetDeviceBuffer
(),
b_k_n_dev_buf
.
GetDeviceBuffer
(),
c_m_n_dev_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
BatchStrideA
,
BatchStrideB
,
BatchStrideC
,
BatchCount
};
invoke_batched_gemm
<
ALayout
,
BLayout
,
CLayout
>
(
kargs
,
ck_tile
::
stream_config
{
nullptr
,
false
});
std
::
cout
<<
"Run kernel with M ="
<<
M
<<
" N ="
<<
N
<<
" K ="
<<
K
<<
" StrideA ="
<<
StrideA
<<
" StrideB ="
<<
StrideB
<<
" StrideC ="
<<
StrideC
<<
" BatchStrideA ="
<<
BatchStrideA
<<
" BatchStrideB ="
<<
BatchStrideB
<<
" BatchStrideC ="
<<
BatchStrideC
<<
" BatchCount ="
<<
BatchCount
<<
std
::
endl
;
c_m_n_dev_buf
.
FromDevice
(
c_m_n_dev_result
.
data
());
bool
pass
=
true
;
ck_tile
::
HostTensor
<
CDataType
>
c_m_n_host_ref
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
StrideC
,
BatchStrideC
,
CLayout
{}));
c_m_n_host_ref
.
SetZero
();
const
auto
b_n_k
=
b_k_n
.
transpose
({
0
,
2
,
1
});
ck_tile
::
reference_batched_gemm
<
ADataType
,
BDataType
,
AccDataType
,
CDataType
>
(
a_m_k
,
b_n_k
,
c_m_n_host_ref
);
pass
=
ck_tile
::
check_err
(
c_m_n_dev_result
,
c_m_n_host_ref
);
EXPECT_TRUE
(
pass
);
}
};
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment