Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
8df8a179
Commit
8df8a179
authored
Feb 10, 2025
by
mtgu0705
Browse files
Add Gemm fp8xint4 example and kernel, function pass.
parent
45d1c52e
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
432 additions
and
0 deletions
+432
-0
example/01_gemm/CMakeLists.txt
example/01_gemm/CMakeLists.txt
+1
-0
example/01_gemm/common.hpp
example/01_gemm/common.hpp
+23
-0
example/01_gemm/gemm_xdl_fp8_pk_i4_v3.cpp
example/01_gemm/gemm_xdl_fp8_pk_i4_v3.cpp
+348
-0
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
...or_operation/gpu/element/unary_element_wise_operation.hpp
+22
-0
include/ck/utility/amd_inline_asm.hpp
include/ck/utility/amd_inline_asm.hpp
+38
-0
No files found.
example/01_gemm/CMakeLists.txt
View file @
8df8a179
...
...
@@ -30,6 +30,7 @@ add_example_executable(example_gemm_xdl_fp8_v3 gemm_xdl_fp8_v3.cpp)
add_example_dependencies
(
example_gemm_xdl example_gemm_xdl_fp8_v3
)
add_example_executable
(
example_gemm_xdl_fp16_fp8_v3 gemm_xdl_fp16_fp8_v3.cpp
)
add_example_executable
(
example_gemm_xdl_fp16_pk_i4_v3 gemm_xdl_fp16_pk_i4_v3.cpp
)
add_example_executable
(
example_gemm_xdl_fp8_pk_i4_v3 gemm_xdl_fp8_pk_i4_v3.cpp
)
add_example_executable
(
example_gemm_xdl_fp16_pk_i4_v3_b_scale gemm_xdl_fp16_pk_i4_v3_b_scale.cpp
)
add_example_executable
(
example_gemm_xdl_bf16_pk_i4_v3 gemm_xdl_bf16_pk_i4_v3.cpp
)
add_example_dependencies
(
example_gemm_xdl example_gemm_xdl_fp16_fp8_v3
)
...
...
example/01_gemm/common.hpp
View file @
8df8a179
...
...
@@ -369,3 +369,26 @@ inline __host__ __device__ constexpr double get_atol()
return
1e-3
;
}
}
float
i4_to_f32_gfx9
(
uint8_t
i4
)
{
static
std
::
unordered_map
<
uint8_t
,
float
>
u
=
{
{
0b1000
,
-
0.5000
f
},
{
0b1001
,
-
0.4375
f
},
{
0b1010
,
-
0.3750
f
},
{
0b1011
,
-
0.3125
f
},
{
0b1100
,
-
0.2500
f
},
{
0b1101
,
-
0.1875
f
},
{
0b1110
,
-
0.1250
f
},
{
0b1111
,
-
0.0625
f
},
{
0b0
,
+
0.0000
f
},
{
0b1
,
+
0.0625
f
},
{
0b10
,
+
0.1250
f
},
{
0b11
,
+
0.1875
f
},
{
0b100
,
+
0.2500
f
},
{
0b101
,
+
0.3125
f
},
{
0b110
,
+
0.3750
f
},
{
0b111
,
+
0.4375
f
}};
return
u
[
i4
];
}
example/01_gemm/gemm_xdl_fp8_pk_i4_v3.cpp
0 → 100644
View file @
8df8a179
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3.hpp"
using
F8
=
ck
::
f8_t
;
using
I4
=
ck
::
pk_i4_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F8
;
using
BDataType
=
I4
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
F16
;
using
CDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
CLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
bool
PermuteA
=
false
;
static
constexpr
bool
PermuteB
=
true
;
static
constexpr
ck
::
index_t
KPerBlock
=
128
;
// clang-format off
using
DeviceGemmV2Instance
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_CShuffleV3
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
128
,
16
,
128
,
KPerBlock
,
16
,
32
,
16
,
16
,
1
,
4
,
S
<
8
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
0
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
32
,
32
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
4
,
ck
::
BlockGemmPipelineScheduler
::
Interwave
,
ck
::
BlockGemmPipelineVersion
::
v2
,
ADataType
,
ADataType
,
PermuteA
,
PermuteB
>
;
// clang-format on
template
<
typename
ProblemType
>
bool
run_gemm
(
const
ProblemType
&
problem_size
,
const
ExecutionConfig
&
config
)
{
using
namespace
ck
::
literals
;
auto
M
=
problem_size
.
M
;
auto
N
=
problem_size
.
N
;
auto
K
=
problem_size
.
K
;
auto
StrideA
=
problem_size
.
StrideA
;
auto
StrideB
=
problem_size
.
StrideB
;
auto
StrideC
=
problem_size
.
StrideC
;
auto
KBatch
=
problem_size
.
KBatch
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
constexpr
(
std
::
is_same_v
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
auto
f_get_default_stride
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
ck
::
index_t
stride
,
auto
layout
)
{
if
(
stride
==
-
1
)
{
// give a chance if stride is -1, return a default packed stride
if
constexpr
(
std
::
is_same_v
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
static_cast
<
std
::
size_t
>
(
col
);
}
else
{
return
static_cast
<
std
::
size_t
>
(
row
);
}
}
else
return
static_cast
<
std
::
size_t
>
(
stride
);
};
StrideA
=
f_get_default_stride
(
M
,
K
,
StrideA
,
ALayout
{});
StrideB
=
f_get_default_stride
(
K
,
N
,
StrideB
,
BLayout
{});
StrideC
=
f_get_default_stride
(
M
,
N
,
StrideC
,
CLayout
{});
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
BDataType
>
b_k_n_permute
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
switch
(
config
.
init_method
)
{
case
0
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{
1
});
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
break
;
case
2
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
break
;
case
3
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{
1
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
}
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_k_n_permute
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
// weight permute
if
constexpr
(
PermuteB
)
{
int
K1
=
KPerBlock
;
int
K0
=
K
/
KPerBlock
;
// int K0, N, K1
for
(
int
j
=
0
;
j
<
K0
;
j
++
)
{
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
for
(
int
jj
=
0
;
jj
<
K1
;
jj
++
)
{
b_k_n_permute
(
j
*
N
*
K1
+
i
*
K1
+
jj
)
=
b_k_n
(
i
*
K
+
(
j
*
K1
+
jj
));
}
}
}
}
else
{
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
for
(
int
j
=
0
;
j
<
K
;
j
++
)
{
b_k_n_permute
(
i
*
K
+
j
)
=
b_k_n
(
i
*
K
+
j
);
}
}
}
// vector pk_i4x4 permute
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
for
(
int
j
=
0
;
j
<
K
;
j
+=
8
)
{
int
input
[
8
];
for
(
int
k
=
0
;
k
<
4
;
k
++
)
{
int
i4x2
=
b_k_n_permute
(
j
+
k
*
2
,
i
).
data
;
input
[
k
*
2
+
0
]
=
(
i4x2
>>
4
)
&
0xf
;
input
[
k
*
2
+
1
]
=
(
i4x2
>>
0
)
&
0xf
;
}
// permute 01234567->20643175
{
int
hi
=
input
[
2
];
int
lo
=
input
[
0
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_k_n_permute
(
j
+
0
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
6
];
int
lo
=
input
[
4
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_k_n_permute
(
j
+
2
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
3
];
int
lo
=
input
[
1
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_k_n_permute
(
j
+
4
,
i
)
=
i4x2
;
}
{
int
hi
=
input
[
7
];
int
lo
=
input
[
5
];
int
i4x2
=
(
hi
<<
4
)
|
lo
;
b_k_n_permute
(
j
+
6
,
i
)
=
i4x2
;
}
}
}
a_m_k_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n_permute
.
mData
.
data
());
DeviceMem
workspace
;
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmV2Instance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
float
ave_time
=
0
;
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
KBatch
,
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cerr
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
true
;
}
bool
pass
=
true
;
if
(
config
.
do_verification
)
{
Tensor
<
float
>
b_k_n_f32
({
K
,
N
});
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
for
(
int
k
=
0
;
k
<
K
;
k
++
)
{
ck
::
pk_i4_t
i4x2
=
b_k_n
(
k
,
n
).
data
;
uint8_t
i4
=
0
;
if
(
k
%
2
==
1
)
i4
=
(
i4x2
.
data
>>
0
)
&
0xf
;
else
i4
=
(
i4x2
.
data
>>
4
)
&
0xf
;
float
v_b
=
i4_to_f32_gfx9
(
i4
);
b_k_n_f32
(
k
,
n
)
=
v_b
;
}
}
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
float
,
CDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n_f32
,
c_m_n_host_result
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
,
0
});
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
,
"Error: Incorrect results!"
,
get_rtol
<
CDataType
>
(),
get_atol
<
CDataType
>
());
}
if
(
config
.
time_kernel
)
{
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
,
0
,
20
,
50
,
true
,
50
});
std
::
size_t
flop
=
2
_uz
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
/
(
ck
::
is_same_v
<
ck
::
remove_cvref_t
<
BDataType
>
,
ck
::
pk_i4_t
>
?
2
:
1
)
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
#if 0
printf("B Matrix:\n");
for(int n = 0; n < N; n++)
{
for(int k = 0; k < K; k++)
{
ck::pk_i4_t i4x2 = b_k_n(k, n).data;
int8_t i4 = 0;
if(k % 2 == 1)
i4 = (i4x2.data >> 0) & 0xf;
else
i4 = (i4x2.data >> 4) & 0xf;
printf("%f (%d),", i4_to_f32_gfx9(i4), static_cast<int>(i4x2.data));
}
printf("\n");
}
#endif
return
pass
;
}
bool
run_gemm_splitk_example
(
int
argc
,
char
*
argv
[])
{
ProblemSizeSplitK
problem_size
;
ExecutionConfig
config
;
return
parse_cmd_args
(
argc
,
argv
,
problem_size
,
config
)
&&
run_gemm
(
problem_size
,
config
);
}
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_splitk_example
(
argc
,
argv
);
}
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
View file @
8df8a179
...
...
@@ -79,6 +79,15 @@ __device__ inline half4_t i4_to_half4_scale(int q, const ck::half2_t& scale)
return
res
.
template
AsType
<
half4_t
>()[
Number
<
0
>
{}];
}
__device__
inline
f8x8_t
i4_to_fp8x8
(
int
q
)
{
vector_type
<
f8_t
,
8
>
res
;
res
.
template
AsType
<
f8x8_t
>()(
Number
<
0
>
{})
=
amd_assembly_i4_to_fp8x2
(
q
);
return
res
.
template
AsType
<
f8x8_t
>()[
Number
<
0
>
{}];
}
__device__
inline
bhalf4_t
i4_to_bhalf4
(
int
q
)
{
uint32_t
i8s
=
(
q
&
0xf
)
|
((
q
&
0xf0
)
<<
4
)
|
((
q
&
0xf00
)
<<
8
)
|
((
q
&
0xf000
)
<<
12
);
...
...
@@ -142,6 +151,19 @@ struct PassThroughPack8
#endif
}
__host__
__device__
constexpr
void
operator
()(
ck
::
f8x8_t
&
y
,
const
ck
::
pk_i4x4_t
&
x
)
const
{
#if CK_USE_PK4_LAYOUT_SHUFFLE
vector_type
<
f8_t
,
8
>
result
;
result
.
template
AsType
<
f8x8_t
>()(
Number
<
0
>
{})
=
i4_to_fp8x8
(
bit_cast
<
int
>
(
x
));
y
=
result
.
template
AsType
<
f8x8_t
>()[
Number
<
0
>
{}];
#else
// Added pk_i4_t to f8x2_fnuz_t conversion
#endif
}
__host__
__device__
constexpr
void
operator
()(
ck
::
bhalf8_t
&
y
,
const
ck
::
pk_i4x4_t
&
x
)
const
{
#if CK_USE_PK4_LAYOUT_SHUFFLE
...
...
include/ck/utility/amd_inline_asm.hpp
View file @
8df8a179
...
...
@@ -32,6 +32,44 @@ inline __device__ half2_t amd_assembly_pk_add_f16(half2_t a, half2_t b)
return
c
;
}
inline
__device__
f8x8_t
amd_assembly_i4_to_fp8x2
(
int
a
)
{
uint32_t
i4x8
=
static_cast
<
uint32_t
>
(
a
);
uint32_t
fp8x4_0
;
uint32_t
fp8x4_1
;
float
tmp_0
,
tmp_1
,
tmp_2
;
asm
volatile
(
"v_cvt_off_f32_i4 %[v_tmp_0], %[v_src]
\n
"
"v_cvt_off_f32_i4 %[v_tmp_1], %[v_src], src0_sel:BYTE_2
\n
"
"v_cvt_pk_fp8_f32 %[v_dst_0], %[v_tmp_0], %[v_tmp_1]
\n
"
"v_cvt_off_f32_i4 %[v_tmp_0], %[v_src], src0_sel:BYTE_1
\n
"
"v_cvt_off_f32_i4 %[v_tmp_1], %[v_src], src0_sel:BYTE_3
\n
"
"v_cvt_pk_fp8_f32 %[v_dst_1], %[v_tmp_0], %[v_tmp_1]
\n
"
"v_lshrrev_b32 %[v_tmp_2], 4, %[v_src]
\n
"
"v_cvt_off_f32_i4 %[v_tmp_0], %[v_tmp_2]
\n
"
"v_cvt_off_f32_i4 %[v_tmp_1], %[v_tmp_2], src0_sel:BYTE_2
\n
"
"v_cvt_pk_fp8_f32 %[v_dst_0], %[v_tmp_0], %[v_tmp_1], op_sel:[0, 0, 1]
\n
"
"v_cvt_off_f32_i4 %[v_tmp_0], %[v_tmp_2], src0_sel:BYTE_1
\n
"
"v_cvt_off_f32_i4 %[v_tmp_1], %[v_tmp_2], src0_sel:BYTE_3
\n
"
"v_cvt_pk_fp8_f32 %[v_dst_1], %[v_tmp_0], %[v_tmp_1], op_sel:[0, 0, 1]
\n
"
:
[
v_tmp_0
]
"+v"
(
tmp_0
),
[
v_tmp_1
]
"+v"
(
tmp_1
),
[
v_tmp_2
]
"+v"
(
tmp_2
),
[
v_dst_0
]
"+v"
(
fp8x4_0
),
[
v_dst_1
]
"+v"
(
fp8x4_1
),
[
v_src
]
"+v"
(
i4x8
)
:
);
union
{
uint64_t
as_uint64
;
f8x8_t
as_f8x8
;
}
convert
;
convert
.
as_uint64
=
(
static_cast
<
uint64_t
>
(
fp8x4_1
)
<<
32
)
|
fp8x4_0
;
return
convert
.
as_f8x8
;
}
// c0 += inner_product(a, b0)
// c1 += inner_product(a, b1)
__device__
void
amd_assembly_outer_product_1x2
(
float
a
,
float
b0
,
float
b1
,
float
&
c0
,
float
&
c1
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment