Unverified Commit 965b7ba4 authored by Illia Silin's avatar Illia Silin Committed by GitHub
Browse files

Merge pull request #229 from ROCm/promote_ocp_fp8

Promote ocp fp8
parents 5dff1b14 62e3c582
......@@ -185,13 +185,22 @@ if (SUPPORTED_GPU_TARGETS MATCHES "gfx9")
add_definitions(-DCK_USE_XDL)
endif()
if (SUPPORTED_GPU_TARGETS MATCHES "gfx94")
message("Enabling FP8 gemms in ckProfiler")
message("Enabling FP8 gemms on native architectures")
add_definitions(-DCK_USE_GFX94)
endif()
if (SUPPORTED_GPU_TARGETS MATCHES "gfx11" OR SUPPORTED_GPU_TARGETS MATCHES "gfx12")
message("Enabling WMMA instances")
add_definitions(-DCK_USE_WMMA)
endif()
if (SUPPORTED_GPU_TARGETS MATCHES "gfx12")
add_definitions(-DCK_USE_OCP_FP8)
set(CK_USE_OCP_FP8 "ON")
endif()
if (SUPPORTED_GPU_TARGETS MATCHES "gfx90a" OR SUPPORTED_GPU_TARGETS MATCHES "gfx94")
add_definitions(-DCK_USE_FNUZ_FP8)
set(CK_USE_FNUZ_FP8 "ON")
endif()
option(CK_USE_FP8_ON_UNSUPPORTED_ARCH "Enable FP8 GEMM instances on older architectures" OFF)
if(CK_USE_FP8_ON_UNSUPPORTED_ARCH AND (SUPPORTED_GPU_TARGETS MATCHES "gfx90a" OR SUPPORTED_GPU_TARGETS MATCHES "gfx908"))
add_definitions(-DCK_USE_FP8_ON_UNSUPPORTED_ARCH)
......
......@@ -54,7 +54,7 @@ target_link_libraries(client_conv3d_fwd_convscale_relu_amax_fp8
PRIVATE composable_kernel::device_conv_operations
composable_kernel::device_other_operations
composable_kernel::device_reduction_operations
utility)
composable_kernel::utility)
# Fwd convscale + AMAX
add_executable(client_conv3d_fwd_convscale_amax_fp8
grouped_convnd_fwd_convscale_reduce/conv3d_fwd_convscale_amax_fp8.cpp)
......@@ -62,7 +62,7 @@ target_link_libraries(client_conv3d_fwd_convscale_amax_fp8
PRIVATE composable_kernel::device_conv_operations
composable_kernel::device_other_operations
composable_kernel::device_reduction_operations
utility)
composable_kernel::utility)
# Fwd convscale
add_executable(client_conv3d_fwd_convscale_fp8
grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8.cpp)
......
......@@ -56,13 +56,21 @@ if (GPU_TARGETS)
add_definitions(-DCK_USE_WMMA)
set(CK_USE_WMMA "ON")
endif()
if (GPU_TARGETS MATCHES "gfx12")
add_definitions(-DCK_USE_OCP_FP8)
set(CK_USE_OCP_FP8 "ON")
endif()
if (GPU_TARGETS MATCHES "gfx90a" OR GPU_TARGETS MATCHES "gfx94")
add_definitions(-DCK_USE_FNUZ_FP8)
set(CK_USE_FNUZ_FP8 "ON")
endif()
else()
add_definitions(-DCK_USE_WMMA -DCK_USE_XDL)
set(CK_USE_XDL "ON")
set(CK_USE_WMMA "ON")
endif()
find_package(composable_kernel COMPONENTS device_other_operations device_gemm_operations device_conv_operations device_reduction_operations)
find_package(composable_kernel COMPONENTS device_other_operations device_gemm_operations device_conv_operations device_reduction_operations utility)
if(GPU_TARGETS MATCHES "gfx9")
find_package(composable_kernel COMPONENTS device_contraction_operations)
endif()
......
......@@ -58,7 +58,7 @@ add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp64)
add_example_executable(example_gemm_xdl_streamk gemm_xdl_streamk.cpp)
list(APPEND gpu_list gfx90a gfx940 gfx941 gfx942 gfx950)
list(APPEND gpu_list gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
......
......@@ -76,7 +76,7 @@ struct ProblemSizeSplitK final
struct ExecutionConfig final
{
// 0 - no verification, 1 - CPU, 2 - GPU, 3 - CPU + GPU
int do_verification = 3;
int do_verification = 1;
int init_method = 2;
bool time_kernel = false;
};
......
......@@ -143,8 +143,8 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
switch(config.init_method)
{
case 0:
ck::utils::FillConstant<ADataType>{static_cast<ADataType>(1.f)}(a_m_k);
ck::utils::FillConstant<BDataType>{static_cast<BDataType>(1.f)}(b_k_n);
ck::utils::FillConstant<ADataType>{ck::type_convert<ADataType>(1.f)}(a_m_k);
ck::utils::FillConstant<BDataType>{ck::type_convert<BDataType>(1.f)}(b_k_n);
break;
case 1:
ck::utils::FillUniformDistributionIntegerValue<ADataType>{-5.f, 5.f}(a_m_k);
......
......@@ -186,15 +186,15 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
for(int j = 0; j < NumDMatrices; ++j)
{
d_tensors[i][j].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
d_tensors[i][j].GenerateTensorValue(GeneratorTensor_3<DDataType>{0.0, 1.0});
}
break;
default:
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<ADataType, 0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<BDataType, 1>{});
for(int j = 0; j < NumDMatrices; ++j)
{
d_tensors[i][j].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
d_tensors[i][j].GenerateTensorValue(GeneratorTensor_Sequential<DDataType, 0>{});
}
}
}
......
......@@ -190,15 +190,15 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
for(int j = 0; j < NumDs; ++j)
{
d_tensors[i][j].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
d_tensors[i][j].GenerateTensorValue(GeneratorTensor_3<DDataType>{0.0, 1.0});
}
break;
default:
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<ADataType, 0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<BDataType, 1>{});
for(int j = 0; j < NumDs; ++j)
{
d_tensors[i][j].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
d_tensors[i][j].GenerateTensorValue(GeneratorTensor_Sequential<DDataType, 0>{});
}
}
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
......@@ -167,11 +167,11 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<ADataType, 0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<BDataType, 1>{});
}
d0_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
d0_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<D0DataType, 1>{});
}
using GroupedGemmKernelArgument = ck::tensor_operation::device::GroupedGemmKernelArgument<1>;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
......@@ -157,8 +157,8 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<ADataType, 0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<BDataType, 1>{});
}
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
......@@ -158,8 +158,8 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<ADataType, 0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<BDataType, 1>{});
}
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
struct ProblemSize final
......@@ -124,8 +127,8 @@ bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& co
b_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<ADataType, 0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<BDataType, 1>{});
}
}
......
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942 gfx950)
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
......@@ -175,8 +175,8 @@ int main(int argc, char* argv[])
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
a_m_k.GenerateTensorValue(GeneratorTensor_Sequential<ADataType, 0>{});
b_k_n.GenerateTensorValue(GeneratorTensor_Sequential<BDataType, 1>{});
}
c0_n_bias.GenerateTensorValue(GeneratorTensor_2<C0DataType>{-5, 5});
......
......@@ -5,6 +5,6 @@ if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_batched_gemm_gemm_xdl_int4 batched_gemm_gemm_xdl_int4.cpp)
endif(USE_BITINT_EXTENSION_INT4)
if(NOT GPU_TARGETS MATCHES "gfx94" AND NOT GPU_TARGETS MATCHES "gfx95" AND NOT GPU_TARGETS MATCHES "gfx1")
if(NOT GPU_TARGETS MATCHES "gfx94" AND NOT GPU_TARGETS MATCHES "gfx1")
add_example_executable(example_batched_gemm_gemm_xdl_int8 batched_gemm_gemm_xdl_int8.cpp)
endif()
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -150,7 +150,7 @@ bool run_batched_gemm_gemm_example(int argc, char* argv[])
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<B0DataType, 1>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
......@@ -157,7 +157,7 @@ int run(int argc, char* argv[])
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<B0DataType, 1>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
......@@ -118,7 +118,7 @@ int run(int argc, char* argv[])
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<2>{});
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<ADataType, 2>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
......@@ -153,7 +153,7 @@ int run(int argc, char* argv[])
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<2>{});
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<ADataType, 2>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
......@@ -178,7 +178,7 @@ int run(int argc, char* argv[])
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<2>{});
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<ADataType, 2>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment