Unverified Commit 941d1f7c authored by Illia Silin's avatar Illia Silin Committed by GitHub
Browse files

Merging the gfx12 code into public repo. (#1362)

parent a32b1bc6
...@@ -117,7 +117,7 @@ else() ...@@ -117,7 +117,7 @@ else()
add_definitions(-DPROFILER_ONLY) add_definitions(-DPROFILER_ONLY)
set(GPU_TARGETS "" CACHE STRING "" FORCE) set(GPU_TARGETS "" CACHE STRING "" FORCE)
if(GPU_TARGETS) if(GPU_TARGETS)
message(FATAL_ERROR "For PROFILE_ONLY build, please do not set GPU_TARGETS, use GPU_ARCH = gfx90, gfx94, gfx10, or gfx11") message(FATAL_ERROR "For PROFILE_ONLY build, please do not set GPU_TARGETS, use GPU_ARCH = gfx90, gfx94, gfx10, gfx11 or gfx12")
endif() endif()
if(GPU_ARCH MATCHES "gfx90") if(GPU_ARCH MATCHES "gfx90")
rocm_check_target_ids(DEFAULT_GPU_TARGETS TARGETS "gfx908;gfx90a") rocm_check_target_ids(DEFAULT_GPU_TARGETS TARGETS "gfx908;gfx90a")
...@@ -127,8 +127,10 @@ else() ...@@ -127,8 +127,10 @@ else()
rocm_check_target_ids(DEFAULT_GPU_TARGETS TARGETS "gfx1030") rocm_check_target_ids(DEFAULT_GPU_TARGETS TARGETS "gfx1030")
elseif(GPU_ARCH MATCHES "gfx11") elseif(GPU_ARCH MATCHES "gfx11")
rocm_check_target_ids(DEFAULT_GPU_TARGETS TARGETS "gfx1100;gfx1101;gfx1102") rocm_check_target_ids(DEFAULT_GPU_TARGETS TARGETS "gfx1100;gfx1101;gfx1102")
elseif(GPU_ARCH MATCHES "gfx12")
rocm_check_target_ids(DEFAULT_GPU_TARGETS TARGETS "gfx1200;gfx1201")
else() else()
message(FATAL_ERROR "For PROFILE_ONLY build, please specify GPU_ARCH as gfx90, gfx94, gfx10, or gfx11") message(FATAL_ERROR "For PROFILE_ONLY build, please specify GPU_ARCH as gfx90, gfx94, gfx10, gfx11 or gfx12")
endif() endif()
set(GPU_TARGETS "${DEFAULT_GPU_TARGETS}" CACHE STRING " " FORCE) set(GPU_TARGETS "${DEFAULT_GPU_TARGETS}" CACHE STRING " " FORCE)
endif() endif()
......
...@@ -493,6 +493,7 @@ def Build_CK(Map conf=[:]){ ...@@ -493,6 +493,7 @@ def Build_CK(Map conf=[:]){
def variant = env.STAGE_NAME def variant = env.STAGE_NAME
def retimage def retimage
gitStatusWrapper(credentialsId: "${env.status_wrapper_creds}", gitHubContext: "Jenkins - ${variant}", account: 'ROCm', repo: 'composable_kernel') { gitStatusWrapper(credentialsId: "${env.status_wrapper_creds}", gitHubContext: "Jenkins - ${variant}", account: 'ROCm', repo: 'composable_kernel') {
try { try {
(retimage, image) = getDockerImage(conf) (retimage, image) = getDockerImage(conf)
...@@ -660,9 +661,6 @@ CRON_SETTINGS = BRANCH_NAME == "develop" ? '''0 23 * * * % RUN_FULL_QA=true;ROCM ...@@ -660,9 +661,6 @@ CRON_SETTINGS = BRANCH_NAME == "develop" ? '''0 23 * * * % RUN_FULL_QA=true;ROCM
pipeline { pipeline {
agent none agent none
triggers {
parameterizedCron(CRON_SETTINGS)
}
options { options {
parallelsAlwaysFailFast() parallelsAlwaysFailFast()
} }
......
...@@ -66,7 +66,7 @@ else() ...@@ -66,7 +66,7 @@ else()
-Wunreachable-code -Wunreachable-code
-Wunused -Wunused
-Wno-reserved-identifier -Wno-reserved-identifier
-Werror -Werror
-Wno-option-ignored -Wno-option-ignored
-Wsign-compare -Wsign-compare
-Wno-extra-semi-stmt -Wno-extra-semi-stmt
......
...@@ -23,45 +23,45 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa ...@@ -23,45 +23,45 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa
// clang-format off // clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmWmma_CShuffle using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmWmma_CShuffle
< ALayout, < ALayout,
BLayout, BLayout,
CLayout, CLayout,
ADataType, ADataType,
BDataType, BDataType,
CDataType, CDataType,
AccDataType, AccDataType,
CShuffleDataType, CShuffleDataType,
AElementOp, AElementOp,
BElementOp, BElementOp,
CElementOp, CElementOp,
GemmDefault, GemmDefault,
1, // Prefetch stage 1, // Prefetch stage
128, // BlockSize 128, // BlockSize
64, // MPerBlock 64, // MPerBlock
128, // NPerBlock 128, // NPerBlock
64, // KPerBlock 64, // KPerBlock
8, // K1 2, // K1
16, // MPerWmma 16, // MPerWmma
16, // NPerWmma 16, // NPerWmma
2, // M-Repeat // M-PerWmma / M-Repeat = M-Wave 2, // M-Repeat // M-PerWmma / M-Repeat = M-Wave
4, // N-Repeat // N-PerWmma / N-Repeat = N-Wave 4, // N-Repeat // N-PerWmma / N-Repeat = N-Wave
S<4, 32, 1>, S<4, 32, 1>,
S<1, 0, 2>, S<1, 0, 2>,
S<1, 0, 2>, S<1, 0, 2>,
2, 2,
8, 2,
8, 2,
true, true,
S<4, 32, 1>, S<4, 32, 1>,
S<1, 0, 2>, S<1, 0, 2>,
S<1, 0, 2>, S<1, 0, 2>,
2, 2,
8, 2,
8, 2,
true, true,
1, // C shuffle (M Repeat) Per store 1, // C shuffle (M Repeat) Per store
1, // C shuffle (N Repeat) Per store 1, // C shuffle (N Repeat) Per store
S<1, 32, 1, 4>, S<1, 32, 1, 4>,
8>; 8>;
// clang-format on // clang-format on
......
...@@ -159,7 +159,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config) ...@@ -159,7 +159,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
ck::utils::FillUniformDistributionIntegerValue<BDataType>{-5.f, 5.f}(b_k_n); ck::utils::FillUniformDistributionIntegerValue<BDataType>{-5.f, 5.f}(b_k_n);
break; break;
case 4: case 4:
ck::utils::FillUniformDistributionIntegerValue<ADataType>{1.f, 1.f}(a_m_k); ck::utils::FillUniformDistributionIntegerValue<ADataType>{-5.f, 5.f}(a_m_k);
ck::utils::FillUniformDistributionIntegerValue<BDataType>{1.f, 1.f}(b_k_n); ck::utils::FillUniformDistributionIntegerValue<BDataType>{1.f, 1.f}(b_k_n);
break; break;
case 5: case 5:
......
...@@ -24,4 +24,4 @@ foreach(gpu IN LISTS GPU_TARGETS) ...@@ -24,4 +24,4 @@ foreach(gpu IN LISTS GPU_TARGETS)
add_example_dependencies(example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_lds_direct_load_fp32) add_example_dependencies(example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_lds_direct_load_fp32)
set(target 1) set(target 1)
endif() endif()
endforeach() endforeach()
\ No newline at end of file
...@@ -83,14 +83,14 @@ using DeviceOpInstanceKKNN = ...@@ -83,14 +83,14 @@ using DeviceOpInstanceKKNN =
2, 2,
4, 4,
4, 4,
true, false,
S<4, 32, 1>, S<4, 32, 1>,
S<1, 0, 2>, S<1, 0, 2>,
S<1, 0, 2>, S<1, 0, 2>,
2, 2,
4, 4,
4, 4,
true, false,
1, 1,
1, 1,
S<1, 64, 1, 2>, S<1, 64, 1, 2>,
......
...@@ -71,7 +71,7 @@ static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecial ...@@ -71,7 +71,7 @@ static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecial
#define CK_MHA_USE_WAVE_1 #define CK_MHA_USE_WAVE_1
#define CK_MHA_USE_WAVE_2 #define CK_MHA_USE_WAVE_2
#define CK_MHA_USE_WAVE_4 #define CK_MHA_USE_WAVE_4
#define CK_MHA_USE_WAVE_8 //#define CK_MHA_USE_WAVE_8
using DeviceMHAFactory = using DeviceMHAFactory =
std::tuple< std::tuple<
#ifdef CK_MHA_USE_WAVE_1 #ifdef CK_MHA_USE_WAVE_1
...@@ -277,10 +277,10 @@ using DeviceMHAFactory = ...@@ -277,10 +277,10 @@ using DeviceMHAFactory =
S<2, 8, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, false, S<2, 8, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, false,
// CShuffleBlockTransfer MN // CShuffleBlockTransfer MN
1, 1, S<1, 64, 1, 2>, 8, 1, 1, S<1, 64, 1, 2>, 8,
MaskingSpec>, MaskingSpec>
#endif #endif
#ifdef CK_MHA_USE_WAVE_8 #ifdef CK_MHA_USE_WAVE_8
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle< ,ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType, ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp, AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
......
...@@ -71,7 +71,7 @@ static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecial ...@@ -71,7 +71,7 @@ static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecial
#define CK_MHA_USE_WAVE_1 #define CK_MHA_USE_WAVE_1
#define CK_MHA_USE_WAVE_2 #define CK_MHA_USE_WAVE_2
#define CK_MHA_USE_WAVE_4 #define CK_MHA_USE_WAVE_4
#define CK_MHA_USE_WAVE_8 //#define CK_MHA_USE_WAVE_8
using DeviceMHAFactory = using DeviceMHAFactory =
std::tuple< std::tuple<
#ifdef CK_MHA_USE_WAVE_1 #ifdef CK_MHA_USE_WAVE_1
...@@ -277,10 +277,10 @@ using DeviceMHAFactory = ...@@ -277,10 +277,10 @@ using DeviceMHAFactory =
S<2, 8, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, false, S<2, 8, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, false,
// CShuffleBlockTransfer MN // CShuffleBlockTransfer MN
1, 1, S<1, 64, 1, 2>, 8, 1, 1, S<1, 64, 1, 2>, 8,
MaskingSpec>, MaskingSpec>
#endif #endif
#ifdef CK_MHA_USE_WAVE_8 #ifdef CK_MHA_USE_WAVE_8
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle< ,ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType, ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp, AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
......
...@@ -67,7 +67,7 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME) ...@@ -67,7 +67,7 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME)
endforeach() endforeach()
#Do not build any WMMA examples if gfx11 targets are not on the list #Do not build any WMMA examples if gfx11 targets are not on the list
foreach(source IN LISTS FILE_NAME) foreach(source IN LISTS FILE_NAME)
if(NOT EX_TARGETS MATCHES "gfx11" AND source MATCHES "_wmma") if(NOT GPU_TARGETS MATCHES "gfx11" AND NOT GPU_TARGETS MATCHES "gfx12" AND source MATCHES "_wmma")
message("removing wmma example ${source} ") message("removing wmma example ${source} ")
list(REMOVE_ITEM FILE_NAME "${source}") list(REMOVE_ITEM FILE_NAME "${source}")
endif() endif()
...@@ -154,7 +154,7 @@ function(add_example_executable_no_testing EXAMPLE_NAME FILE_NAME) ...@@ -154,7 +154,7 @@ function(add_example_executable_no_testing EXAMPLE_NAME FILE_NAME)
endforeach() endforeach()
#Do not build any WMMA examples if gfx11 targets are not on the list #Do not build any WMMA examples if gfx11 targets are not on the list
foreach(source IN LISTS FILE_NAME) foreach(source IN LISTS FILE_NAME)
if(NOT EX_TARGETS MATCHES "gfx11" AND source MATCHES "_wmma") if(NOT GPU_TARGETS MATCHES "gfx11" AND NOT GPU_TARGETS MATCHES "gfx12" AND source MATCHES "_wmma")
message("removing wmma example ${source} ") message("removing wmma example ${source} ")
list(REMOVE_ITEM FILE_NAME "${source}") list(REMOVE_ITEM FILE_NAME "${source}")
endif() endif()
......
...@@ -69,6 +69,9 @@ CK_DECLARE_ENV_VAR_BOOL(CK_LOGGING) ...@@ -69,6 +69,9 @@ CK_DECLARE_ENV_VAR_BOOL(CK_LOGGING)
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) #if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__)
#define __gfx11__ #define __gfx11__
#endif #endif
#if defined(__gfx1200__) || defined(__gfx1201__)
#define __gfx12__
#endif
// buffer resource // buffer resource
#ifndef __HIP_DEVICE_COMPILE__ // for host code #ifndef __HIP_DEVICE_COMPILE__ // for host code
...@@ -77,7 +80,7 @@ CK_DECLARE_ENV_VAR_BOOL(CK_LOGGING) ...@@ -77,7 +80,7 @@ CK_DECLARE_ENV_VAR_BOOL(CK_LOGGING)
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x00020000 #define CK_BUFFER_RESOURCE_3RD_DWORD 0x00020000
#elif defined(__gfx103__) #elif defined(__gfx103__)
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x31014000 #define CK_BUFFER_RESOURCE_3RD_DWORD 0x31014000
#elif defined(__gfx11__) #elif defined(__gfx11__) || defined(__gfx12__)
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x31004000 #define CK_BUFFER_RESOURCE_3RD_DWORD 0x31004000
#endif #endif
...@@ -89,7 +92,7 @@ CK_DECLARE_ENV_VAR_BOOL(CK_LOGGING) ...@@ -89,7 +92,7 @@ CK_DECLARE_ENV_VAR_BOOL(CK_LOGGING)
#define CK_USE_AMD_V_FMAC_F32 #define CK_USE_AMD_V_FMAC_F32
#define CK_USE_AMD_V_DOT2_F32_F16 #define CK_USE_AMD_V_DOT2_F32_F16
#define CK_USE_AMD_V_DOT4_I32_I8 #define CK_USE_AMD_V_DOT4_I32_I8
#elif defined(__gfx11__) #elif defined(__gfx11__) || defined(__gfx12__)
#define CK_USE_AMD_V_FMAC_F32 #define CK_USE_AMD_V_FMAC_F32
#define CK_USE_AMD_V_DOT2_F32_F16 #define CK_USE_AMD_V_DOT2_F32_F16
#define CK_USE_AMD_V_DOT4_I32_I8_GFX11 #define CK_USE_AMD_V_DOT4_I32_I8_GFX11
...@@ -110,13 +113,6 @@ CK_DECLARE_ENV_VAR_BOOL(CK_LOGGING) ...@@ -110,13 +113,6 @@ CK_DECLARE_ENV_VAR_BOOL(CK_LOGGING)
#define CK_USE_AMD_MFMA_GFX940 #define CK_USE_AMD_MFMA_GFX940
#endif #endif
// WMMA instruction
#ifndef __HIP_DEVICE_COMPILE__ // for host code
#define CK_USE_AMD_WMMA
#elif defined(__gfx11__) // for GPU code
#define CK_USE_AMD_WMMA
#endif
// buffer load // buffer load
#define CK_USE_AMD_BUFFER_LOAD 1 #define CK_USE_AMD_BUFFER_LOAD 1
......
...@@ -84,4 +84,9 @@ inline bool is_gfx11_supported() ...@@ -84,4 +84,9 @@ inline bool is_gfx11_supported()
ck::get_device_name() == "gfx1102" || ck::get_device_name() == "gfx1103"; ck::get_device_name() == "gfx1102" || ck::get_device_name() == "gfx1103";
} }
inline bool is_gfx12_supported()
{
return ck::get_device_name() == "gfx1200" || ck::get_device_name() == "gfx1201";
}
} // namespace ck } // namespace ck
...@@ -13,6 +13,504 @@ ...@@ -13,6 +13,504 @@
namespace ck { namespace ck {
#ifdef __gfx12__
template <index_t BlockSize,
typename FloatA,
typename FloatB,
typename FloatAcc,
typename ABlockDesc,
typename BBlockDesc,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerWMMA,
index_t NPerWMMA,
index_t MRepeat,
index_t NRepeat,
index_t KPack,
bool AEnableLds = true,
bool BEnableLds = true,
bool TransposeC = false>
/* Option: Read from LDS, big buffer hold all threads required data
* Source
* A: K0PerBlock x MPerBlock x K1
* B: K0PerBlock x NPerBlock x K1
* Destination
* C, non-transpose
* thread level: MRepeat x NRepeat x MAccVgprs
* block level: MRepeat x MWave x MSubGroup x NRepeat x NWave x NThreadPerSubGroup x MAccVgprs
* KPACK == WMMA_K = 16
*
* Option: Read from VMEM, small buffer hold each thread own required data (Skip LDS)
* Source:
* A(if skip LDS): MRepeat x KPack
* B(if skip LDS): NRepeat x KPack
* Destination
* C, non-transpose
* block level: MRepeat x MWave x MSubGroup x NRepeat x NWave x NThreadPerSubGroup x MAccVgprs
*/
struct BlockwiseGemmWMMA
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto WmmaK = Number<16>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
// Hardcode of WaveSize, since current HIP Runtime(5.4.0-10984) could not return correct one.
static constexpr index_t WaveSize = 32;
// When use LDS, each Row(16 consecutive lanes) read whole data from source buffer
// When not use LDS, each Row read half of whole data from source buffer, exchange the data via
// permutation
static constexpr index_t A_KRow = 2;
static constexpr index_t B_KRow = 2;
static constexpr index_t A_K1 = ABlockDesc{}.GetLength(I5);
static constexpr index_t B_K1 = BBlockDesc{}.GetLength(I5);
static constexpr auto wmma_gemm =
WmmaGemm<FloatA, FloatB, FloatAcc, MPerWMMA, NPerWMMA, KPack, TransposeC>{};
static constexpr index_t MWaves = MPerBlock / (MRepeat * MPerWMMA);
static constexpr index_t NWaves = NPerBlock / (NRepeat * NPerWMMA);
StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr,
FloatAcc,
MRepeat * NRepeat,
wmma_gemm.GetRegSizePerWmma(),
true>
c_thread_buf_;
__host__ __device__ constexpr auto& GetCThreadBuffer() { return c_thread_buf_; }
__device__ static auto GetWaveIdx()
{
const index_t thread_id = ThisThreadBlock::GetThreadId();
constexpr auto threadid_to_wave_idx_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(MWaves, NWaves, WaveSize))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
return threadid_to_wave_idx_adaptor.CalculateBottomIndex(make_multi_index(thread_id));
}
// Default, Block buffer in LDS, thread level offset enabled
__device__ static auto CalculateAThreadOriginDataIndex()
{
if constexpr(AEnableLds)
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto WMMA_a_idx = wmma_gemm.CalculateAThreadOriginDataIndex();
// |KRepeat |MRepeat|MWave |KRow |MLane |KPack
return make_tuple(0, 0, waveId_m, wmma_gemm.GetSubGroupId(), WMMA_a_idx, 0);
}
else
{
return make_tuple(0, 0, 0, 0, 0, 0);
}
}
__device__ static auto CalculateBThreadOriginDataIndex()
{
if constexpr(BEnableLds)
{
const auto wave_idx = GetWaveIdx();
const auto waveId_n = wave_idx[I1];
const auto WMMA_b_idx = wmma_gemm.CalculateBThreadOriginDataIndex();
// |KRepeat |NRepeat|Nwave |KRow |NLane |KPack
return make_tuple(0, 0, waveId_n, wmma_gemm.GetSubGroupId(), WMMA_b_idx, 0);
}
else
{
return make_tuple(0, 0, 0, 0, 0, 0);
}
}
template <index_t m0, index_t n0>
__device__ static auto CalculateCThreadOriginDataIndex(Number<m0>, Number<n0>)
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto waveId_n = wave_idx[I1];
const auto blk_idx = wmma_gemm.GetBeginOfThreadBlk();
constexpr auto mrepeat_mwave_mperWMMA_to_m_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(MRepeat, MWaves, MPerWMMA))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
constexpr auto nrepeat_nwave_nperWMMA_to_n_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(NRepeat, NWaves, NPerWMMA))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
const index_t c_thread_m = mrepeat_mwave_mperWMMA_to_m_adaptor.CalculateBottomIndex(
make_tuple(m0, waveId_m, blk_idx[I0]))[I0];
const index_t c_thread_n = nrepeat_nwave_nperWMMA_to_n_adaptor.CalculateBottomIndex(
make_tuple(n0, waveId_n, blk_idx[I1]))[I0];
return make_tuple(c_thread_m, c_thread_n);
}
template <index_t m0, index_t n0>
__device__ static auto CalculateCThreadOriginDataIndex7D(Number<m0>, Number<n0>)
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto waveId_n = wave_idx[I1];
const auto blk_idx = wmma_gemm.GetBeginOfThreadBlk3D();
return make_tuple(
Number<m0>{}, waveId_m, blk_idx[I0], Number<n0>{}, waveId_n, blk_idx[I1], blk_idx[I2]);
}
using Tuple6 = decltype(CalculateAThreadOriginDataIndex());
__host__ __device__ BlockwiseGemmWMMA(Tuple6 a_origin = CalculateAThreadOriginDataIndex(),
Tuple6 b_origin = CalculateBThreadOriginDataIndex())
: a_thread_copy_(a_origin), b_thread_copy_(b_origin)
{
static_assert(ABlockDesc::IsKnownAtCompileTime() && BBlockDesc::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
static_assert(ThisThreadBlock::GetNumOfThread() == MWaves * NWaves * WaveSize,
"ThisThreadBlock::GetNumOfThread() != MWaves * NWaves * WaveSize\n");
static_assert(MPerBlock % (MPerWMMA * MRepeat) == 0 &&
NPerBlock % (NPerWMMA * NRepeat) == 0,
"wrong!");
}
// transposed WMMA output C' = B' * A'
__host__ __device__ static constexpr auto
GetCThreadDescriptor_MRepeat_MWave_MThreadPerSubGroup_NRepeat_NWave_NSubGroup_NAccVgprs()
{
constexpr auto c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens =
wmma_gemm.GetCMSubGroupNThreadPerSubGroupMAccVgprsThreadBlkLengths();
constexpr auto NAccVgprs = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I2];
return make_naive_tensor_descriptor_packed(
// |MRepeat |MWave |MSubGroup |NRepeat |NWave
// |NThreadPerSubGroup |MAccVgprs
make_tuple(Number<MRepeat>{}, I1, I1, Number<NRepeat>{}, I1, I1, NAccVgprs));
}
// Thread level, register decriptor. Vector-write
__host__ __device__ static constexpr auto
GetCThreadDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs()
{
constexpr auto c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens =
wmma_gemm.GetCMSubGroupNThreadPerSubGroupMAccVgprsThreadBlkLengths();
constexpr auto MAccVgprs = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I2];
constexpr auto AccStride = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I3];
return make_naive_tensor_descriptor(
// |MRepeat |MWave |MSubGroup |NRepeat |NWave
// |NThreadPerSubGroup |MAccVgprs
make_tuple(Number<MRepeat>{}, I1, I1, Number<NRepeat>{}, I1, I1, MAccVgprs),
make_tuple(Number<NRepeat>{} * MAccVgprs * AccStride,
Number<NRepeat>{} * MAccVgprs * AccStride,
Number<NRepeat>{} * MAccVgprs * AccStride,
MAccVgprs * AccStride,
MAccVgprs * AccStride,
MAccVgprs * AccStride,
AccStride));
}
template <typename CGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeCGridDescriptor_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs(
const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const auto c_grid_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma =
transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(
make_unmerge_transform(make_tuple(M / (MWaves * MPerWMMA), MWaves, MPerWMMA)),
make_unmerge_transform(make_tuple(N / (NWaves * NPerWMMA), NWaves, NPerWMMA))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 2>{}, Sequence<3, 4, 5>{}));
return wmma_gemm
.MakeCDesc_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs(
c_grid_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma);
}
// transposed WMMA output C' = B' * A'
__host__ __device__ static constexpr auto
GetCBlockDescriptor_MRepeat_MWave_MThreadPerSubGroup_NRepeat_NWave_NSubGroup_NAccVgprs()
{
constexpr auto c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
Number<MWaves>{},
Number<MPerWMMA>{},
Number<NRepeat>{},
Number<NWaves>{},
Number<NPerWMMA>{}));
return wmma_gemm
.MakeCDesc_MBlockxRepeat_MWave_MThreadPerSubGroup_NBlockxRepeat_NWave_NSubGroup_NAccVgprs(
c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma);
}
// Provide dimension size
__host__ __device__ static constexpr auto
GetCBlockDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs()
{
constexpr auto c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
Number<MWaves>{},
Number<MPerWMMA>{},
Number<NRepeat>{},
Number<NWaves>{},
Number<NPerWMMA>{}));
return wmma_gemm
.MakeCDesc_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs(
c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma);
}
// Describe how data allocated in thread copy src buffer
// M0_M1_M2 = MRepeat_MWave_MPerWmma, N0_N1_N2 = NRepeat_NWave_NPerWmma
static constexpr ABlockDesc a_block_desc_k0_m0_m1_m2_k1;
static constexpr BBlockDesc b_block_desc_k0_n0_n1_n2_k1;
template <typename ABlockBuffer, typename BBlockBuffer, typename CThreadBuffer>
__device__ void Run(const ABlockBuffer& a_block_buf,
const BBlockBuffer& b_block_buf,
CThreadBuffer& c_thread_buf) const
{
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatA>(
a_thread_desc_.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatB>(
b_thread_desc_.GetElementSpaceSize());
static_assert(KPack % (A_K1 * A_KRow) == 0, "");
static_assert(KPack % (B_K1 * B_KRow) == 0, "");
// basic intrinsic to determine loopover direction
if constexpr(MRepeat < NRepeat)
{
static_for<0, KPerBlock / KPack, 1>{}(
[&](auto k) { // k=0,1,2 instead of k=0,kpack*1, ...
static_for<0, MRepeat, 1>{}([&](auto m0) {
// read A
a_thread_copy_.Run(
a_block_desc_k0_m0_m1_m2_k1,
make_tuple(Number<k * KPack / A_K1 / A_KRow>{}, m0, I0, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, m0, I0, I0, I0, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
// read B
b_thread_copy_.Run(
b_block_desc_k0_n0_n1_n2_k1,
make_tuple(Number<k * KPack / B_K1 / B_KRow>{}, n0, I0, I0, I0, I0),
b_block_buf,
b_thread_desc_,
make_tuple(I0, n0, I0, I0, I0, I0),
b_thread_buf);
vector_type<FloatA, KPack / A_KRow> a_thread_vec;
vector_type<FloatB, KPack / B_KRow> b_thread_vec;
static_for<0, KPack / A_KRow, 1>{}([&](auto i) {
a_thread_vec.template AsType<FloatA>()(i) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(i / A_K1, m0, 0, 0, 0, i % A_K1))>{}];
});
static_for<0, KPack / B_KRow, 1>{}([&](auto i) {
b_thread_vec.template AsType<FloatB>()(i) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(i / B_K1, n0, 0, 0, 0, i % B_K1))>{}];
});
using wmma_input_type_a =
typename vector_type<FloatA, WmmaK / A_KRow>::type;
using wmma_input_type_b =
typename vector_type<FloatB, WmmaK / B_KRow>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>(),
b_thread_vec.template AsType<wmma_input_type_b>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
}
else
{
static_for<0, NRepeat, 1>{}([&](auto n0) {
static_for<0, MRepeat, 1>{}([&](auto m0) {
static_for<0, KPerBlock / KPack, 1>{}([&](auto k) { // k=0,1,2 instead of
// k=0,kpack*1, ..
// read B
b_thread_copy_.Run(
b_block_desc_k0_n0_n1_n2_k1,
make_tuple(Number<k * KPack / B_K1 / B_KRow>{}, n0, I0, I0, I0, I0),
b_block_buf,
b_thread_desc_,
make_tuple(I0, n0, I0, I0, I0, I0),
b_thread_buf);
// read A
a_thread_copy_.Run(
a_block_desc_k0_m0_m1_m2_k1,
make_tuple(Number<k * KPack / A_K1 / A_KRow>{}, m0, I0, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, m0, I0, I0, I0, I0),
a_thread_buf);
vector_type<FloatA, KPack / A_KRow> a_thread_vec;
vector_type<FloatB, KPack / B_KRow> b_thread_vec;
static_for<0, KPack / A_KRow, 1>{}([&](auto i) {
a_thread_vec.template AsType<FloatA>()(i) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(i / A_K1, m0, 0, 0, 0, i % A_K1))>{}];
});
static_for<0, KPack / B_KRow, 1>{}([&](auto i) {
b_thread_vec.template AsType<FloatB>()(i) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(i / B_K1, n0, 0, 0, 0, i % B_K1))>{}];
});
using wmma_input_type_a =
typename vector_type<FloatA, WmmaK / A_KRow>::type;
using wmma_input_type_b =
typename vector_type<FloatB, WmmaK / B_KRow>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>(),
b_thread_vec.template AsType<wmma_input_type_b>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
}
}
protected:
static constexpr auto a_thread_desc_ = make_naive_tensor_descriptor(
make_tuple(Number<KPack / A_K1 / A_KRow>{}, Number<MRepeat>{}, I1, I1, I1, Number<A_K1>{}),
make_tuple(Number<A_K1>{},
Number<KPack / A_KRow>{},
Number<A_K1>{},
Number<A_K1>{},
Number<A_K1>{},
Number<1>{}));
static constexpr auto b_thread_desc_ = make_naive_tensor_descriptor(
make_tuple(Number<KPack / B_K1 / B_KRow>{}, Number<NRepeat>{}, I1, I1, I1, Number<B_K1>{}),
make_tuple(Number<B_K1>{},
Number<KPack / B_KRow>{},
Number<B_K1>{},
Number<B_K1>{},
Number<B_K1>{},
Number<1>{}));
// C[M, N, NumRegWMMA]
static constexpr auto c_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, wmma_gemm.GetRegSizePerWmma()));
template <bool EnableLds>
struct AThreadCopySelector;
template <>
struct AThreadCopySelector<true>
{
using type =
ThreadwiseTensorSliceTransfer_v4<FloatA,
FloatA,
decltype(a_block_desc_k0_m0_m1_m2_k1),
decltype(a_thread_desc_),
Sequence<KPack / A_K1 / A_KRow, 1, 1, 1, 1, A_K1>,
Sequence<0, 1, 2, 3, 4, 5>,
5,
A_K1,
A_K1>;
};
template <>
struct AThreadCopySelector<false>
{
using type = ThreadwiseTensorSliceTransfer_StaticToStatic_IntraRow<
FloatA,
FloatA,
decltype(a_block_desc_k0_m0_m1_m2_k1),
decltype(a_thread_desc_),
tensor_operation::element_wise::PassThrough,
Sequence<KPack / A_K1 / A_KRow, 1, 1, 1, 1, A_K1>,
Sequence<0, 1, 2, 3, 4, 5>,
5,
A_K1,
false>;
};
template <bool EnableLds>
struct BThreadCopySelector;
template <>
struct BThreadCopySelector<true>
{
using type =
ThreadwiseTensorSliceTransfer_v4<FloatB,
FloatB,
decltype(b_block_desc_k0_n0_n1_n2_k1),
decltype(b_thread_desc_),
Sequence<KPack / B_K1 / B_KRow, 1, 1, 1, 1, B_K1>,
Sequence<0, 1, 2, 3, 4, 5>,
5,
B_K1,
B_K1>;
};
template <>
struct BThreadCopySelector<false>
{
using type = ThreadwiseTensorSliceTransfer_StaticToStatic_IntraRow<
FloatB,
FloatB,
decltype(b_block_desc_k0_n0_n1_n2_k1),
decltype(b_thread_desc_),
tensor_operation::element_wise::PassThrough,
Sequence<KPack / B_K1 / B_KRow, 1, 1, 1, 1, B_K1>,
Sequence<0, 1, 2, 3, 4, 5>,
5,
B_K1,
false>;
};
typename AThreadCopySelector<AEnableLds>::type a_thread_copy_;
typename BThreadCopySelector<BEnableLds>::type b_thread_copy_;
};
#else
template <index_t BlockSize, template <index_t BlockSize,
typename FloatA, typename FloatA,
typename FloatB, typename FloatB,
...@@ -527,5 +1025,6 @@ struct BlockwiseGemmWMMA ...@@ -527,5 +1025,6 @@ struct BlockwiseGemmWMMA
typename AThreadCopySelector<AEnableLds>::type a_thread_copy_; typename AThreadCopySelector<AEnableLds>::type a_thread_copy_;
typename BThreadCopySelector<BEnableLds>::type b_thread_copy_; typename BThreadCopySelector<BEnableLds>::type b_thread_copy_;
}; };
#endif
} // namespace ck } // namespace ck
...@@ -487,7 +487,14 @@ struct BlockwiseGemmXdlopsInterwave_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1 ...@@ -487,7 +487,14 @@ struct BlockwiseGemmXdlopsInterwave_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
// sync point. // sync point.
if constexpr(k.value != 0 || KPerInnerLoop == KPerThread) if constexpr(k.value != 0 || KPerInnerLoop == KPerThread)
{ {
#ifdef __gfx12__
asm volatile("\
s_barrier_signal -1 \n \
s_barrier_wait -1 \
" ::);
#else
asm volatile("s_barrier" ::); asm volatile("s_barrier" ::);
#endif
__builtin_amdgcn_sched_barrier(0); __builtin_amdgcn_sched_barrier(0);
} }
static_for<0, KPerInnerLoop, KPack>{}([&](auto k_) { static_for<0, KPerInnerLoop, KPack>{}([&](auto k_) {
......
...@@ -133,8 +133,13 @@ struct DeviceBatchedContractionMultipleD_Wmma_CShuffle ...@@ -133,8 +133,13 @@ struct DeviceBatchedContractionMultipleD_Wmma_CShuffle
static constexpr auto NWaves = NPerBlock / (NRepeat * NPerWmma); static constexpr auto NWaves = NPerBlock / (NRepeat * NPerWmma);
static constexpr auto WmmaK = K1 == 16 ? 32 : 16; static constexpr auto WmmaK = K1 == 16 ? 32 : 16;
static constexpr auto AEnableLds_auto = NWaves == 1 ? false : true; static constexpr auto MaxVectorLoadA = K1 * sizeof(ADataType) == 16 ? true : false;
static constexpr auto BEnableLds_auto = MWaves == 1 ? false : true; static constexpr auto MaxVectorLoadB = K1 * sizeof(BDataType) == 16 ? true : false;
static constexpr auto AEnableLds_auto =
(NWaves == 1 && (MaxVectorLoadA || MRepeat == 1)) ? false : true;
static constexpr auto BEnableLds_auto =
(MWaves == 1 && (MaxVectorLoadB || NRepeat == 1)) ? false : true;
// If true, LDS is used unconditionally // If true, LDS is used unconditionally
static constexpr auto AEnableLds_manu = false; static constexpr auto AEnableLds_manu = false;
...@@ -829,7 +834,7 @@ struct DeviceBatchedContractionMultipleD_Wmma_CShuffle ...@@ -829,7 +834,7 @@ struct DeviceBatchedContractionMultipleD_Wmma_CShuffle
static bool IsSupportedArgument(const Argument& arg) static bool IsSupportedArgument(const Argument& arg)
{ {
if(ck::is_gfx11_supported()) if(ck::is_gfx11_supported() || ck::is_gfx12_supported())
{ {
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, int32_t>)) if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, int32_t>))
{ {
...@@ -869,11 +874,15 @@ struct DeviceBatchedContractionMultipleD_Wmma_CShuffle ...@@ -869,11 +874,15 @@ struct DeviceBatchedContractionMultipleD_Wmma_CShuffle
} }
else else
{ {
if(!(arg.a_kz_stride_ == 1 && if(!(arg.a_kz_stride_ == 1))
arg.a_grid_desc_.GetLength(I2) % ABlockTransferSrcScalarPerVector == 0))
{ {
printf("DeviceOp: Vector Access A-k check failure\n"); index_t LastK =
return false; AEnableLds ? arg.a_grid_desc_.GetLength(I2) : arg.a_grid_desc_.GetLength(I6);
if(LastK % ABlockTransferSrcScalarPerVector == 0)
{
printf("DeviceOp: Vector Access A-k check failure\n");
return false;
}
} }
} }
......
...@@ -70,8 +70,9 @@ __global__ void ...@@ -70,8 +70,9 @@ __global__ void
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch, const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch,
const Block2CTileMap block_2_ctile_map) const Block2CTileMap block_2_ctile_map)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) || \ #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) || \
defined(__gfx90a__) || defined(__gfx94__) || defined(__gfx103__) || defined(__gfx11__)) defined(__gfx90a__) || defined(__gfx94__) || defined(__gfx103__) || defined(__gfx11__) || \
defined(__gfx12__))
const index_t num_blocks_per_batch = const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count); __builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
...@@ -648,7 +649,7 @@ struct DeviceBatchedGemmMultipleD_Dl : public DeviceBatchedGemmMultiD<ALayout, ...@@ -648,7 +649,7 @@ struct DeviceBatchedGemmMultipleD_Dl : public DeviceBatchedGemmMultiD<ALayout,
static bool IsSupportedArgument(const Argument& arg) static bool IsSupportedArgument(const Argument& arg)
{ {
if(ck::get_device_name() == "gfx906" || ck::is_xdl_supported() || if(ck::get_device_name() == "gfx906" || ck::is_xdl_supported() ||
ck::is_gfx103_supported() || ck::is_gfx11_supported()) ck::is_gfx103_supported() || ck::is_gfx11_supported() || ck::is_gfx12_supported())
{ {
bool pass = true; bool pass = true;
pass = pass && arg.K_ % K1 == 0; pass = pass && arg.K_ % K1 == 0;
......
...@@ -56,7 +56,7 @@ __global__ void ...@@ -56,7 +56,7 @@ __global__ void
bool input_permute, bool input_permute,
bool output_permute) bool output_permute)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__)) #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))
// clang-format off // clang-format off
// *************************************************** // ***************************************************
...@@ -159,6 +159,7 @@ __global__ void ...@@ -159,6 +159,7 @@ __global__ void
ignore = O; ignore = O;
ignore = G0; ignore = G0;
ignore = G1; ignore = G1;
ignore = alpha;
ignore = input_permute; ignore = input_permute;
ignore = output_permute; ignore = output_permute;
#endif // end of if (defined(__gfx11__)) #endif // end of if (defined(__gfx11__))
...@@ -187,7 +188,7 @@ __global__ void ...@@ -187,7 +188,7 @@ __global__ void
index_t head_size, index_t head_size,
float alpha) float alpha)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__)) #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))
// clang-format off // clang-format off
// *************************************************** // ***************************************************
...@@ -321,7 +322,7 @@ __global__ void ...@@ -321,7 +322,7 @@ __global__ void
index_t head_size, index_t head_size,
float alpha) float alpha)
{ {
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__)) #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))
// clang-format off // clang-format off
// *************************************************** // ***************************************************
...@@ -858,7 +859,7 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle ...@@ -858,7 +859,7 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
static bool IsSupportedArgument(const RawArg& arg) static bool IsSupportedArgument(const RawArg& arg)
{ {
if(ck::is_gfx11_supported()) if(ck::is_gfx11_supported() || ck::is_gfx12_supported())
{ {
if constexpr(!(is_same_v<Acc0DataType, float> || is_same_v<Acc0DataType, int32_t>)) if constexpr(!(is_same_v<Acc0DataType, float> || is_same_v<Acc0DataType, int32_t>))
{ {
......
...@@ -592,9 +592,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle ...@@ -592,9 +592,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
return false; return false;
} }
if(ck::get_device_name() != "gfx90a" && ck::get_device_name() != "gfx940" && if(!ck::is_lds_direct_load_supported() && std::is_same<ADataType, double>::value)
ck::get_device_name() != "gfx941" && ck::get_device_name() != "gfx942" &&
std::is_same<ADataType, double>::value)
{ {
return false; return false;
} }
......
...@@ -1393,7 +1393,7 @@ struct DeviceConvNdBwdDataNwcKxcNwk_Dl ...@@ -1393,7 +1393,7 @@ struct DeviceConvNdBwdDataNwcKxcNwk_Dl
{ {
// check device // check device
if(!(ck::get_device_name() == "gfx906" || ck::is_gfx103_supported() || if(!(ck::get_device_name() == "gfx906" || ck::is_gfx103_supported() ||
ck::is_gfx11_supported())) ck::is_gfx11_supported() || ck::is_gfx12_supported()))
{ {
return false; return false;
} }
......
...@@ -509,7 +509,7 @@ struct DeviceFpAintBGemm_Wmma_CShuffle : public DeviceGemm_dequantB<ALayout, ...@@ -509,7 +509,7 @@ struct DeviceFpAintBGemm_Wmma_CShuffle : public DeviceGemm_dequantB<ALayout,
static bool IsSupportedArgument(const Argument& arg) static bool IsSupportedArgument(const Argument& arg)
{ {
if(ck::is_gfx11_supported()) if(ck::is_gfx11_supported() || ck::is_gfx12_supported())
{ {
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, ck::half_t> || if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, ck::half_t> ||
is_same_v<AccDataType, int32_t>)) is_same_v<AccDataType, int32_t>))
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment