Commit 88b978c5 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'develop' into amd-develop

parents e4112de7 6fb1f4e0
resources:
repositories:
- repository: pipelines_repo
type: github
endpoint: ROCm
name: ROCm/ROCm
variables:
- group: common
- template: /.azuredevops/variables-global.yml@pipelines_repo
trigger:
batch: true
branches:
include:
- develop
paths:
exclude:
- .github
- docs
- '.*.y*ml'
- '*.md'
- Jenkinsfile
- LICENSE
pr:
autoCancel: true
branches:
include:
- develop
paths:
exclude:
- .github
- docs
- '.*.y*ml'
- '*.md'
- Jenkinsfile
- LICENSE
drafts: false
jobs:
- template: ${{ variables.CI_COMPONENT_PATH }}/composable_kernel.yml@pipelines_repo
......@@ -911,9 +911,8 @@ pipeline {
execute_args = """ cmake -D CMAKE_PREFIX_PATH=/opt/rocm \
-D CMAKE_CXX_COMPILER="${build_compiler()}" \
-D CMAKE_BUILD_TYPE=Release \
-D GPU_TARGETS="gfx90a;gfx1030;gfx1101" \
-D INSTANCES_ONLY=ON \
-DCMAKE_CXX_FLAGS=" -O3 " .. && make -j32 """
-DCMAKE_CXX_FLAGS=" -O3 " .. && make -j64 """
}
steps{
buildHipClangJobAndReboot(setup_cmd: "", build_cmd: "", no_reboot:true, build_type: 'Release', execute_cmd: execute_args)
......
rocm-docs-core==1.1.2
rocm-docs-core==1.2.0
sphinxcontrib-bibtex==2.6.2
......@@ -103,7 +103,7 @@ requests==2.31.0
# via
# pygithub
# sphinx
rocm-docs-core==1.1.2
rocm-docs-core==1.2.0
# via -r requirements.in
six==1.16.0
# via
......
add_example_executable(example_gemm_multiply_multiply_xdl_fp16 gemm_multiply_multiply_xdl_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/utility/blkgemmpipe_scheduler.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using FP8 = ck::f8_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using A0DataType = FP8;
using B0DataType = FP8;
using AccDataType = F32;
using CShuffleDataType = F32;
using D0DataType = F32;
using D1DataType = F32;
using DsDataType = ck::Tuple<D0DataType, D1DataType>;
using EDataType = F16;
using A0Layout = Row;
using B0Layout = Col;
using D0Layout = Row;
using D1Layout = Col;
using DsLayout = ck::Tuple<D0Layout, D1Layout>;
using ELayout = Row;
struct MultiplyMultiply
{
template <typename E, typename C, typename D0, typename D1>
__host__ __device__ constexpr void
operator()(E& e, const C& c, const D0& d0, const D1& d1) const;
template <>
__host__ __device__ constexpr void operator()<ck::half_t, float, float, float>(
ck::half_t& e, const float& c, const float& d0, const float& d1) const
{
const float x0_f = c * d0 * d1;
e = ck::type_convert<ck::half_t>(x0_f);
}
};
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = MultiplyMultiply;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_Xdl_CShuffle_V3
// clang-format off
///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
///######| | | | | Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
///######| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | S<C, D0, D1>|
///###### RRR
///< Row, Row, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 256, 256, 128, 64, 16, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Interwave, ck::BlockGemmPipelineVersion::v1, FP8>;
///###### RCR
< Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 256, 256, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Interwave, ck::BlockGemmPipelineVersion::v1, FP8>;
// clang-format on
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = K;
ck::index_t StrideB = K;
ck::index_t StrideD = 0;
ck::index_t StrideE = N;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 11)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideD = std::stoi(argv[9]);
StrideE = std::stoi(argv[10]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE\n");
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<A0DataType> a0_m_k(f_host_tensor_descriptor(M, K, StrideA, A0Layout{}));
Tensor<B0DataType> b0_k_n(f_host_tensor_descriptor(K, N, StrideB, B0Layout{}));
Tensor<D0DataType> d0_m_n(f_host_tensor_descriptor(M, N, StrideD, D0Layout{}));
Tensor<D1DataType> d1_m_n(f_host_tensor_descriptor(M, N, StrideD, D1Layout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a0_m_k: " << a0_m_k.mDesc << std::endl;
std::cout << "b0_k_n: " << b0_k_n.mDesc << std::endl;
std::cout << "d1_m_n: " << d1_m_n.mDesc << std::endl;
std::cout << "d0_m_n: " << d0_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a0_m_k.GenerateTensorValue(GeneratorTensor_2<A0DataType>{-2, 2});
b0_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{0, 2});
d0_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{0, 2});
d1_m_n.GenerateTensorValue(GeneratorTensor_2<D1DataType>{0, 2});
break;
default:
a0_m_k.GenerateTensorValue(GeneratorTensor_3<A0DataType>{0.0, 1.0});
b0_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{-0.5, 0.5});
d0_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{-0.5, 0.5});
d1_m_n.GenerateTensorValue(GeneratorTensor_3<D1DataType>{-0.5, 0.5});
}
DeviceMem a0_device_buf(sizeof(A0DataType) * a0_m_k.mDesc.GetElementSpaceSize());
DeviceMem b0_device_buf(sizeof(B0DataType) * b0_k_n.mDesc.GetElementSpaceSize());
DeviceMem d0_device_buf(sizeof(D0DataType) * d0_m_n.mDesc.GetElementSpaceSize());
DeviceMem d1_device_buf(sizeof(D1DataType) * d1_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a0_device_buf.ToDevice(a0_m_k.mData.data());
b0_device_buf.ToDevice(b0_k_n.mData.data());
d0_device_buf.ToDevice(d0_m_n.mData.data());
d1_device_buf.ToDevice(d1_m_n.mData.data());
e_device_buf.ToDevice(e_m_n_device_result.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
constexpr ck::index_t NumDTensor = DsDataType::Size();
constexpr auto I0 = ck::Number<0>{};
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument =
device_op.MakeArgument(a0_device_buf.GetDeviceBuffer(),
b0_device_buf.GetDeviceBuffer(),
std::array<const void*, NumDTensor>{d0_device_buf.GetDeviceBuffer(),
d1_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, NumDTensor>{I0, I0},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel, 20, 50});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(A0DataType) * M * K + sizeof(B0DataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
if(do_verification)
{
Tensor<CShuffleDataType> c_m_n({M, N});
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<A0DataType,
B0DataType,
CShuffleDataType,
AccDataType,
PassThrough,
PassThrough,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a0_m_k, b0_k_n, c_m_n, PassThrough{}, PassThrough{}, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), d0_m_n(m, n), d1_m_n(m, n));
}
}
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
return ck::utils::check_err(e_m_n_device_result, e_m_n_host_result) ? 0 : 1;
}
return 0;
}
......@@ -34,6 +34,7 @@ args:
if not equal to h, then this is GQA/MQA case
-s seqlen_q. if group-mode, means the average value of seqlen_q (default:3328)
total_seqlen_q = seqlen_q * batch, and seqlen_q per batch may vary
also with "-s=s0,s1,s2..." comma seperated int to set per batch seqlen(group-mode)
-s_k seqlen_k, -1 means equal to s (default:-1)
-d head dim for q, k (default:128)
-d_v head dim for v, -1 means equal to d (default:-1)
......
......@@ -44,11 +44,18 @@ auto create_args(int argc, char* argv[])
"-1",
"num of head, for k/v, -1 means equal to h\n"
"if not equal to h, then this is GQA/MQA case")
.insert("s",
"3328",
"seqlen_q. if group-mode, means the average value of seqlen_q\n"
"total_seqlen_q = seqlen_q * batch, and seqlen_q per batch may vary")
.insert(
"s",
"3328",
"seqlen_q. if group-mode, means the average value of seqlen_q\n"
"total_seqlen_q = seqlen_q * batch, and seqlen_q per batch may vary\n"
"also with \"-s=s0,s1,s2...\" comma seperated int to set per batch seqlen(group-mode)")
.insert("s_k", "-1", "seqlen_k, -1 means equal to s")
.insert("s_kpad",
"-1",
"seqlen_k stride between 2 tokens, currently used in group-mode only\n"
"for kv-cache case, each batch [1,s,h,d]/[1,h,s,d] can have a stride\n"
"along seqlen, instead of packed. same as xformer kv_padding")
.insert("d", "128", "head dim for q, k")
.insert("d_v", "-1", "head dim for v, -1 means equal to d")
.insert("scale_s",
......@@ -103,6 +110,7 @@ auto create_args(int argc, char* argv[])
"11939",
"random seed used for initializing input tensors. 0 for "
"non-deterministic seed")
.insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer")
.insert("warmup", "5", "number of iterations before benchmark the kernel")
.insert("repeat", "20", "number of iterations to benchmark the kernel");
......@@ -177,10 +185,20 @@ bool run(const ck_tile::ArgParser& arg_parser)
return false;
}
ck_tile::index_t seqlen_q = arg_parser.get_int("s");
ck_tile::index_t seqlen_k = arg_parser.get_int("s_k");
if(seqlen_k < 0)
seqlen_k = seqlen_q;
auto [seqlen_qs, seqlen_ks, seqlen_kpads] = decode_seqlen(mode,
batch,
arg_parser.get_str("s"),
arg_parser.get_str("s_k"),
arg_parser.get_str("s_kpad"));
#if 0
// clang-format off
std::cout << "seqlen_qs:"; for(auto xx : seqlen_qs) { std::cout << xx << ","; } std::cout << std::endl;
std::cout << "seqlen_ks:"; for(auto xx : seqlen_ks) { std::cout << xx << ","; } std::cout << std::endl;
std::cout << "seqlen_kpads:"; for(auto xx : seqlen_kpads) { std::cout << xx << ","; } std::cout << std::endl;
// clang-format on
#endif
ck_tile::index_t hdim_q = arg_parser.get_int("d");
ck_tile::index_t hdim_v = arg_parser.get_int("d_v");
if(hdim_v < 0)
......@@ -229,7 +247,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
bool lse = arg_parser.get_bool("lse");
bias_info bias = bias_info::decode(arg_parser.get_str("bias"));
mask_info mask = mask_info::decode(arg_parser.get_str("mask"), seqlen_q, seqlen_k);
mask_info mask = mask_info::decode(
arg_parser.get_str("mask"), seqlen_qs[0], seqlen_ks[0]); // TODO: we don't need x/y anymore
std::string init_method = arg_parser.get_str("init");
std::optional<uint32_t> seed = arg_parser.get_uint32("seed");
......@@ -242,11 +261,16 @@ bool run(const ck_tile::ArgParser& arg_parser)
int stream_repeat = arg_parser.get_int("repeat");
bool kname = arg_parser.get_bool("kname");
ck_tile::stream_config stream_config{
nullptr, true, /* log_level = */ (kname ? 1 : 0), stream_warmup, stream_repeat};
ck_tile::stream_config stream_config{nullptr,
true,
/* log_level = */ (kname ? 1 : 0),
stream_warmup,
stream_repeat,
arg_parser.get_str("timer") == std::string("gpu")};
const auto seqstart_q_host = generate_seqstarts(mode, batch, seqlen_q);
const auto seqstart_k_host = generate_seqstarts(mode, batch, seqlen_k);
const auto seqstart_q_host = to_seqstarts(seqlen_qs);
const auto seqstart_k_host = to_seqstarts(seqlen_ks);
const auto seqstart_k_with_padding_host = to_seqstarts(seqlen_kpads);
using TypeConfig = FmhaFwdTypeConfig<DataType>;
......@@ -302,9 +326,11 @@ bool run(const ck_tile::ArgParser& arg_parser)
// host memory for storing all the tensor elements
const ck_tile::index_t shape_batch = (mode == mode_enum::batch ? batch : 1);
const ck_tile::index_t shape_seqlen_q =
(mode == mode_enum::batch ? seqlen_q : seqstart_q_host.back());
(mode == mode_enum::batch ? seqlen_qs[0] : seqstart_q_host.back());
const ck_tile::index_t shape_seqlen_k =
(mode == mode_enum::batch ? seqlen_k : seqstart_k_host.back());
(mode == mode_enum::batch ? seqlen_ks[0]
: (seqlen_kpads[0] < 0 ? seqstart_k_host.back()
: seqstart_k_with_padding_host.back()));
ck_tile::HostTensor<QDataType> q_host(
get_lengths(i_perm, shape_batch, nhead, shape_seqlen_q, hdim_q));
......@@ -407,6 +433,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
ck_tile::DeviceMem o_buf(o_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem seqstart_q(seqstart_q_host.size() * sizeof(int32_t));
ck_tile::DeviceMem seqstart_k(seqstart_k_host.size() * sizeof(int32_t));
ck_tile::DeviceMem seqlen_k_buf(seqlen_kpads[0] < 0 ? 0 : seqlen_ks.size() * sizeof(int32_t));
ck_tile::DeviceMem alibi_slope_buf(alibi_slope_host.get_element_space_size_in_bytes());
q_buf.ToDevice(q_host.data());
......@@ -414,7 +441,9 @@ bool run(const ck_tile::ArgParser& arg_parser)
v_buf.ToDevice(v_host.data());
bias_buf.ToDevice(bias_host.data());
seqstart_q.ToDevice(seqstart_q_host.data());
seqstart_k.ToDevice(seqstart_k_host.data());
seqstart_k.ToDevice(seqlen_kpads[0] < 0 ? seqstart_k_host.data()
: seqstart_k_with_padding_host.data());
seqlen_k_buf.ToDevice(seqlen_kpads[0] < 0 ? nullptr : seqlen_ks.data());
alibi_slope_buf.ToDevice(alibi_slope_host.data());
// clang-format off
......@@ -430,7 +459,9 @@ bool run(const ck_tile::ArgParser& arg_parser)
const std::string prec = arg_parser.get_str("prec");
std::cout << "[" << prec << "|" << mode << "|" << io_layout(i_perm, o_perm) << "] b:" << batch
<< ", h:" << nhead << "/" << nhead_k << ", s:" << seqlen_q << "/" << seqlen_k
<< ", h:" << nhead << "/" << nhead_k << ", s:" << seqlen_qs[0] << "/" << seqlen_ks[0]
<< (seqlen_kpads[0] < 0 ? ""
: (std::string("(") + std::to_string(seqlen_kpads[0]) + ")"))
<< ", d:" << hdim_q << "/" << hdim_v << ", scale_s:" << scale_s << ", bias:" << bias
<< ", lse:" << lse << ", squant:" << squant << ", mask:" << mask << ", v:" << vlayout
<< std::flush;
......@@ -460,7 +491,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
return ck_tile::identity{};
}();
auto fmha_args = [&]() {
auto fmha_args = [&, k_paddings_ = seqlen_kpads]() {
assert(nhead % nhead_k == 0);
/// NOTE: we broadcast bias from [1, 1, seqlen_q, seqlen_k] to [batch, nhead, seqlen_q,
/// seqlen_k] in this example, hence both the 'batch_stride_bias' &
......@@ -506,7 +537,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
o_buf.GetDeviceBuffer(),
seqstart_q.GetDeviceBuffer(),
seqstart_k.GetDeviceBuffer(),
nullptr,
k_paddings_[0] < 0 ? nullptr : seqlen_k_buf.GetDeviceBuffer(),
shape_seqlen_q,
shape_seqlen_k,
batch,
......@@ -576,7 +607,10 @@ bool run(const ck_tile::ArgParser& arg_parser)
// adjust matrix index according to the mode
const ck_tile::index_t b = (mode == mode_enum::batch ? wb : 0);
const ck_tile::index_t query_offset = (mode == mode_enum::batch ? 0 : seqstart_q_host[wb]);
const ck_tile::index_t key_offset = (mode == mode_enum::batch ? 0 : seqstart_k_host[wb]);
const ck_tile::index_t key_offset =
(mode == mode_enum::batch
? 0
: (seqlen_kpads[0] < 0 ? seqstart_k_host[wb] : seqstart_k_with_padding_host[wb]));
const auto v_host_ref_lengths =
std::array<ck_tile::index_t, 3>{nhead, hdim_v, real_seqlen_k};
......@@ -661,7 +695,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
else
{
return ck_tile::Alibi<SaccDataType, true>{
0, real_seqlen_q, real_seqlen_k, ck_tile::AlibiMode::VERTICAL};
0, real_seqlen_q, real_seqlen_k, ck_tile::AlibiMode::FROM_BOTTOM_RIGHT};
}
}();
......@@ -671,7 +705,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
for(auto i_h = 0; i_h < nhead; i_h++)
{
SaccDataType current_slope = alibi_slope_host(i_b_slope, i_h);
alibi_host.slope = current_slope;
alibi_host.slope = alibi_host.mode == ck_tile::AlibiMode::VERTICAL ? current_slope
: -current_slope;
for(auto i_r = 0; i_r < real_seqlen_q; i_r++)
{
for(auto i_c = 0; i_c < real_seqlen_k; i_c++)
......
......@@ -78,6 +78,11 @@ BOOL_MAP = {
"f" : "false"
}
TILE_PARTITIONER_MAP = {
"shb" : "ck_tile::FmhaFwdTilePartitioner_SHB",
"hbs" : "ck_tile::FmhaFwdTilePartitioner_HBS",
}
DIRECTIONS = ["fwd"]
GEN_DIR = "" # in Cmake, have to generate files in same folder
......@@ -107,7 +112,7 @@ using fmha_trait_{F_idx} = ck_tile::TileFmhaTraits<{F_spad},
{F_dvpad},
{F_bias},
{F_lse},
{F_squant},
{F_squant},
{F_occupancy}>;
using fmha_mask_{F_idx} = {F_mask};
......@@ -136,7 +141,7 @@ using fmha_epilogue_{F_idx} =
{F_spad}, {F_dvpad}>>;
using fmha_kernel_{F_idx} =
ck_tile::FmhaFwdKernel<ck_tile::FmhaFwdTilePartitioner<fmha_shape_{F_idx}>,
ck_tile::FmhaFwdKernel<{F_tile_partitioner}<fmha_shape_{F_idx}>,
fmha_pipeline_{F_idx},
fmha_epilogue_{F_idx}>;
......@@ -154,7 +159,7 @@ float fmha_fwd_<trait_{F_idx}>(const ck_tile::stream_config& s, fmha_fwd_args a)
auto [kargs, grids] = fmha_fwd_create_kargs_and_grids<k_>(a);
constexpr dim3 blocks = k_::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
return ck_tile::launch_kernel<blocks.x, kBlockPerCu>(s, k_{{}}, grids, blocks, 0, kargs);
return ck_tile::launch_kernel(s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs));
}}
"""
......@@ -389,6 +394,12 @@ class FmhaFwdKernel:
F_pipeline : FmhaFwdPipeline
mask_impl : str
def get_tp(self) -> str:
if self.F_mode == 'group':
return 'hbs'
else:
return 'shb'
@property
def template(self) -> str:
kernel_body = str()
......@@ -413,7 +424,7 @@ class FmhaFwdKernel:
F_spad = BOOL_MAP[self.F_pipeline.F_spad],
F_skpad = BOOL_MAP[self.F_pipeline.F_skpad],
F_dpad = BOOL_MAP[self.F_pipeline.F_dpad],
F_dvpad = BOOL_MAP[self.F_pipeline.F_dvpad],
F_dvpad = BOOL_MAP[self.F_pipeline.F_dvpad],
F_bias = BIAS_MAP[self.F_pipeline.F_bias],
F_lse = BOOL_MAP[self.F_pipeline.F_lse],
F_squant = BOOL_MAP[self.F_pipeline.F_squant],
......@@ -421,12 +432,13 @@ class FmhaFwdKernel:
F_pipeline_enum = PIPELINE_ENUM_MAP[self.F_pipeline.tag],
F_mask = get_mask_map(self.mask_impl)[self.F_pipeline.F_mask],
F_mode = MODE_MAP[self.F_mode],
F_pipeline = PIPELINE_MAP[self.F_pipeline.tag])
F_pipeline = PIPELINE_MAP[self.F_pipeline.tag],
F_tile_partitioner = TILE_PARTITIONER_MAP[self.get_tp()])
@property
def name(self) -> str:
# TODO: we don't encode idx here
return f"fmha_{self.direction}_d{self.F_hdim}_{self.F_dtype}_{self.F_mode}_" +\
return f"fmha_{self.direction}_d{self.F_hdim}_{self.F_dtype}_{self.F_mode}_{self.get_tp()}_" + \
self.F_tile.name + '_' + self.F_pipeline.name
@property
......
......@@ -28,6 +28,7 @@ $EXE -prec=$prec -mode=$mode -b=2 -h=1 -d=$hdim -d_v=24 -s=3 -s_k=99 -bias=$bias
$EXE -prec=$prec -mode=$mode -b=3 -h=2 -h_k=1 -d=$hdim -s=200 -s_k=520 -bias=$bias -lse=$lse -iperm=$perm -operm=$perm -mask=t:128,30 -vlayout=$vlayout -kname=$KNAME $COMMON_ARGS
$EXE -prec=$prec -mode=$mode -b=2 -h=1 -d=$hdim -s=99 -s_k=32 -bias=$bias -lse=$lse -iperm=$perm -operm=$perm -mask=b:4,35 -vlayout=$vlayout -kname=$KNAME $COMMON_ARGS
$EXE -prec=$prec -mode=$mode -b=1 -h=2 -h_k=1 -d=$hdim -s=33 -s_k=0 -bias=$bias -lse=$lse -iperm=$perm -operm=$perm -mask=2 -vlayout=$vlayout -kname=$KNAME $COMMON_ARGS
$EXE -prec=$prec -mode=$mode -b=1 -h=2 -h_k=1 -d=$hdim -s=1 -s_k=10 -s_kpad=32 -bias=$bias -lse=$lse -iperm=$perm -operm=$perm -mask=2 -vlayout=$vlayout -kname=$KNAME $COMMON_ARGS
done
done
......
......@@ -4,12 +4,14 @@
#pragma once
#include <cstdint>
#include <cstdlib>
#include <optional>
#include <ostream>
#include <tuple>
#include <utility>
#include <vector>
#include <functional>
#include <string>
#include "ck_tile/core/container/span.hpp"
......@@ -37,12 +39,14 @@ std::vector<int32_t> to_seqstarts(ck_tile::span<const int32_t> seqlens)
std::vector<int32_t> generate_seqlens(mode_enum mode,
unsigned count,
int32_t seqlens_sum,
int32_t seqlen_avg,
int32_t seqlen_max = -1, // if not negative, clamp max
std::optional<unsigned> seed = std::nullopt)
{
assert(0 < count);
std::vector<int32_t> seqlens(count, seqlens_sum);
std::vector<int32_t> seqlens(
count, seqlen_max > 0 ? (seqlen_avg < seqlen_max ? seqlen_avg : seqlen_max) : seqlen_avg);
if(mode == mode_enum::group && 1 < count)
{
......@@ -55,7 +59,7 @@ std::vector<int32_t> generate_seqlens(mode_enum mode,
std::uniform_int_distribution<size_type> step_dist(1, count - 1);
auto next_step = std::bind(step_dist, std::ref(random_engine));
for(unsigned repeat = seqlens_sum * (count / 2); 0 < repeat; --repeat)
for(unsigned repeat = seqlen_avg * (count / 2); 0 < repeat; --repeat)
{
const size_type to_decrease = next_idx();
// make sure each elements of seqlens is always greater than 0
......@@ -66,6 +70,11 @@ std::vector<int32_t> generate_seqlens(mode_enum mode,
const size_type to_increase = (to_decrease + next_step()) % count;
if(seqlen_max > 0 && seqlens[to_increase] >= seqlen_max)
{
continue;
}
--seqlens[to_decrease];
++seqlens[to_increase];
}
......@@ -76,10 +85,91 @@ std::vector<int32_t> generate_seqlens(mode_enum mode,
std::vector<int32_t> generate_seqstarts(mode_enum mode,
unsigned count,
int32_t seqlens_sum,
int32_t seqlen_avg,
int32_t seqlen_max = -1,
std::optional<unsigned> seed = std::nullopt)
{
return to_seqstarts(generate_seqlens(mode, count, seqlens_sum, seed));
return to_seqstarts(generate_seqlens(mode, count, seqlen_avg, seqlen_max, seed));
}
/*
* decode the seqlen string from cmdline
* example (assume batch=3)
* q_val=1,2,3 k_val=4,5,6 -> OK
* q_val=1,2,3 -> OK, k same as q
* q_val=1,2 -> OK, q will rand remaining 1 element, k same as q
* q_val=1,2 k_val=4,5 -> OK, q/k will rand remaining 1 element
* q_val=1,2,3,4 -> OK, but ignore exceed one
*
* q_val=1,2 k_val=4,5,6 -> not OK, k must have same splits with q
* q_val=1,2 k_val=4 -> not OK, k must have same splits with q
*/
std::tuple<std::vector<ck_tile::index_t>,
std::vector<ck_tile::index_t>,
std::vector<ck_tile::index_t>>
decode_seqlen(mode_enum mode,
ck_tile::index_t batch,
std::string q_val,
std::string k_val,
std::string k_pad_val,
std::optional<unsigned> seed = std::nullopt)
{
#define _S2I_(str_) static_cast<ck_tile::index_t>(std::atoi((str_).c_str()))
if(mode == mode_enum::batch)
{
ck_tile::index_t q = _S2I_(q_val);
ck_tile::index_t k = _S2I_(k_val);
auto s_q = std::vector<ck_tile::index_t>(batch, q);
auto s_k = std::vector<ck_tile::index_t>(batch, k < 0 ? q : k);
auto s_kpad = std::vector<ck_tile::index_t>(batch, -1); // TODO: batch not support k_padding
return std::make_tuple(s_q, s_k, s_kpad);
}
else
{
ck_tile::index_t idx = 0;
std::string::size_type pos_q = 0;
std::string::size_type pos_k = 0;
std::string::size_type pos_kp = 0;
std::vector<ck_tile::index_t> s_q;
std::vector<ck_tile::index_t> s_k;
std::vector<ck_tile::index_t> s_kpad;
while(true)
{
auto found_q = q_val.find(',', pos_q);
auto found_k = k_val.find(',', pos_k);
auto found_kp = k_pad_val.find(',', pos_kp);
ck_tile::index_t q = _S2I_(
q_val.substr(pos_q, found_q == std::string::npos ? found_q : found_q - pos_q));
ck_tile::index_t k = _S2I_(
k_val.substr(pos_k, found_k == std::string::npos ? found_k : found_k - pos_k));
ck_tile::index_t kp = _S2I_(k_pad_val.substr(
pos_kp, found_kp == std::string::npos ? found_kp : found_kp - pos_kp));
s_q.push_back(q);
s_k.push_back(k < 0 ? q : k);
s_kpad.push_back(kp);
idx++;
if(found_q == std::string::npos || idx >= batch)
{
break;
}
pos_q = found_q + 1;
pos_k = found_k == std::string::npos ? pos_k : found_k + 1;
pos_kp = found_kp == std::string::npos ? pos_kp : found_kp + 1;
}
if(idx < batch)
{
auto rem_q = generate_seqlens(mode, batch - idx, s_q.back(), s_kpad.back(), seed);
auto rem_k = generate_seqlens(mode, batch - idx, s_k.back(), s_kpad.back(), seed);
s_q.insert(s_q.end(), rem_q.begin(), rem_q.end());
s_k.insert(s_k.end(), rem_k.begin(), rem_k.end());
s_kpad.insert(s_kpad.end(), batch - idx, s_kpad.back());
}
return std::make_tuple(s_q, s_k, s_kpad);
}
#undef _S2I_
}
int env_get_int(const char* var_name, int default_int)
......@@ -87,6 +177,6 @@ int env_get_int(const char* var_name, int default_int)
char* v = getenv(var_name);
int r = default_int;
if(v)
r = atoi(v);
r = std::atoi(v);
return r;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/cluster_descriptor.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v7r3.hpp"
#include "ck/utility/is_detected.hpp"
namespace ck {
// Thread-group level multi-source, multi-destination tensor slice data movement
// Assume:
// 1. All sources and destinations are DynamicBuffer
// 2. Same VectorDim and ScalerPerVector for all sources and destinations
// 3. DstInMemOps are per destination tensor
// 4. ThreadTransferSrcResetCoordinateAfterRunFlags are per source tensor
// 5. ThreadTransferDstResetCoordinateAfterRunFlags are per destination tensor
//
// Does following things to avoid scratch memory issue
// 1. Pass tensor descritpors by reference (or tuple of references)
// 2. Does not keep reference to tensor descriptor
// 3. Does not construct new tensor coordinate when call Run()
template <typename ThreadGroup,
typename SrcDatas,
typename DstDatas,
typename SrcDescs,
typename DstDescs,
typename ElementwiseOperation,
typename DstInMemOps, // Sequence<InMemoryDataOperationEnum ...>
typename SliceLengths,
typename ThreadClusterLengths,
typename ThreadClusterArrangeOrder,
typename SrcDimAccessOrder,
typename DstDimAccessOrder,
index_t SrcVectorDim,
index_t DstVectorDim,
typename SrcScalarPerVectors,
index_t DstScalarPerVector,
typename ThreadTransferSrcResetCoordinateAfterRunFlags,
typename ThreadTransferDstResetCoordinateAfterRunFlags,
index_t NumThreadScratch = 1>
struct ThreadGroupTensorSliceTransfer_v7r3
{
static constexpr index_t nDim =
remove_cvref_t<tuple_element_t<0, SrcDescs>>::GetNumOfDimension();
static constexpr index_t nSrc = remove_cvref_t<SrcDescs>::Size();
static constexpr index_t nDst = remove_cvref_t<DstDescs>::Size();
using Index = MultiIndex<nDim>;
static constexpr auto thread_slice_lengths = SliceLengths{} / ThreadClusterLengths{};
__device__ constexpr ThreadGroupTensorSliceTransfer_v7r3(
const SrcDescs& src_descs,
const StaticallyIndexedArray<Index, nSrc>& src_block_slice_origins,
const DstDescs& dst_descs,
const StaticallyIndexedArray<Index, nDst>& dst_block_slice_origins,
const ElementwiseOperation& element_op)
: threadwise_transfer_(src_descs,
StaticallyIndexedArray<Index, nSrc>{},
dst_descs,
StaticallyIndexedArray<Index, nDst>{},
element_op)
{
static_assert(nSrc == SrcDatas::Size() && nSrc == SrcDescs::Size() &&
nSrc == ThreadTransferSrcResetCoordinateAfterRunFlags::Size() &&
nDst == DstDatas::Size() && nDst == DstDescs::Size() &&
nDst == ThreadTransferDstResetCoordinateAfterRunFlags::Size(),
"wrong!");
static_for<0, nSrc, 1>{}([&](auto i) {
static_assert(
nDim == remove_cvref_t<tuple_element_t<i.value, SrcDescs>>::GetNumOfDimension(),
"wrong!");
});
static_for<0, nDst, 1>{}([&](auto i) {
static_assert(
nDim == remove_cvref_t<tuple_element_t<i.value, DstDescs>>::GetNumOfDimension(),
"wrong!");
});
static_assert(nDim == ThreadClusterLengths::Size() &&
nDim == ThreadClusterArrangeOrder::Size() &&
nDim == SrcDimAccessOrder::Size() && nDim == DstDimAccessOrder::Size(),
"wrong! nDim not consistent");
static_assert(
is_same<SliceLengths, decltype(thread_slice_lengths * ThreadClusterLengths{})>{},
"wrong! threads should be mapped to cover entire slicing window");
static_assert(ThreadGroup::GetNumOfThread() >= thread_cluster_desc_.GetElementSize(),
"wrong! ThreadGroup::GetNumOfThread() too small");
if(ThreadGroup::GetNumOfThread() == thread_cluster_desc_.GetElementSize() or
ThreadGroup::GetThreadId() < thread_cluster_desc_.GetElementSize())
{
const auto thread_cluster_idx = thread_cluster_desc_.CalculateBottomIndex(
make_multi_index(ThreadGroup::GetThreadId()));
const auto thread_data_idx_begin = thread_cluster_idx * thread_slice_lengths;
const auto src_thread_slice_origins = generate_tuple(
[&](auto i) { return src_block_slice_origins[i] + thread_data_idx_begin; },
Number<nSrc>{});
const auto dst_thread_slice_origins = generate_tuple(
[&](auto i) { return dst_block_slice_origins[i] + thread_data_idx_begin; },
Number<nDst>{});
threadwise_transfer_.SetSrcSliceOrigins(src_descs, src_thread_slice_origins);
threadwise_transfer_.SetDstSliceOrigins(dst_descs, dst_thread_slice_origins);
}
}
template <typename SrcBuffers, index_t ThreadScratchId = 0>
__device__ void RunRead(const SrcDescs& src_descs,
const SrcBuffers& src_bufs,
Number<ThreadScratchId> thread_scratch_id = Number<ThreadScratchId>{})
{
if(ThreadGroup::GetNumOfThread() == thread_cluster_desc_.GetElementSize() or
ThreadGroup::GetThreadId() < thread_cluster_desc_.GetElementSize())
{
threadwise_transfer_.RunRead(src_descs, src_bufs, thread_scratch_id);
}
}
template <typename T>
using is_tuple = decltype(std::declval<T&>().IsTuple());
template <typename DstBuffers, index_t ThreadScratchId = 0>
__device__ void RunWrite(const DstDescs& dst_descs,
DstBuffers dst_bufs,
Number<ThreadScratchId> thread_scratch_id = Number<ThreadScratchId>{})
{
if(ThreadGroup::GetNumOfThread() == thread_cluster_desc_.GetElementSize() or
ThreadGroup::GetThreadId() < thread_cluster_desc_.GetElementSize())
{
if constexpr(is_detected<is_tuple, decltype(dst_bufs)>::value)
threadwise_transfer_.RunWrite(dst_descs, dst_bufs, thread_scratch_id);
else
threadwise_transfer_.RunWrite(dst_descs, tie(dst_bufs), thread_scratch_id);
}
}
template <typename SrcBuffers, typename DstBuffers>
__device__ void Run(const SrcDescs& src_descs,
const SrcBuffers& src_bufs,
const DstDescs& dst_descs,
DstBuffers dst_bufs)
{
RunRead(src_descs, src_bufs);
RunWrite(dst_descs, dst_bufs);
}
template <index_t ISrc>
__device__ void
MoveSrcSliceWindow(const SrcDescs& src_descs, Number<ISrc> iSrc, const Index& step)
{
if(ThreadGroup::GetNumOfThread() == thread_cluster_desc_.GetElementSize() or
ThreadGroup::GetThreadId() < thread_cluster_desc_.GetElementSize())
{
threadwise_transfer_.MoveSrcSliceWindow(src_descs, iSrc, step);
}
}
__device__ void MoveSrcSliceWindow(const SrcDescs& src_descs, const Index& step)
{
static_for<0, SrcDescs::Size(), 1>{}(
[&](auto i) { MoveSrcSliceWindow(src_descs, i, step); });
}
template <index_t IDst>
__device__ void
MoveDstSliceWindow(const DstDescs& dst_descs, Number<IDst> iDst, const Index& step)
{
if(ThreadGroup::GetNumOfThread() == thread_cluster_desc_.GetElementSize() or
ThreadGroup::GetThreadId() < thread_cluster_desc_.GetElementSize())
{
threadwise_transfer_.MoveDstSliceWindow(dst_descs, iDst, step);
}
}
__device__ void MoveDstSliceWindow(const DstDescs& dst_descs, const Index& step)
{
static_for<0, DstDescs::Size(), 1>{}(
[&](auto i) { MoveDstSliceWindow(dst_descs, i, step); });
}
private:
static constexpr auto thread_cluster_desc_ =
make_cluster_descriptor(ThreadClusterLengths{}, ThreadClusterArrangeOrder{});
using ThreadwiseTransfer =
ThreadwiseTensorSliceTransfer_v7r3<SrcDatas,
DstDatas,
SrcDescs,
DstDescs,
ElementwiseOperation,
DstInMemOps,
decltype(thread_slice_lengths),
SrcDimAccessOrder,
DstDimAccessOrder,
SrcVectorDim,
DstVectorDim,
SrcScalarPerVectors,
DstScalarPerVector,
ThreadTransferSrcResetCoordinateAfterRunFlags,
ThreadTransferDstResetCoordinateAfterRunFlags,
NumThreadScratch>;
ThreadwiseTransfer threadwise_transfer_;
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v3_multi_d.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename DsDataType,
typename CDataType,
typename GemmAccDataType,
typename CShuffleDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
GemmSpecialization GemmSpec,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1,
index_t BK1,
index_t MPerXDL,
index_t NPerXDL,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
typename CDEShuffleBlockTransferScalarPerVectors,
BlockGemmPipelineScheduler BlkGemmPipeSched = BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion BlkGemmPipelineVer = BlockGemmPipelineVersion::v1,
typename ComputeTypeA = CDataType,
typename ComputeTypeB = ComputeTypeA,
typename LDSTypeA = ComputeTypeA,
typename LDSTypeB = ComputeTypeB>
struct DeviceGemmMultiD_Xdl_CShuffle_V3 : public DeviceGemmMultipleD<ALayout,
BLayout,
DsLayout,
CLayout,
ADataType,
BDataType,
DsDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>
{
static constexpr index_t NumDTensor = DsDataType::Size();
// GridwiseGemm
using GridwiseGemm = GridwiseGemmMultiD_xdl_cshuffle_v3<
ALayout,
BLayout,
DsLayout,
CLayout,
ADataType,
BDataType,
GemmAccDataType,
CShuffleDataType,
DsDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
GemmSpec,
BlockSize,
MPerBlock,
NPerBlock,
KPerBlock,
AK1,
BK1,
MPerXDL,
NPerXDL,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
false,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
false,
BBlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CDEShuffleBlockTransferScalarPerVectors,
BlkGemmPipeSched,
BlkGemmPipelineVer,
ComputeTypeA,
ComputeTypeB,
LDSTypeA,
LDSTypeB>;
using Argument = typename GridwiseGemm::Argument;
// Invoker
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
if(stream_config.log_level_ > 0)
{
arg.Print();
}
if(!GridwiseGemm::CheckValidity(arg))
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
}
index_t gdx, gdy, gdz;
std::tie(gdx, gdy, gdz) = GridwiseGemm::CalculateGridSize(arg.M, arg.N, arg.KBatch);
float ave_time = 0;
index_t k_grain = arg.KBatch * KPerBlock;
index_t K_split = (arg.K + k_grain - 1) / k_grain * KPerBlock;
const bool has_main_k_block_loop = GridwiseGemm::CalculateHasMainKBlockLoop(K_split);
const auto Run = [&](const auto& kernel) {
if(arg.KBatch > 1)
hipGetErrorString(hipMemsetAsync(arg.p_c_grid,
0,
arg.M * arg.N * sizeof(CDataType),
stream_config.stream_id_));
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(gdx, gdy, gdz), dim3(BlockSize), 0, arg);
};
constexpr index_t minimum_occupancy =
BlkGemmPipeSched == BlockGemmPipelineScheduler::Intrawave ? 1 : 2;
if(has_main_k_block_loop)
{
// Tail number always full
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1 ||
BlkGemmPipelineVer == BlockGemmPipelineVersion::v3)
{
#if 0
if(arg.KBatch > 1)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy>;
Run(kernel);
}
else
#endif
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
Run(kernel);
}
}
// Tail number could be One to Seven
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v2)
{
#if 0
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::One)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::One>;
Run(kernel);
}
else if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Full)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Full>;
Run(kernel);
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 2)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Two)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Two>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 3)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Three)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Three>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 4)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Four)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Four>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 5)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Five)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Five>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 6)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Six)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Six>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 7)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Seven)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Seven>;
Run(kernel);
}
}
}
else
#endif
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::One)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::One>;
Run(kernel);
}
else if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Full)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Full>;
Run(kernel);
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 2)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Two)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Two>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 3)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Three)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Three>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 4)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Four)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Four>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 5)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Five)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Five>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 6)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Six)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Six>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 7)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Seven)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Seven>;
Run(kernel);
}
}
}
}
// Tail number could be Odd or Even
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v4)
{
#if 0
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_2lds<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_2lds<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
else
#endif
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3_2lds<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3_2lds<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
else
{
#if 0
if(arg.KBatch > 1)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
else
#endif
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
}
else
{
// Tail number always 1
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1)
{
#if 0
if(arg.KBatch > 1)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
false,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy>;
Run(kernel);
}
else
#endif
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
false,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
Run(kernel);
}
}
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
if(!ck::is_xdl_supported())
{
return false;
}
if((arg.K % AK1 != 0 || arg.K % BK1 != 0) && !(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding ||
GemmSpec == GemmSpecialization::KPadding))
{
return false;
}
return GridwiseGemm::CheckValidity(arg);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const void* p_a,
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
std::array<index_t, NumDTensor> StrideDs,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
return Argument{static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
p_ds,
static_cast<CDataType*>(p_c),
M,
N,
K,
StrideA,
StrideB,
StrideDs,
StrideC,
1,
a_element_op,
b_element_op,
c_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
std::array<ck::index_t, NumDTensor> StrideDs,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
p_ds,
static_cast<CDataType*>(p_c),
M,
N,
K,
StrideA,
StrideB,
StrideDs,
StrideC,
1,
a_element_op,
b_element_op,
c_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
std::map<BlockGemmPipelineScheduler, std::string> BlkGemmPipelineSchedulerToString{
{BlockGemmPipelineScheduler::Intrawave, "Intrawave"},
{BlockGemmPipelineScheduler::Interwave, "Interwave"}};
std::map<BlockGemmPipelineVersion, std::string> BlkGemmPipelineVersionToString{
{BlockGemmPipelineVersion::v1, "v1"},
{BlockGemmPipelineVersion::v2, "v2"},
{BlockGemmPipelineVersion::v3, "v3"},
{BlockGemmPipelineVersion::v4, "v4"},
{BlockGemmPipelineVersion::v5, "v5"}};
// clang-format off
str << "DeviceGemmXdlUniversal"
<< "<"
<< getGemmSpecializationString(GemmSpec) << ", "
<< std::string(ALayout::name)[0]
<< std::string(BLayout::name)[0]
<< std::string(CLayout::name)[0]
<< ">"
<< " BlkSize: "
<< BlockSize << ", "
<< "BlkTile: "
<< MPerBlock<<"x"<<NPerBlock<<"x"<<KPerBlock << ", "
<< "WaveTile: "
<< MPerXDL<<"x"<<NPerXDL << ", "
<< "WaveMap: "
<< MXdlPerWave<<"x" << NXdlPerWave<<", "
<< "VmemReadVec: "
<< ABlockTransferSrcScalarPerVector<<"x"<<BBlockTransferSrcScalarPerVector<<", "
<< "BlkGemmPipelineScheduler: "
<< BlkGemmPipelineSchedulerToString[BlkGemmPipeSched] << ", "
<< "BlkGemmPipelineVersion: "
<< BlkGemmPipelineVersionToString[BlkGemmPipelineVer] << ", "
<< "BlkGemmPipelinePrefetchStages: "
<< GridwiseGemm::BlockwiseGemmPipe::PrefetchStages;
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_pipeline_xdlops_selector.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7r3.hpp"
#define DEBUG_LOG 0
namespace ck {
// Currently we do not have a elegant way to put single lds buffer & double lds buffer pipe in same
// kernel function Blockers:
// 1. Two separted declaration of __shared__ pointer is the key to make sure data access operate on
// two lds chunks.
// 2. Occupied __shared__ won't release until whole shader end, a.k.a AB and C may not use same lds
// buffer when we declare __shared__ inside blkgemmpipe
template <typename GridwiseGemm,
bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
index_t MinimumOccupancy = 1,
TailNumber TailNum = TailNumber::Full>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, MinimumOccupancy)
#endif
// __attribute__((amdgpu_waves_per_eu(1, 1)))
kernel_gemm_xdl_cshuffle_v3(typename GridwiseGemm::Argument karg)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
auto splitk_batch_offset = typename GridwiseGemm::SplitKBatchOffset(karg);
GridwiseGemm::template Run<HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
karg.p_a_grid + splitk_batch_offset.a_k_split_offset,
karg.p_b_grid + splitk_batch_offset.b_k_split_offset,
karg.p_ds_grid,
karg.p_c_grid,
p_shared,
karg,
karg.a_element_op,
karg.b_element_op,
karg.c_element_op);
#else
ignore = karg;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
template <typename GridwiseGemm,
bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
index_t MinimumOccupancy = 1,
TailNumber TailNum = TailNumber::Full>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, MinimumOccupancy)
#endif
// __attribute__((amdgpu_waves_per_eu(1, 1)))
kernel_gemm_xdl_cshuffle_v3_2lds(typename GridwiseGemm::Argument karg)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
// Pass two lds pointer is the key to tell compiler that ds_read/write
// operate on different lds chunk at same time without order dependecy
__shared__ char p_shared_0[GridwiseGemm::GetSharedMemoryNumberOfByte()];
__shared__ char p_shared_1[GridwiseGemm::GetSharedMemoryNumberOfByte()];
auto splitk_batch_offset = typename GridwiseGemm::SplitKBatchOffset(karg);
GridwiseGemm::template Run_2Lds<HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
karg.p_a_grid + splitk_batch_offset.a_k_split_offset,
karg.p_b_grid + splitk_batch_offset.b_k_split_offset,
karg.p_ds_grid,
karg.p_c_grid,
p_shared_0,
p_shared_1,
karg,
karg.a_element_op,
karg.b_element_op,
karg.c_element_op);
#else
ignore = karg;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename CDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
tensor_operation::device::GemmSpecialization GemmSpec,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1Value,
index_t BK1Value,
index_t MPerXdl,
index_t NPerXdl,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool AThreadTransferSrcResetCoordinateAfterRun,
index_t ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BThreadTransferSrcResetCoordinateAfterRun,
index_t BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
typename CDEShuffleBlockTransferScalarPerVectors,
BlockGemmPipelineScheduler BlkGemmPipeSched = BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion BlkGemmPipelineVer = BlockGemmPipelineVersion::v4,
typename ComputeTypeA = CDataType,
typename ComputeTypeB = ComputeTypeA,
typename LDSTypeA = ADataType,
typename LDSTypeB = BDataType>
struct GridwiseGemmMultiD_xdl_cshuffle_v3
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto I6 = Number<6>{};
static constexpr auto I7 = Number<7>{};
static constexpr auto CShuffleBlockTransferScalarPerVector_NPerBlock =
CDEShuffleBlockTransferScalarPerVectors{}[I0];
// K1 should be Number<...>
static constexpr auto AK0Number = Number<KPerBlock / AK1Value>{};
static constexpr auto BK0Number = Number<KPerBlock / BK1Value>{};
static constexpr auto AK1Number = Number<AK1Value>{};
static constexpr auto BK1Number = Number<BK1Value>{};
static constexpr index_t NumDTensor = DsDataType::Size();
static constexpr auto MakeDsGridPointer()
{
return generate_tuple(
[&](auto i) {
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
return static_cast<const DDataType*>(nullptr);
},
Number<NumDTensor>{});
}
using DsGridPointer = decltype(MakeDsGridPointer());
static constexpr index_t KPack = math::max(
math::lcm(AK1Number, BK1Number),
MfmaSelector<ComputeTypeA, MPerXdl, NPerXdl, ComputeTypeB>::selected_mfma.k_per_blk);
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
__host__ static auto CalculateGridSize(index_t M, index_t N, index_t KBatch)
{
return std::make_tuple(Block2CTileMap::CalculateGridSize(M, N), 1, KBatch);
}
__host__ static auto CalculateMPadded(index_t M)
{
return math::integer_least_multiple(M, MPerBlock);
}
__host__ static auto CalculateNPadded(index_t N)
{
return math::integer_least_multiple(N, NPerBlock);
}
__host__ static auto CalculateKPadded(index_t K)
{
return math::integer_divide_ceil(K, KPerBlock) * KPerBlock;
}
__host__ static auto CalculateAK0Padded(index_t K, index_t K_Batch = 1)
{
auto K_t = K_Batch * KPerBlock;
return (K + K_t - 1) / K_t * (KPerBlock / AK1Value);
}
__host__ static auto CalculateBK0Padded(index_t K, index_t K_Batch = 1)
{
auto K_t = K_Batch * KPerBlock;
return (K + K_t - 1) / K_t * (KPerBlock / BK1Value);
}
__host__ static auto CalculateKPadded(index_t K, index_t K_Batch = 1)
{
auto K_t = K_Batch * KPerBlock;
return (K + K_t - 1) / K_t * KPerBlock;
}
__host__ static auto CalculateKRead(index_t K, index_t K_Batch = 1)
{
constexpr auto KReadVec = math::lcm(AK1Number, BK1Number);
auto K_t = K_Batch * KReadVec;
return (K + K_t - 1) / K_t * KReadVec;
}
__host__ static auto CalculateMBlock(index_t M)
{
return math::integer_divide_ceil(M, MPerBlock);
}
__host__ static auto CalculateNBlock(index_t N)
{
return math::integer_divide_ceil(N, NPerBlock);
}
template <index_t MNXdlPerWave, index_t MNWaves, index_t MNPerXdl, typename TileDesc_K0_MN_K1>
__host__ __device__ static constexpr auto MakeGemmMmaTileDescriptor(const TileDesc_K0_MN_K1&)
{
constexpr index_t K0 = TileDesc_K0_MN_K1{}.GetLength(Number<0>{});
constexpr index_t K1 = TileDesc_K0_MN_K1{}.GetLength(Number<2>{});
return transform_tensor_descriptor(
TileDesc_K0_MN_K1{},
make_tuple(make_merge_transform_v3_division_mod(make_tuple(Number<K0>{}, Number<K1>{})),
make_unmerge_transform(make_tuple(
Number<MNXdlPerWave>{}, Number<MNWaves>{}, Number<MNPerXdl>{}))),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}),
make_tuple(Sequence<3>{}, Sequence<0, 1, 2>{}));
}
__device__ static auto MakeAGridDescriptor_AK0_M_AK1(
index_t M, index_t MPad, index_t K, index_t KPad, index_t StrideA, index_t AK0)
{
const auto a_grid_desc_mraw_kraw = [&]() {
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
}
}();
using GemmSpecialization = tensor_operation::device::GemmSpecialization;
if constexpr(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both M and K
const auto a_grid_desc_m_k =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_right_pad_transform(M, MPad - M),
make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 = transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1Value)),
make_pass_through_transform(MPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad M, but not K
const auto a_grid_desc_ak0_m_ak1 = transform_tensor_descriptor(
a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1Value)),
make_right_pad_transform(M, MPad - M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad K, but not M
const auto a_grid_desc_m_k = transform_tensor_descriptor(
a_grid_desc_mraw_kraw,
make_tuple(make_pass_through_transform(M), make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 = transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1Value)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else
{
// not pad M or K
const auto a_grid_desc_ak0_m_ak1 = transform_tensor_descriptor(
a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1Value)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
}
__device__ static auto MakeBGridDescriptor_BK0_N_BK1(
index_t K, index_t KPad, index_t N, index_t NPad, index_t StrideB, index_t BK0)
{
const auto b_grid_desc_nraw_kraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(N, K), make_tuple(I1, StrideB));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(N, K), make_tuple(StrideB, I1));
}
}();
using GemmSpecialization = tensor_operation::device::GemmSpecialization;
if constexpr(GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both N and K
const auto b_grid_desc_n_k =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_right_pad_transform(N, NPad - N),
make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 = transform_tensor_descriptor(
b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1Value)),
make_pass_through_transform(NPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad N, but not K
const auto b_grid_desc_bk0_n_bk1 = transform_tensor_descriptor(
b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1Value)),
make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad K, but not N
const auto b_grid_desc_n_k = transform_tensor_descriptor(
b_grid_desc_nraw_kraw,
make_tuple(make_pass_through_transform(N), make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 = transform_tensor_descriptor(
b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1Value)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else
{
// not pad N or K
const auto b_grid_desc_bk0_n_bk1 = transform_tensor_descriptor(
b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1Value)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
}
template <typename ABlockDesc_AK0_M_AK1>
__host__ __device__ static constexpr auto
MakeAMmaTileDescriptor_M0_M1_M2_K(const ABlockDesc_AK0_M_AK1&)
{
constexpr index_t MWaves = MPerBlock / (MXdlPerWave * MPerXdl);
return MakeGemmMmaTileDescriptor<MXdlPerWave, MWaves, MPerXdl>(ABlockDesc_AK0_M_AK1{});
}
template <typename BBlockDesc_BK0_N_BK1>
__host__ __device__ static constexpr auto
MakeBMmaTileDescriptor_N0_N1_N2_K(const BBlockDesc_BK0_N_BK1&)
{
constexpr index_t NWaves = NPerBlock / (NXdlPerWave * NPerXdl);
return MakeGemmMmaTileDescriptor<NXdlPerWave, NWaves, NPerXdl>(BBlockDesc_BK0_N_BK1{});
}
template <typename ELayout>
__host__ __device__ static auto
MakeCGridDescriptor_M_N(index_t M, index_t MPad, index_t N, index_t NPad, index_t StrideC)
{
const auto c_grid_desc_mraw_nraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ELayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideC, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ELayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideC));
}
}();
using GemmSpecialization = tensor_operation::device::GemmSpecialization;
if constexpr(GemmSpec == GemmSpecialization::MNPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad M and N
return transform_tensor_descriptor(c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(M, MPad - M),
make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad M, but not N
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(M, MPad - M), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad N, but not M
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_pass_through_transform(M), make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
// not pad M or N
return c_grid_desc_mraw_nraw;
}
}
__host__ __device__ static auto MakeDsGridDescriptor_M_N(
index_t M, index_t MPad, index_t N, index_t NPad, std::array<index_t, NumDTensor> StrideDs)
{
return generate_tuple(
[&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
return MakeCGridDescriptor_M_N<DLayout>(M, MPad, N, NPad, StrideDs[i]);
},
Number<NumDTensor>{});
}
template <typename DsGridDesc>
__device__ static constexpr auto MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
const DsGridDesc& ds_grid_desc_m_n, index_t MBlock, index_t NBlock)
{
return generate_tuple(
[&](auto i) {
return MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
ds_grid_desc_m_n[i], MBlock, NBlock);
},
Number<NumDTensor>{});
}
using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N(0, 0, 0, 0, {}))>;
struct Problem
{
__host__ Problem(index_t M_,
index_t N_,
index_t K_,
index_t StrideA_,
index_t StrideB_,
std::array<index_t, NumDTensor> StrideDs_,
index_t StrideC_,
index_t KBatch_)
: M{M_},
N{N_},
K{K_},
StrideA{StrideA_},
StrideB{StrideB_},
StrideDs{StrideDs_},
StrideC{StrideC_},
KBatch{KBatch_},
MPadded{CalculateMPadded(M_)},
NPadded{CalculateNPadded(N_)},
KRead{CalculateKRead(K_, KBatch_)},
KPadded{CalculateKPadded(K_, KBatch_)},
AK0{CalculateAK0Padded(K_, KBatch_)},
BK0{CalculateBK0Padded(K_, KBatch_)},
MBlock{CalculateMBlock(M_)},
NBlock{CalculateNBlock(N_)}
{
}
__host__ void Print() const
{
std::cout << "problem {"
<< "M:" << M << ", "
<< "N:" << N << ", "
<< "K:" << K << ", "
<< "SA:" << StrideA << ", "
<< "SB:" << StrideB << ", "
<< "SC:" << StrideC << ", "
<< "MP:" << MPadded << ", "
<< "NP:" << NPadded << ", "
<< "KRead:" << KRead << ", "
<< "KP:" << KPadded << ", "
<< "AK0:" << AK0 << ", "
<< "BK0:" << BK0 << ", "
<< "MBlock: " << MBlock << ", "
<< "NBlock: " << NBlock << "}" << std::endl;
}
index_t M;
index_t N;
index_t K;
index_t StrideA;
index_t StrideB;
std::array<index_t, NumDTensor> StrideDs;
index_t StrideC;
index_t KBatch;
index_t MPadded;
index_t NPadded;
index_t KRead;
index_t KPadded;
index_t AK0;
index_t BK0;
index_t MBlock;
index_t NBlock;
};
// Argument
struct Argument : public tensor_operation::device::BaseArgument, public Problem
{
__host__ Argument(const ADataType* p_a_grid_,
const BDataType* p_b_grid_,
std::array<const void*, NumDTensor> p_ds_grid_,
CDataType* p_c_grid_,
index_t M_,
index_t N_,
index_t K_,
index_t StrideA_,
index_t StrideB_,
std::array<index_t, NumDTensor> StrideDs_,
index_t StrideC_,
index_t k_batch_,
AElementwiseOperation a_element_op_,
BElementwiseOperation b_element_op_,
CElementwiseOperation c_element_op_)
: Problem{M_, N_, K_, StrideA_, StrideB_, StrideDs_, StrideC_, k_batch_},
p_a_grid{p_a_grid_},
p_b_grid{p_b_grid_},
p_ds_grid{},
p_c_grid{p_c_grid_},
a_element_op{a_element_op_},
b_element_op{b_element_op_},
c_element_op{c_element_op_}
{
// populate pointer, desc for Ds
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DDataType_ = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
// D pointer
p_ds_grid(i) = static_cast<const DDataType_*>(p_ds_grid_[i]);
});
}
const ADataType* p_a_grid;
const BDataType* p_b_grid;
DsGridPointer p_ds_grid;
CDataType* p_c_grid;
const AElementwiseOperation a_element_op;
const BElementwiseOperation b_element_op;
const CElementwiseOperation c_element_op;
};
struct SplitKBatchOffset
{
__device__ SplitKBatchOffset(Argument& karg)
{
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
{
a_k_split_offset = blockIdx.z * karg.KRead;
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
a_k_split_offset = blockIdx.z * karg.KRead * karg.M;
}
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, BLayout>)
{
b_k_split_offset = blockIdx.z * karg.KRead * karg.N;
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, BLayout>)
{
b_k_split_offset = blockIdx.z * karg.KRead;
}
if(blockIdx.z < static_cast<uint32_t>(karg.KBatch - 1))
{
karg.K = karg.KRead;
}
else
{
karg.K = karg.K - karg.KRead * (karg.KBatch - 1);
}
}
index_t a_k_split_offset;
index_t b_k_split_offset;
};
__device__ static constexpr auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1()
{
// A matrix in LDS memory, dst of blockwise copy
if constexpr(ABlockLdsExtraM)
{
return make_naive_tensor_descriptor(
make_tuple(AK0Number, Number<MPerBlock>{}, AK1Number),
make_tuple(AK1Number, Number<KPerBlock + ABlockLdsExtraM>{}, I1));
}
// xor tensor transformation request more unnecessary vgpr usage, would cause register spill
// in some cases.
else if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
constexpr auto MLdsLayer = 32 * 4 / KPerBlock / sizeof(LDSTypeA) < 1
? 1
: 32 * 4 / KPerBlock / sizeof(LDSTypeA);
constexpr auto a_lds_block_desc = make_naive_tensor_descriptor(
make_tuple(
AK0Number * Number<MLdsLayer>{}, Number<MPerBlock / MLdsLayer>{}, AK1Number),
make_tuple(AK1Number, Number<KPerBlock * MLdsLayer>{}, I1));
constexpr auto a_lds_block_desc_permuted = transform_tensor_descriptor(
a_lds_block_desc,
make_tuple(make_xor_with_modulo_transform(make_tuple(
Number<MPerBlock / MLdsLayer>{}, Number<AK0Number * MLdsLayer>{})),
make_pass_through_transform(AK1Number)),
make_tuple(Sequence<1, 0>{}, Sequence<2>{}),
make_tuple(Sequence<1, 0>{}, Sequence<2>{}));
constexpr auto a_lds_block_desc_ak0_mldslayer_m_ak1 = transform_tensor_descriptor(
a_lds_block_desc_permuted,
make_tuple(make_unmerge_transform(make_tuple(AK0Number, Number<MLdsLayer>{})),
make_pass_through_transform(Number<MPerBlock / MLdsLayer>{}),
make_pass_through_transform(AK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}, Sequence<3>{}));
constexpr auto a_lds_block_desc_ak0_m_ak1 = transform_tensor_descriptor(
a_lds_block_desc_ak0_mldslayer_m_ak1,
make_tuple(make_pass_through_transform(AK0Number),
make_merge_transform_v3_division_mod(
make_tuple(Number<MPerBlock / MLdsLayer>{}, Number<MLdsLayer>{})),
make_pass_through_transform(AK1Number)),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
return a_lds_block_desc_ak0_m_ak1;
}
else // ColumnMajor A
{
// kfold and mpair dimension is not always required.
// more dimension in merge_transform increase the difficulty of generating immarg offset
// for compiler.
constexpr auto M0 = ABlockTransferThreadClusterLengths_AK0_M_AK1{}.At(I1);
constexpr auto M1 = MPerBlock / M0;
constexpr auto KThreadWrite = ABlockTransferThreadClusterLengths_AK0_M_AK1{}.At(I0);
constexpr auto K0PerThreadWrite = AK0Number / KThreadWrite;
constexpr auto KThreadRead = 64 / MPerXdl;
constexpr auto K0PerThreadRead = AK0Number / KThreadRead;
constexpr auto kfold = (AK1Number * M0 * sizeof(LDSTypeA) > 128)
? 1
: 128 / (AK1Number * M0 * sizeof(LDSTypeA));
constexpr auto KThreadReadPerm =
(kfold * K0PerThreadWrite / K0PerThreadRead) > 1
? KThreadRead / (kfold * K0PerThreadWrite / K0PerThreadRead)
: KThreadRead;
// 1<=mpair<=n0
constexpr auto mpair = (AK1Number * MPerXdl * sizeof(LDSTypeA) > 128)
? 1
: ((128 / (AK1Number * MPerXdl * sizeof(LDSTypeA))) > M0
? M0
: 128 / (AK1Number * MPerXdl * sizeof(LDSTypeA)));
constexpr auto a_lds_block_desc = make_naive_tensor_descriptor_packed(
make_tuple(Number<KThreadWrite / kfold / KThreadReadPerm>{},
Number<K0PerThreadWrite>{},
Number<KThreadReadPerm * M1>{},
Number<kfold * M0 / mpair>{},
Number<mpair>{},
AK1Number));
constexpr auto a_lds_block_desc_permuted = transform_tensor_descriptor(
a_lds_block_desc,
make_tuple(
make_pass_through_transform(Number<KThreadWrite / kfold / KThreadReadPerm>{}),
make_pass_through_transform(Number<K0PerThreadWrite>{}),
make_xor_with_modulo_transform(
make_tuple(Number<KThreadReadPerm * M1>{}, Number<kfold * M0 / mpair>{})),
make_pass_through_transform(Number<mpair>{}),
make_pass_through_transform(AK1Number)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4>{}, Sequence<5>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4>{}, Sequence<5>{}));
constexpr auto a_lds_block_desc_unmerged = transform_tensor_descriptor(
a_lds_block_desc_permuted,
make_tuple(
make_pass_through_transform(Number<KThreadWrite / kfold / KThreadReadPerm>{}),
make_pass_through_transform(Number<K0PerThreadWrite>{}),
make_unmerge_transform(make_tuple(Number<KThreadReadPerm>{}, Number<M1>{})),
make_unmerge_transform(make_tuple(Number<kfold>{}, Number<M0 / mpair>{})),
make_pass_through_transform(Number<mpair>{}),
make_pass_through_transform(AK1Number)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5>{}),
make_tuple(Sequence<1>{},
Sequence<2>{},
Sequence<0, 3>{},
Sequence<4, 5>{},
Sequence<6>{},
Sequence<7>{}));
constexpr auto a_lds_block_desc_ak0_m_ak1 = transform_tensor_descriptor(
a_lds_block_desc_unmerged,
make_tuple(make_merge_transform_v3_division_mod(
make_tuple(Number<KThreadReadPerm>{},
Number<KThreadWrite / kfold / KThreadReadPerm>{},
Number<kfold>{},
Number<K0PerThreadWrite>{})),
make_merge_transform_v3_division_mod(
make_tuple(Number<M0 / mpair>{}, Number<mpair>{}, Number<M1>{})),
make_pass_through_transform(AK1Number)),
make_tuple(Sequence<0, 1, 4, 2>{}, Sequence<5, 6, 3>{}, Sequence<7>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
return a_lds_block_desc_ak0_m_ak1;
}
}
__device__ static constexpr auto GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1()
{
// B matrix in LDS memory, dst of blockwise copy
if constexpr(BBlockLdsExtraN)
{
return make_naive_tensor_descriptor(
make_tuple(BK0Number, Number<NPerBlock>{}, BK1Number),
make_tuple(BK1Number, Number<KPerBlock + BBlockLdsExtraN>{}, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
// NLdsLayer * K0 as logical Bank
constexpr auto NLdsLayer = 32 * 4 / KPerBlock / sizeof(LDSTypeB) < 1
? 1
: 32 * 4 / KPerBlock / sizeof(LDSTypeB);
;
constexpr auto b_lds_block_desc = make_naive_tensor_descriptor(
make_tuple(
BK0Number * Number<NLdsLayer>{}, Number<NPerBlock / NLdsLayer>{}, BK1Number),
make_tuple(BK1Number, Number<KPerBlock * NLdsLayer>{}, I1));
constexpr auto b_lds_block_desc_permuted = transform_tensor_descriptor(
b_lds_block_desc,
make_tuple(make_xor_with_modulo_transform(make_tuple(
Number<NPerBlock / NLdsLayer>{}, Number<BK0Number * NLdsLayer>{})),
make_pass_through_transform(BK1Number)),
make_tuple(Sequence<1, 0>{}, Sequence<2>{}),
make_tuple(Sequence<1, 0>{}, Sequence<2>{}));
constexpr auto b_lds_block_desc_bk0_nldslayer_n_bk1 = transform_tensor_descriptor(
b_lds_block_desc_permuted,
make_tuple(make_unmerge_transform(make_tuple(BK0Number, Number<NLdsLayer>{})),
make_pass_through_transform(Number<NPerBlock / NLdsLayer>{}),
make_pass_through_transform(BK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}, Sequence<3>{}));
constexpr auto b_lds_block_desc_bk0_n_bk1 = transform_tensor_descriptor(
b_lds_block_desc_bk0_nldslayer_n_bk1,
make_tuple(make_pass_through_transform(BK0Number),
make_merge_transform_v3_division_mod(
make_tuple(Number<NPerBlock / NLdsLayer>{}, Number<NLdsLayer>{})),
make_pass_through_transform(BK1Number)),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
return b_lds_block_desc_bk0_n_bk1;
}
else // RowMajor B
{
constexpr auto N0 = BBlockTransferThreadClusterLengths_BK0_N_BK1{}.At(I1);
constexpr auto N1 = NPerBlock / N0;
constexpr auto KThreadWrite = BBlockTransferThreadClusterLengths_BK0_N_BK1{}.At(I0);
constexpr auto K0PerThreadWrite = BK0Number / KThreadWrite;
constexpr auto KThreadRead = 64 / NPerXdl;
constexpr auto K0PerThreadRead = BK0Number / KThreadRead;
constexpr auto kfold = (BK1Number * N0 * sizeof(LDSTypeB) > 128)
? 1
: 128 / (BK1Number * N0 * sizeof(LDSTypeB));
constexpr auto KThreadReadPerm =
(kfold * K0PerThreadWrite / K0PerThreadRead) > 1
? KThreadRead / (kfold * K0PerThreadWrite / K0PerThreadRead)
: KThreadRead;
// 1<=npair<=n0
constexpr auto npair = (BK1Number * NPerXdl * sizeof(LDSTypeB) > 128)
? 1
: ((128 / (BK1Number * NPerXdl * sizeof(LDSTypeB))) > N0
? N0
: 128 / (BK1Number * NPerXdl * sizeof(LDSTypeB)));
constexpr auto b_lds_block_desc = make_naive_tensor_descriptor_packed(
make_tuple(Number<KThreadWrite / kfold / KThreadReadPerm>{},
Number<K0PerThreadWrite>{},
Number<KThreadReadPerm * N1>{},
Number<kfold * N0 / npair>{},
Number<npair>{},
BK1Number));
constexpr auto b_lds_block_desc_permuted = transform_tensor_descriptor(
b_lds_block_desc,
make_tuple(
make_pass_through_transform(Number<KThreadWrite / kfold / KThreadReadPerm>{}),
make_pass_through_transform(Number<K0PerThreadWrite>{}),
make_xor_with_modulo_transform(
make_tuple(Number<KThreadReadPerm * N1>{}, Number<kfold * N0 / npair>{})),
make_pass_through_transform(Number<npair>{}),
make_pass_through_transform(BK1Number)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4>{}, Sequence<5>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2, 3>{}, Sequence<4>{}, Sequence<5>{}));
constexpr auto b_lds_block_desc_unmerged = transform_tensor_descriptor(
b_lds_block_desc_permuted,
make_tuple(
make_pass_through_transform(Number<KThreadWrite / kfold / KThreadReadPerm>{}),
make_pass_through_transform(Number<K0PerThreadWrite>{}),
make_unmerge_transform(make_tuple(Number<KThreadReadPerm>{}, Number<N1>{})),
make_unmerge_transform(make_tuple(Number<kfold>{}, Number<N0 / npair>{})),
make_pass_through_transform(Number<npair>{}),
make_pass_through_transform(BK1Number)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5>{}),
make_tuple(Sequence<1>{},
Sequence<2>{},
Sequence<0, 3>{},
Sequence<4, 5>{},
Sequence<6>{},
Sequence<7>{}));
constexpr auto b_lds_block_desc_bk0_n_bk1 = transform_tensor_descriptor(
b_lds_block_desc_unmerged,
make_tuple(make_merge_transform_v3_division_mod(
make_tuple(Number<KThreadReadPerm>{},
Number<KThreadWrite / kfold / KThreadReadPerm>{},
Number<kfold>{},
Number<K0PerThreadWrite>{})),
make_merge_transform_v3_division_mod(
make_tuple(Number<N0 / npair>{}, Number<npair>{}, Number<N1>{})),
make_pass_through_transform(BK1Number)),
make_tuple(Sequence<0, 1, 4, 2>{}, Sequence<5, 6, 3>{}, Sequence<7>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
return b_lds_block_desc_bk0_n_bk1;
}
}
__device__ static constexpr auto GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock()
{
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
make_naive_tensor_descriptor_packed(
make_tuple(I1,
Number<CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl>{},
I1,
Number<CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>{}));
return c_shuffle_block_desc_mblock_mperblock_nblock_nperblock;
}
using BlockwiseGemmPipe =
remove_cvref_t<decltype(BlockGemmPipeline_Selector<
BlkGemmPipelineVer,
BlkGemmPipeSched,
BlockSize,
LDSTypeA,
LDSTypeB,
ComputeTypeA,
AccDataType,
decltype(GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1()),
decltype(GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1()),
decltype(MakeAMmaTileDescriptor_M0_M1_M2_K(
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1())),
decltype(MakeBMmaTileDescriptor_N0_N1_N2_K(
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1())),
ABlockTransferSrcScalarPerVector,
BBlockTransferSrcScalarPerVector,
MPerBlock,
NPerBlock,
KPerBlock,
MPerXdl,
NPerXdl,
MXdlPerWave,
NXdlPerWave,
KPack>())>;
__device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
// lds max alignment
constexpr auto max_lds_align = math::lcm(AK1Number, BK1Number);
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size_aligned = math::integer_least_multiple(
b_block_desc_bk0_n_bk1.GetElementSpaceSize(), max_lds_align);
// LDS allocation for C shuffle in LDS
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
constexpr auto c_block_size =
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize();
return math::max((a_block_space_size_aligned * sizeof(LDSTypeA) +
b_block_space_size_aligned * sizeof(LDSTypeB)),
c_block_size * sizeof(CShuffleDataType));
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
__host__ static constexpr bool CheckValidity(const Argument& karg)
{
static_assert((MPerBlock % (MPerXdl * MXdlPerWave) == 0) &&
(NPerBlock % (NXdlPerWave * NPerXdl)) == 0,
"Invalid tuning param!");
if constexpr(!(GemmSpec == tensor_operation::device::GemmSpecialization::MPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding))
{
if(!(karg.M % MPerBlock == 0))
{
#if DEBUG_LOG
std::cout << "Arg M value is not a multiple of MPerBlock! M: " << karg.M << " "
<< __FILE__ << ":" << __LINE__ << ", in function: " << __func__
<< std::endl;
#endif // DEBUG_LOG
return false;
}
}
if constexpr(!(GemmSpec == tensor_operation::device::GemmSpecialization::NPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::NKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding))
{
if(!(karg.N % NPerBlock == 0))
{
#if DEBUG_LOG
std::cout << "Arg N value is not a multiple of NPerBlock! N: " << karg.N << " "
<< __FILE__ << ":" << __LINE__ << ", in function: " << __func__
<< std::endl;
#endif // DEBUG_LOG
return false;
}
}
if constexpr(!(GemmSpec == tensor_operation::device::GemmSpecialization::KPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::NKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding))
{
auto K_t = karg.KBatch * KPerBlock;
if(!(karg.K % K_t == 0))
{
#if DEBUG_LOG
std::cout << "Arg K value is not a multiple of K_Batch * K0PerBlock * K1! K: "
<< karg.K << " " << __FILE__ << ":" << __LINE__
<< ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
}
else
{
constexpr auto KReadVec = math::lcm(AK1Number, BK1Number);
auto K_t = karg.KBatch * KReadVec;
auto KReadPadSplited = math::integer_divide_ceil(karg.K, K_t) * KReadVec;
if((KReadPadSplited * (karg.KBatch - 1)) >= karg.K)
{
return false;
}
}
if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
if(karg.K % ABlockTransferSrcScalarPerVector != 0)
{
#if DEBUG_LOG
std::cout << "Arg K (" << karg.K
<< ") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<< ABlockTransferSrcScalarPerVector << " )! " << __FILE__ << ":"
<< __LINE__ << ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
}
else
{
if(karg.M % ABlockTransferSrcScalarPerVector != 0)
{
#if DEBUG_LOG
std::cout << "Arg M (" << karg.M
<< ") value is not a multiple of ABlockTransferSrcScalarPerVector ("
<< ABlockTransferSrcScalarPerVector << " )! " << __FILE__ << ":"
<< __LINE__ << ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
}
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
if(karg.N % BBlockTransferSrcScalarPerVector != 0)
{
#if DEBUG_LOG
std::cout << "Arg N (" << karg.N
<< ") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<< BBlockTransferSrcScalarPerVector << " )! " << __FILE__ << ":"
<< __LINE__ << ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
}
else
{
if(karg.K % BBlockTransferSrcScalarPerVector != 0)
{
#if DEBUG_LOG
std::cout << "Arg K (" << karg.K
<< ") value is not a multiple of BBlockTransferSrcScalarPerVector ("
<< BBlockTransferSrcScalarPerVector << " )! " << __FILE__ << ":"
<< __LINE__ << ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
}
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
{
if(karg.N % CShuffleBlockTransferScalarPerVector_NPerBlock != 0)
{
#if DEBUG_LOG
std::cout << "Arg N (" << karg.N
<< ") value is not a multiple of "
"CShuffleBlockTransferScalarPerVector_NPerBlock ("
<< CShuffleBlockTransferScalarPerVector_NPerBlock << " )! " << __FILE__
<< ":" << __LINE__ << ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
}
else
{
if(karg.M % CShuffleBlockTransferScalarPerVector_NPerBlock != 0)
{
#if DEBUG_LOG
std::cout << "Arg M (" << karg.M
<< ") value is not a multiple of "
"CShuffleBlockTransferScalarPerVector_NPerBlock ("
<< CShuffleBlockTransferScalarPerVector_NPerBlock << " )! " << __FILE__
<< ":" << __LINE__ << ", in function: " << __func__ << std::endl;
#endif // DEBUG_LOG
return false;
}
}
// check gridwise gemm pipeline
const auto num_k_loop = karg.AK0 / (KPerBlock / AK1Value);
if constexpr(BlkGemmPipelineVer != BlockGemmPipelineVersion::v1)
{
if(num_k_loop <= BlockwiseGemmPipe::PrefetchStages)
{
return false;
}
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / KPerBlock;
return BlockwiseGemmPipe::BlockHasHotloop(num_loop);
}
__host__ static constexpr TailNumber CalculateKBlockLoopTailNum(index_t K)
{
const index_t num_loop = K / KPerBlock;
return BlockwiseGemmPipe::BlockLoopTailNum(num_loop);
}
template <typename CGridDesc>
__device__ static constexpr auto MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
const CGridDesc& c_grid_desc_m_n, index_t MBlock, index_t NBlock)
{
const auto c_grid_desc_mblock_mperblock_nblock_nperblock = transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(MBlock, Number<MPerBlock>{})),
make_unmerge_transform(make_tuple(NBlock, Number<NPerBlock>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2, 3>{}));
return c_grid_desc_mblock_mperblock_nblock_nperblock;
}
// return block_id to C matrix tile idx (m0, n0) mapping
// if arch = gfx942
using Block2CTileMap = BlockToCTileMap_Grouped_M00_N0_M01Adapt<8, MPerBlock, NPerBlock>;
// using Block2CTileMap = BlockToCTileMap_3DGrid_KSplit<MPerBlock, NPerBlock>;
template <bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
TailNumber TailNum = TailNumber::Odd>
__device__ static void Run(const ADataType* p_a_grid,
const BDataType* p_b_grid,
DsGridPointer& p_ds_grid,
CDataType* p_c_grid,
void* p_shared,
const Problem& problem,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
const auto a_grid_desc_ak0_m_ak1 = MakeAGridDescriptor_AK0_M_AK1(
problem.M, problem.MPadded, problem.K, problem.KPadded, problem.StrideA, problem.AK0);
const auto b_grid_desc_bk0_n_bk1 = MakeBGridDescriptor_BK0_N_BK1(
problem.K, problem.KPadded, problem.N, problem.NPadded, problem.StrideB, problem.BK0);
const auto c_grid_desc_m_n = MakeCGridDescriptor_M_N<CLayout>(
problem.M, problem.MPadded, problem.N, problem.NPadded, problem.StrideC);
const auto c_grid_desc_mblock_mperblock_nblock_nperblock =
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c_grid_desc_m_n, problem.MBlock, problem.NBlock);
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_ak0_m_ak1.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_grid_desc_bk0_n_bk1.GetElementSpaceSize());
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_grid, c_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
// divide block work by [M, N]
const auto block_2_ctile_map = Block2CTileMap{problem.M, problem.N, 4};
const auto block_work_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!block_2_ctile_map.ValidCTileIndex(
block_work_idx,
make_tuple(c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I0),
c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I2))))
{
return;
}
const index_t block_m_id = __builtin_amdgcn_readfirstlane(block_work_idx[I0]);
const index_t block_n_id = __builtin_amdgcn_readfirstlane(block_work_idx[I1]);
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_m_id * MPerBlock);
const index_t n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_n_id * NPerBlock);
// lds max alignment
constexpr auto max_lds_align = math::lcm(AK1Number, BK1Number);
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
// A matrix blockwise copy
auto a_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
AElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<AK0Number, MPerBlock, AK1Number>,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ADataType,
LDSTypeA,
decltype(a_grid_desc_ak0_m_ak1),
decltype(a_block_desc_ak0_m_ak1),
ABlockTransferSrcAccessOrder,
Sequence<0, 1, 2>,
ABlockTransferSrcVectorDim,
2,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
1,
1,
AThreadTransferSrcResetCoordinateAfterRun,
true,
BlockwiseGemmPipe::GlobalBufferNum>(
a_grid_desc_ak0_m_ak1,
make_multi_index(0, m_block_data_idx_on_grid, 0),
a_element_op,
a_block_desc_ak0_m_ak1,
make_multi_index(0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// B matrix blockwise copy
auto b_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<BK0Number, NPerBlock, BK1Number>,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BDataType,
LDSTypeB,
decltype(b_grid_desc_bk0_n_bk1),
decltype(b_block_desc_bk0_n_bk1),
BBlockTransferSrcAccessOrder,
Sequence<0, 1, 2>,
BBlockTransferSrcVectorDim,
2,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
1,
1,
BThreadTransferSrcResetCoordinateAfterRun,
true,
BlockwiseGemmPipe::GlobalBufferNum>(
b_grid_desc_bk0_n_bk1,
make_multi_index(0, n_block_data_idx_on_grid, 0),
b_element_op,
b_block_desc_bk0_n_bk1,
make_multi_index(0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
// Cast after lds
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<LDSTypeA*>(p_shared), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<LDSTypeB*>(p_shared) +
a_block_space_size_aligned * sizeof(LDSTypeA) / sizeof(LDSTypeB),
b_block_desc_bk0_n_bk1.GetElementSpaceSize());
constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock / AK1Number, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(KPerBlock / BK1Number, 0, 0);
// Blockwise GEMM pipeline
static_assert(std::is_default_constructible_v<BlockwiseGemmPipe>);
auto blockwise_gemm_pipeline = BlockwiseGemmPipe{};
auto c_thread_buf = blockwise_gemm_pipeline.GetCThreadBuffer();
const index_t num_k_block_main_loop = __builtin_amdgcn_readfirstlane(
(a_grid_desc_ak0_m_ak1.GetLength(I0) * a_grid_desc_ak0_m_ak1.GetLength(I2)) /
KPerBlock);
blockwise_gemm_pipeline.template Run<HasMainKBlockLoop, TailNum>(a_grid_desc_ak0_m_ak1,
a_block_desc_ak0_m_ak1,
a_blockwise_copy,
a_grid_buf,
a_block_buf,
a_block_slice_copy_step,
b_grid_desc_bk0_n_bk1,
b_block_desc_bk0_n_bk1,
b_blockwise_copy,
b_grid_buf,
b_block_buf,
b_block_slice_copy_step,
c_thread_buf,
num_k_block_main_loop);
// shuffle C and write out
{
static_assert(MXdlPerWave % CShuffleMXdlPerWavePerShuffle == 0 &&
NXdlPerWave % CShuffleNXdlPerWavePerShuffle == 0,
"wrong!");
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
// TODO: hacky, fix it!
constexpr auto c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2 =
blockwise_gemm_pipeline.GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp =
blockwise_gemm_pipeline.GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
constexpr auto M0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I0);
constexpr auto N0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I1);
constexpr auto M1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I2);
constexpr auto N1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I3);
constexpr auto M2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I4);
constexpr auto M3 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I5);
constexpr auto M4 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I6);
constexpr auto N2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I7);
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
auto c_shuffle_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<CShuffleDataType*>(p_shared),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2 = transform_tensor_descriptor(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
make_tuple(
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleMXdlPerWavePerShuffle>{}, // M0 (MXdlPerWave) per shuffle
M1, // M1 = MWave
M2, // M2 * M3 * M4 = MPerXdl
M3,
M4)),
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleNXdlPerWavePerShuffle>{}, // N0 (NXdlPerWave) per shuffle
N1, // N1 = NWave
N2))), // N2 = NPerXdl
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(
Sequence<>{}, Sequence<0, 2, 4, 5, 6>{}, Sequence<>{}, Sequence<1, 3, 7>{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block =
blockwise_gemm_pipeline.CalculateCThreadOriginDataIndex(I0, I0, I0, I0);
const index_t m_thread_data_on_block = c_thread_mtx_on_block[I0];
const index_t n_thread_data_on_block = c_thread_mtx_on_block[I1];
const auto m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M0, M1, M2, M3, M4))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto m_thread_data_on_block_idx =
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor.CalculateBottomIndex(
make_multi_index(m_thread_data_on_block));
const auto n_thread_data_on_block_to_n0_n1_n2_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(N0, N1, N2))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
const auto n_thread_data_on_block_idx =
n_thread_data_on_block_to_n0_n1_n2_adaptor.CalculateBottomIndex(
make_multi_index(n_thread_data_on_block));
// shuffle: threadwise copy C from VGPR to LDS
auto c_thread_copy_vgpr_to_lds =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
CShuffleDataType,
decltype(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2),
decltype(c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2),
ck::tensor_operation::element_wise::PassThrough,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
I1,
I1,
M2,
I1,
M4,
I1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
7,
1,
InMemoryDataOperationEnum::Set,
1,
true>{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
make_multi_index(0,
0,
m_thread_data_on_block_idx[I1],
n_thread_data_on_block_idx[I1],
m_thread_data_on_block_idx[I2],
m_thread_data_on_block_idx[I3],
m_thread_data_on_block_idx[I4],
n_thread_data_on_block_idx[I2]),
ck::tensor_operation::element_wise::PassThrough{}};
using EDataType = CDataType;
const auto ds_grid_desc_m_n = MakeDsGridDescriptor_M_N(
problem.M, problem.MPadded, problem.N, problem.NPadded, problem.StrideDs);
const auto ds_grid_desc_mblock_mperblock_nblock_nperblock =
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
ds_grid_desc_m_n, problem.MBlock, problem.NBlock);
const auto ds_grid_buf = generate_tuple(
[&](auto i) {
return make_dynamic_buffer<AddressSpaceEnum::Global>(
p_ds_grid[i], ds_grid_desc_m_n[i].GetElementSpaceSize());
},
Number<NumDTensor>{});
// tuple of reference to C/Ds tensor descriptors
const auto c_ds_desc_refs = concat_tuple_of_reference(
tie(c_shuffle_block_desc_mblock_mperblock_nblock_nperblock),
generate_tie(
[&](auto i) -> const auto& // return type should be reference
{ return ds_grid_desc_mblock_mperblock_nblock_nperblock[i]; },
Number<NumDTensor>{}));
// tuple of reference to C/Ds tensor descriptors
const auto c_ds_buf_refs = concat_tuple_of_reference(
tie(c_shuffle_block_buf),
generate_tie(
[&](auto i) -> const auto& // return type should be reference
{ return ds_grid_buf[i]; },
Number<NumDTensor>{}));
// tuple of starting index of C/Ds blockwise copy
const auto idx_c_ds_block_begin = container_concat(
make_tuple(make_multi_index(0, 0, 0, 0)),
generate_tuple(
[&](auto) {
return make_multi_index(block_work_idx[I0], 0, block_work_idx[I1], 0);
},
Number<NumDTensor>{}));
const auto e_grid_desc_mblock_mperblock_nblock_nperblock =
c_grid_desc_mblock_mperblock_nblock_nperblock;
using CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock =
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock;
const auto EGlobalMemoryDataOperation = CGlobalMemoryDataOperation;
auto cde_block_copy_lds_and_global = ThreadGroupTensorSliceTransfer_v7r3<
ThisThreadBlock,
decltype(container_concat(make_tuple(CShuffleDataType{}), DsDataType{})),
Tuple<EDataType>,
decltype(c_ds_desc_refs),
decltype(tie(e_grid_desc_mblock_mperblock_nblock_nperblock)),
CElementwiseOperation,
Sequence<static_cast<index_t>(EGlobalMemoryDataOperation)>, // FIXME: make Sequence
// support arbitray type
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>, // BlockSliceLengths,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
Sequence<0, 1, 2, 3>, // typename ThreadClusterArrangeOrder,
Sequence<0, 1, 2, 3>, // typename SrcDimAccessOrder,
Sequence<0, 1, 2, 3>, // typename DstDimAccessOrder,
3, // index_t SrcVectorDim,
3, // index_t DstVectorDim,
CDEShuffleBlockTransferScalarPerVectors,
CShuffleBlockTransferScalarPerVector_NPerBlock,
sequence_merge_t<
Sequence<true>,
uniform_sequence_gen_t<NumDTensor,
false>>, // ThreadTransferSrcResetCoordinateAfterRunFlags
Sequence<false>> // ThreadTransferDstResetCoordinateAfterRunFlags
{c_ds_desc_refs,
idx_c_ds_block_begin,
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
make_tuple(make_multi_index(block_m_id, 0, block_n_id, 0)),
c_element_op};
// space filling curve for threadwise C in VGPR
constexpr auto sfc_c_vgpr =
SpaceFillingCurve<Sequence<MXdlPerWave, NXdlPerWave, 1, 1, M2, 1, M4, 1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
1,
1,
M2,
1,
M4,
1>>{};
constexpr index_t num_access = sfc_c_vgpr.GetNumOfAccess();
// space filling curve for shuffled blockwise C/D/E
constexpr auto sfc_cde_block =
SpaceFillingCurve<Sequence<1, MPerBlock, 1, NPerBlock>,
Sequence<0, 2, 1, 3>,
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>>{};
static_assert(num_access == sfc_cde_block.GetNumOfAccess(), "wrong!");
static_for<0, num_access, 1>{}([&](auto access_id) {
// make sure it's safe to write to LDS
block_sync_lds();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds.Run(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2,
sfc_c_vgpr.GetIndexTupleOfNumber(access_id),
c_thread_buf,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
c_shuffle_block_buf);
// make sure it's safe to read from LDS
block_sync_lds();
// each block copy its data from LDS to global
cde_block_copy_lds_and_global.Run(
c_ds_desc_refs,
c_ds_buf_refs,
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
tie(c_grid_buf));
if constexpr(access_id < num_access - 1)
{
constexpr auto cde_lds_and_global_step =
sfc_cde_block.GetForwardStep(access_id);
// move on Ds
static_for<0, NumDTensor, 1>{}([&](auto i) {
cde_block_copy_lds_and_global.MoveSrcSliceWindow(
c_ds_desc_refs, i + I1, cde_lds_and_global_step);
});
// move on E
cde_block_copy_lds_and_global.MoveDstSliceWindow(
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
I0,
cde_lds_and_global_step);
}
});
}
}
template <bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
TailNumber TailNum = TailNumber::Odd>
__device__ static void Run_2Lds(const ADataType* p_a_grid,
const BDataType* p_b_grid,
DsGridPointer& p_ds_grid,
CDataType* p_c_grid,
void* p_shared_0,
void* p_shared_1,
const Problem& problem,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
const auto a_grid_desc_ak0_m_ak1 = MakeAGridDescriptor_AK0_M_AK1(
problem.M, problem.MPadded, problem.K, problem.KPadded, problem.StrideA, problem.AK0);
const auto b_grid_desc_bk0_n_bk1 = MakeBGridDescriptor_BK0_N_BK1(
problem.K, problem.KPadded, problem.N, problem.NPadded, problem.StrideB, problem.BK0);
const auto c_grid_desc_m_n = MakeCGridDescriptor_M_N<CLayout>(
problem.M, problem.MPadded, problem.N, problem.NPadded, problem.StrideC);
const auto c_grid_desc_mblock_mperblock_nblock_nperblock =
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c_grid_desc_m_n, problem.MBlock, problem.NBlock);
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_ak0_m_ak1.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_grid_desc_bk0_n_bk1.GetElementSpaceSize());
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_grid, c_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
// divide block work by [M, N]
const auto block_2_ctile_map = Block2CTileMap{problem.M, problem.N, 4};
const auto block_work_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!block_2_ctile_map.ValidCTileIndex(
block_work_idx,
make_tuple(c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I0),
c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I2))))
{
return;
}
const index_t block_m_id = __builtin_amdgcn_readfirstlane(block_work_idx[I0]);
const index_t block_n_id = __builtin_amdgcn_readfirstlane(block_work_idx[I1]);
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_m_id * MPerBlock);
const index_t n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_n_id * NPerBlock);
// lds max alignment
constexpr auto max_lds_align = math::lcm(AK1Number, BK1Number);
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
// A matrix blockwise copy
auto a_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
AElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<AK0Number, MPerBlock, AK1Number>,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ADataType,
LDSTypeA,
decltype(a_grid_desc_ak0_m_ak1),
decltype(a_block_desc_ak0_m_ak1),
ABlockTransferSrcAccessOrder,
Sequence<0, 1, 2>,
ABlockTransferSrcVectorDim,
2,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
1,
1,
AThreadTransferSrcResetCoordinateAfterRun,
true,
BlockwiseGemmPipe::GlobalBufferNum>(
a_grid_desc_ak0_m_ak1,
make_multi_index(0, m_block_data_idx_on_grid, 0),
a_element_op,
a_block_desc_ak0_m_ak1,
make_multi_index(0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// B matrix blockwise copy
auto b_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<BK0Number, NPerBlock, BK1Number>,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BDataType,
LDSTypeB,
decltype(b_grid_desc_bk0_n_bk1),
decltype(b_block_desc_bk0_n_bk1),
BBlockTransferSrcAccessOrder,
Sequence<0, 1, 2>,
BBlockTransferSrcVectorDim,
2,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
1,
1,
BThreadTransferSrcResetCoordinateAfterRun,
true,
BlockwiseGemmPipe::GlobalBufferNum>(
b_grid_desc_bk0_n_bk1,
make_multi_index(0, n_block_data_idx_on_grid, 0),
b_element_op,
b_block_desc_bk0_n_bk1,
make_multi_index(0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
auto a_block_buf_ping = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<LDSTypeA*>(p_shared_0), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf_ping = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<LDSTypeB*>(p_shared_0) +
a_block_space_size_aligned * sizeof(LDSTypeA) / sizeof(LDSTypeB),
b_block_desc_bk0_n_bk1.GetElementSpaceSize());
auto a_block_buf_pong = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<LDSTypeA*>(p_shared_1), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf_pong = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<LDSTypeB*>(p_shared_1) +
a_block_space_size_aligned * sizeof(LDSTypeA) / sizeof(LDSTypeB),
b_block_desc_bk0_n_bk1.GetElementSpaceSize());
auto a_block_bufs = make_tuple(a_block_buf_ping, a_block_buf_pong);
auto b_block_bufs = make_tuple(b_block_buf_ping, b_block_buf_pong);
constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock / AK1Number, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(KPerBlock / BK1Number, 0, 0);
// Blockwise GEMM pipeline
static_assert(std::is_default_constructible_v<BlockwiseGemmPipe>);
auto blockwise_gemm_pipeline = BlockwiseGemmPipe{};
auto c_thread_buf = blockwise_gemm_pipeline.GetCThreadBuffer();
const index_t num_k_block_main_loop = __builtin_amdgcn_readfirstlane(
(a_grid_desc_ak0_m_ak1.GetLength(I0) * a_grid_desc_ak0_m_ak1.GetLength(I2)) /
KPerBlock);
blockwise_gemm_pipeline.template Run<HasMainKBlockLoop, TailNum>(a_grid_desc_ak0_m_ak1,
a_block_desc_ak0_m_ak1,
a_blockwise_copy,
a_grid_buf,
a_block_bufs,
a_block_slice_copy_step,
b_grid_desc_bk0_n_bk1,
b_block_desc_bk0_n_bk1,
b_blockwise_copy,
b_grid_buf,
b_block_bufs,
b_block_slice_copy_step,
c_thread_buf,
num_k_block_main_loop);
// shuffle C and write out
{
static_assert(MXdlPerWave % CShuffleMXdlPerWavePerShuffle == 0 &&
NXdlPerWave % CShuffleNXdlPerWavePerShuffle == 0,
"wrong!");
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
// TODO: hacky, fix it!
constexpr auto c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2 =
blockwise_gemm_pipeline.GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp =
blockwise_gemm_pipeline.GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
constexpr auto M0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I0);
constexpr auto N0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I1);
constexpr auto M1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I2);
constexpr auto N1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I3);
constexpr auto M2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I4);
constexpr auto M3 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I5);
constexpr auto M4 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I6);
constexpr auto N2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I7);
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
auto c_shuffle_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<CShuffleDataType*>(p_shared_0),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2 = transform_tensor_descriptor(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
make_tuple(
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleMXdlPerWavePerShuffle>{}, // M0 (MXdlPerWave) per shuffle
M1, // M1 = MWave
M2, // M2 * M3 * M4 = MPerXdl
M3,
M4)),
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleNXdlPerWavePerShuffle>{}, // N0 (NXdlPerWave) per shuffle
N1, // N1 = NWave
N2))), // N2 = NPerXdl
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(
Sequence<>{}, Sequence<0, 2, 4, 5, 6>{}, Sequence<>{}, Sequence<1, 3, 7>{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block =
blockwise_gemm_pipeline.CalculateCThreadOriginDataIndex(I0, I0, I0, I0);
const index_t m_thread_data_on_block = c_thread_mtx_on_block[I0];
const index_t n_thread_data_on_block = c_thread_mtx_on_block[I1];
const auto m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M0, M1, M2, M3, M4))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto m_thread_data_on_block_idx =
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor.CalculateBottomIndex(
make_multi_index(m_thread_data_on_block));
const auto n_thread_data_on_block_to_n0_n1_n2_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(N0, N1, N2))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
const auto n_thread_data_on_block_idx =
n_thread_data_on_block_to_n0_n1_n2_adaptor.CalculateBottomIndex(
make_multi_index(n_thread_data_on_block));
// shuffle: threadwise copy C from VGPR to LDS
auto c_thread_copy_vgpr_to_lds =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
CShuffleDataType,
decltype(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2),
decltype(c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2),
ck::tensor_operation::element_wise::PassThrough,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
I1,
I1,
M2,
I1,
M4,
I1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
7,
1,
InMemoryDataOperationEnum::Set,
1,
true>{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
make_multi_index(0,
0,
m_thread_data_on_block_idx[I1],
n_thread_data_on_block_idx[I1],
m_thread_data_on_block_idx[I2],
m_thread_data_on_block_idx[I3],
m_thread_data_on_block_idx[I4],
n_thread_data_on_block_idx[I2]),
ck::tensor_operation::element_wise::PassThrough{}};
using EDataType = CDataType;
const auto ds_grid_desc_m_n = MakeDsGridDescriptor_M_N(
problem.M, problem.MPadded, problem.N, problem.NPadded, problem.StrideDs);
const auto ds_grid_desc_mblock_mperblock_nblock_nperblock =
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
ds_grid_desc_m_n, problem.MBlock, problem.NBlock);
const auto ds_grid_buf = generate_tuple(
[&](auto i) {
return make_dynamic_buffer<AddressSpaceEnum::Global>(
p_ds_grid[i], ds_grid_desc_m_n[i].GetElementSpaceSize());
},
Number<NumDTensor>{});
// tuple of reference to C/Ds tensor descriptors
const auto c_ds_desc_refs = concat_tuple_of_reference(
tie(c_shuffle_block_desc_mblock_mperblock_nblock_nperblock),
generate_tie(
[&](auto i) -> const auto& // return type should be reference
{ return ds_grid_desc_mblock_mperblock_nblock_nperblock[i]; },
Number<NumDTensor>{}));
// tuple of reference to C/Ds tensor descriptors
const auto c_ds_buf_refs = concat_tuple_of_reference(
tie(c_shuffle_block_buf),
generate_tie(
[&](auto i) -> const auto& // return type should be reference
{ return ds_grid_buf[i]; },
Number<NumDTensor>{}));
// tuple of starting index of C/Ds blockwise copy
const auto idx_c_ds_block_begin = container_concat(
make_tuple(make_multi_index(0, 0, 0, 0)),
generate_tuple(
[&](auto) {
return make_multi_index(block_work_idx[I0], 0, block_work_idx[I1], 0);
},
Number<NumDTensor>{}));
const auto e_grid_desc_mblock_mperblock_nblock_nperblock =
c_grid_desc_mblock_mperblock_nblock_nperblock;
using CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock =
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock;
const auto EGlobalMemoryDataOperation = CGlobalMemoryDataOperation;
auto cde_block_copy_lds_and_global = ThreadGroupTensorSliceTransfer_v7r3<
ThisThreadBlock,
decltype(container_concat(make_tuple(CShuffleDataType{}), DsDataType{})),
Tuple<EDataType>,
decltype(c_ds_desc_refs),
decltype(tie(e_grid_desc_mblock_mperblock_nblock_nperblock)),
CElementwiseOperation,
Sequence<static_cast<index_t>(EGlobalMemoryDataOperation)>, // FIXME: make Sequence
// support arbitray type
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>, // BlockSliceLengths,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
Sequence<0, 1, 2, 3>, // typename ThreadClusterArrangeOrder,
Sequence<0, 1, 2, 3>, // typename SrcDimAccessOrder,
Sequence<0, 1, 2, 3>, // typename DstDimAccessOrder,
3, // index_t SrcVectorDim,
3, // index_t DstVectorDim,
CDEShuffleBlockTransferScalarPerVectors,
CShuffleBlockTransferScalarPerVector_NPerBlock,
sequence_merge_t<
Sequence<true>,
uniform_sequence_gen_t<NumDTensor,
false>>, // ThreadTransferSrcResetCoordinateAfterRunFlags
Sequence<false>> // ThreadTransferDstResetCoordinateAfterRunFlags
{c_ds_desc_refs,
idx_c_ds_block_begin,
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
make_tuple(make_multi_index(block_m_id, 0, block_n_id, 0)),
c_element_op};
// space filling curve for threadwise C in VGPR
constexpr auto sfc_c_vgpr =
SpaceFillingCurve<Sequence<MXdlPerWave, NXdlPerWave, 1, 1, M2, 1, M4, 1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
1,
1,
M2,
1,
M4,
1>>{};
constexpr index_t num_access = sfc_c_vgpr.GetNumOfAccess();
// space filling curve for shuffled blockwise C/D/E
constexpr auto sfc_cde_block =
SpaceFillingCurve<Sequence<1, MPerBlock, 1, NPerBlock>,
Sequence<0, 2, 1, 3>,
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>>{};
static_assert(num_access == sfc_cde_block.GetNumOfAccess(), "wrong!");
static_for<0, num_access, 1>{}([&](auto access_id) {
// make sure it's safe to write to LDS
block_sync_lds();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds.Run(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2,
sfc_c_vgpr.GetIndexTupleOfNumber(access_id),
c_thread_buf,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
c_shuffle_block_buf);
// make sure it's safe to read from LDS
block_sync_lds();
// each block copy its data from LDS to global
cde_block_copy_lds_and_global.Run(
c_ds_desc_refs,
c_ds_buf_refs,
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
tie(c_grid_buf));
if constexpr(access_id < num_access - 1)
{
constexpr auto cde_lds_and_global_step =
sfc_cde_block.GetForwardStep(access_id);
// move on Ds
static_for<0, NumDTensor, 1>{}([&](auto i) {
cde_block_copy_lds_and_global.MoveSrcSliceWindow(
c_ds_desc_refs, i + I1, cde_lds_and_global_step);
});
// move on E
cde_block_copy_lds_and_global.MoveDstSliceWindow(
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
I0,
cde_lds_and_global_step);
}
});
}
}
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/tensor_space_filling_curve.hpp"
#include "ck/utility/is_detected.hpp"
#include "ck/tensor/static_tensor.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_util.hpp"
namespace ck {
// Thread-level multi-source, multi-destination tensor slice data movement
// Assume:
// 1. All sources and destinations are DynamicBuffer
// 2. Same VectorDim and ScalerPerVector for all sources and destinations
// 3. DstInMemOps are per destination tensor
// 4. ThreadTransferSrcResetCoordinateAfterRunFlags are per source tensor
// 5. ThreadTransferDstResetCoordinateAfterRunFlags are per destination tensor
// 6. Does not need to know src_descs and dst_descs at compile-time
// 7. Does not need to know src_slice_origins and dst_slice_origins at compile-time,
//
// Does following things to avoid scratch memory issue
// 1. Use StaticallyIndexedArray or vector_type instead of C array for thread buffer
// 2. Pass tensor descritpors by reference (or tuple of references)
// 3. Does not keep reference to tensor descriptor
// 4. Does not construct new tensor coordinate when call Run()
template <typename SrcDatas,
typename DstDatas,
typename SrcDescs,
typename DstDescs,
typename ElementwiseOperation,
typename DstInMemOps, // Sequence<InMemoryDataOperationEnum ...>
typename SliceLengths,
typename SrcDimAccessOrder,
typename DstDimAccessOrder,
index_t SrcVectorDim,
index_t DstVectorDim,
typename SrcScalarPerVectors,
index_t DstScalarPerVector,
typename SrcResetCoordinateAfterRunFlags, // Sequence<bool ...>
typename DstResetCoordinateAfterRunFlags, // Sequence<bool ...>
index_t NumThreadScratch = 1>
struct ThreadwiseTensorSliceTransfer_v7r3
{
static constexpr auto I0 = Number<0>{};
static constexpr auto SrcScalarPerVector = SrcScalarPerVectors{}[I0];
static constexpr index_t nDim = SliceLengths::Size();
static constexpr index_t nSrc = SrcDescs::Size();
static constexpr index_t nDst = DstDescs::Size();
using Index = MultiIndex<nDim>;
// return a tuple of coordiantes for a tuple of tensor
template <typename Descs,
typename Indices,
enable_if_t<Descs::Size() == Indices::Size(), bool> = false>
static constexpr auto MakeCoordinates(const Descs& descs, const Indices& indices)
{
return generate_tuple([&](auto i) { return make_tensor_coordinate(descs[i], indices[i]); },
Number<Descs::Size()>{});
}
using SrcCoords = decltype(MakeCoordinates(SrcDescs{}, StaticallyIndexedArray<Index, nSrc>{}));
using DstCoords = decltype(MakeCoordinates(DstDescs{}, StaticallyIndexedArray<Index, nDst>{}));
// scalar per access on each dim
// FIXME: don't use lambda_scalar_per_access
static constexpr auto src_scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access<SrcVectorDim, SrcScalarPerVector>{}, Number<nDim>{});
static constexpr auto dst_scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access<DstVectorDim, DstScalarPerVector>{}, Number<nDim>{});
using SrcSpaceFillingCurve = SpaceFillingCurve<SliceLengths,
SrcDimAccessOrder,
remove_cv_t<decltype(src_scalar_per_access)>,
false>;
using DstSpaceFillingCurve = SpaceFillingCurve<SliceLengths,
DstDimAccessOrder,
remove_cv_t<decltype(dst_scalar_per_access)>,
false>;
__device__ constexpr ThreadwiseTensorSliceTransfer_v7r3(
const SrcDescs& src_descs,
const StaticallyIndexedArray<Index, nSrc>& src_slice_origins,
const DstDescs& dst_descs,
const StaticallyIndexedArray<Index, nDst>& dst_slice_origins,
const ElementwiseOperation& element_op)
: src_coords_(MakeCoordinates(src_descs, src_slice_origins)),
dst_coords_(MakeCoordinates(dst_descs, dst_slice_origins)),
element_op_(element_op)
{
static_assert(SliceLengths::At(Number<SrcVectorDim>{}) % SrcScalarPerVector == 0,
"wrong! cannot evenly divide");
static_assert(SliceLengths::At(Number<DstVectorDim>{}) % DstScalarPerVector == 0,
"wrong! cannot evenly divide");
}
template <typename Indices, enable_if_t<SrcDescs::Size() == Indices::Size(), bool> = false>
__device__ void SetSrcSliceOrigins(const SrcDescs& src_descs,
const Indices& src_slice_origin_idxs)
{
static_for<0, nSrc, 1>{}([&](auto i) {
src_coords_(i) = make_tensor_coordinate(src_descs[i], src_slice_origin_idxs[i]);
});
}
template <typename Indices, enable_if_t<DstDescs::Size() == Indices::Size(), bool> = false>
__device__ void SetDstSliceOrigins(const DstDescs& dst_descs,
const Indices& dst_slice_origin_idxs)
{
static_for<0, nDst, 1>{}([&](auto i) {
dst_coords_(i) = make_tensor_coordinate(dst_descs[i], dst_slice_origin_idxs[i]);
});
}
template <typename DataTypes, index_t ScalarPerVector>
__device__ static auto generate_vectors()
{
auto data_types = DataTypes{};
constexpr index_t num = data_types.Size();
return generate_tuple(
[&](auto i) {
using DataType = remove_cvref_t<decltype(data_types[i])>;
return vector_type_maker_t<DataType, ScalarPerVector>{};
},
Number<num>{});
}
// SrcDescs: Tuple<const SrcDesc0&, const SrcDesc1&, ...>
// SrcBuffers: Tuple<const SrcBuffer0&, const SrcBuffer1&, ...>
template <typename SrcBuffers,
index_t ThreadScratchId = 0,
enable_if_t<SrcDescs::Size() == SrcBuffers::Size(), bool> = false>
__device__ void RunRead(const SrcDescs& src_descs,
const SrcBuffers& src_bufs,
Number<ThreadScratchId> thread_scratch_id = Number<ThreadScratchId>{})
{
// loop over space-filling curve
static_for<0, src_num_access, 1>{}([&](auto iAccess) {
auto src_vectors = generate_vectors<SrcDatas, SrcScalarPerVector>();
auto elm_vectors = generate_vectors<DstDatas, SrcScalarPerVector>();
bool oob_val = true;
// copy data from src_bufs into src_vectors
static_for<0, nSrc, 1>{}([&](auto i) {
using src_vector_t = typename remove_cvref_t<decltype(src_vectors[i])>::type;
const bool is_src_valid =
coordinate_has_valid_offset_assuming_visible_index_is_valid(src_descs[i],
src_coords_[i]);
oob_val = oob_val & is_src_valid;
if constexpr(SrcScalarPerVectors{}[i] == 1)
{
auto data_types = SrcDatas{};
using DataType = remove_cvref_t<decltype(data_types[i])>;
const auto tmp =
src_bufs[i].template Get<DataType>(src_coords_[i].GetOffset(), true);
static_for<0, SrcScalarPerVector, 1>{}(
[&](auto j) { src_vectors(i).template AsType<DataType>()(j) = tmp; });
}
else
{
src_vectors(i).template AsType<src_vector_t>()(I0) =
src_bufs[i].template Get<src_vector_t>(src_coords_[i].GetOffset(), true);
}
});
constexpr auto get_elem_op_vec_len = []() {
if constexpr(is_detected<is_pack8_invocable_t, decltype(element_op_)>::value)
{
if constexpr(decltype(element_op_)::is_pack8_invocable)
return math::min(8, SrcScalarPerVector);
}
if constexpr(is_detected<is_pack4_invocable_t, decltype(element_op_)>::value)
{
if constexpr(decltype(element_op_)::is_pack4_invocable)
return math::min(4, SrcScalarPerVector);
}
if constexpr(is_detected<is_pack2_invocable_t, decltype(element_op_)>::value)
{
if constexpr(decltype(element_op_)::is_pack2_invocable)
return math::min(2, SrcScalarPerVector);
}
return 1;
};
constexpr index_t elem_op_vec_len = get_elem_op_vec_len();
// apply pointwise function
static_for<0, SrcScalarPerVector / elem_op_vec_len, 1>{}([&](auto i) {
// get reference to src data
const auto src_data_refs = generate_tie(
// return type should be lvalue
[&](auto iSrc) -> const auto& {
using SrcData = remove_cvref_t<tuple_element_t<iSrc.value, SrcDatas>>;
using elem_op_vec_t = typename vector_type<SrcData, elem_op_vec_len>::type;
return src_vectors[iSrc].template AsType<elem_op_vec_t>()[i];
},
Number<nSrc>{});
// get reference to dst data
auto dst_data_refs = generate_tie(
// return type should be lvalue
[&](auto iDst) -> auto& {
using DstData = remove_cvref_t<tuple_element_t<iDst.value, DstDatas>>;
using elem_op_vec_t = typename vector_type<DstData, elem_op_vec_len>::type;
return elm_vectors(iDst).template AsType<elem_op_vec_t>()(i);
},
Number<nDst>{});
// apply pointwise function
// pointwise function signature:
// element_op_(dst_data_refs[I0],
// dst_data_refs[I1],
// ...,
// src_data_refs[I0],
// src_data_refs[I1],
// ...)
unpack2(element_op_, dst_data_refs, src_data_refs);
});
elm_vectors_tuple_(thread_scratch_id)(iAccess) = elm_vectors;
oob_vectors_tuple_(thread_scratch_id)(iAccess) = oob_val;
// move coordinate
if constexpr(iAccess.value != src_num_access - 1)
{
constexpr auto forward_step = SrcSpaceFillingCurve::GetForwardStep(iAccess);
static_for<0, nSrc, 1>{}([&](auto i) {
move_tensor_coordinate(src_descs[i],
src_coords_(i),
make_tensor_coordinate_step(src_descs[i], forward_step));
});
}
});
// move coordinate back to slice origin (or not)
static_for<0, nSrc, 1>{}([&](auto i) {
if constexpr(SrcResetCoordinateAfterRunFlags::At(i))
{
const auto src_reset_step =
make_tensor_coordinate_step(src_descs[i], GetSrcCoordinateResetStep());
move_tensor_coordinate(src_descs[i], src_coords_(i), src_reset_step);
}
});
}
#if 1
template <index_t ThreadScratchId = 0>
__device__ void OOBCheck(Number<ThreadScratchId> thread_scratch_id = Number<ThreadScratchId>{})
{
// loop over space-filling curve
static_for<0, src_num_access, 1>{}([&](auto iAccess) {
auto elm_vectors = elm_vectors_tuple_[thread_scratch_id][iAccess];
auto oob_val = oob_vectors_tuple_[thread_scratch_id][iAccess];
static_for<0, nDst, 1>{}([&](auto i) {
using elm_vector_t = typename remove_cvref_t<decltype(elm_vectors[i])>::type;
elm_vectors(i).template AsType<elm_vector_t>()(I0) =
oob_val ? elm_vectors(i).template AsType<elm_vector_t>()[I0] : elm_vector_t{0};
});
elm_vectors_tuple_(thread_scratch_id)(iAccess) = elm_vectors;
});
}
#endif
template <index_t ThreadScratchId = 0>
__device__ void
TransposeFromElmToDst(Number<ThreadScratchId> thread_scratch_id = Number<ThreadScratchId>{})
{
using DstData = remove_cvref_t<decltype(DstDatas{}[I0])>;
using ElmThreadScratch =
StaticTensorTupleOfVectorBuffer<AddressSpaceEnum::Vgpr,
DstData,
SrcScalarPerVector,
decltype(GetSrcThreadScratchDescriptor()),
true>;
using DstThreadScratch =
StaticTensorTupleOfVectorBuffer<AddressSpaceEnum::Vgpr,
DstData,
DstScalarPerVector,
decltype(GetDstThreadScratchDescriptor()),
true>;
ElmThreadScratch elm_thread_scratch_;
DstThreadScratch dst_thread_scratch_;
elm_thread_scratch_.data_ =
bit_cast<decltype(elm_thread_scratch_.data_)>(elm_vectors_tuple_[thread_scratch_id]);
if constexpr(SrcVectorDim != DstVectorDim &&
((is_same<half_t, remove_cvref_t<DstData>>::value &&
SrcScalarPerVector % 2 == 0 && DstScalarPerVector % 2 == 0) ||
(is_same<f8_t, remove_cvref_t<DstData>>::value &&
SrcScalarPerVector % 4 == 0 && DstScalarPerVector % 4 == 0) ||
(is_same<int8_t, remove_cvref_t<DstData>>::value &&
SrcScalarPerVector % 4 == 0 && DstScalarPerVector % 4 == 0)))
{
// each transpose does
// DstScalarPerVector # of src vectors in src_thread_scratch_
// SrcScalarPerVector # of dst vectors in dst_thread_scratch_
constexpr index_t num_src_vector = Number<DstScalarPerVector>{};
constexpr index_t num_dst_vector = Number<SrcScalarPerVector>{};
// Assume SrcVectorDim is not the same as DstVectorDim, so we do transpose
// TODO: make this logic generic for all scenario
constexpr auto src_scalar_step_in_vector = generate_sequence(
detail::lambda_scalar_step_in_vector<SrcVectorDim>{}, Number<nDim>{});
constexpr auto dst_scalar_step_in_vector = generate_sequence(
detail::lambda_scalar_step_in_vector<DstVectorDim>{}, Number<nDim>{});
constexpr auto scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access_for_src_and_dst<SrcVectorDim,
SrcScalarPerVector,
DstVectorDim,
DstScalarPerVector>{},
Number<nDim>{});
constexpr auto access_lengths = SliceLengths{} / scalar_per_access;
static_ford<decltype(access_lengths)>{}([&](auto access_idx) {
constexpr auto data_idx = access_idx * scalar_per_access;
constexpr auto data_idx_seq = generate_sequence_v2(
[&](auto i) { return Number<data_idx[i]>{}; }, Number<nDim>{});
using src_vector_t = vector_type_maker_t<DstData, SrcScalarPerVector>;
using dst_vector_t = vector_type_maker_t<DstData, DstScalarPerVector>;
// get DstScalarPerVector # of read-only references to src vectors from
// src_thread_scratch_
const auto src_vector_refs = generate_tie(
[&](auto i) -> const src_vector_t& {
// i increment corresponds to movement in DstVectorDim
return elm_thread_scratch_.GetVectorTypeReference(
data_idx_seq + i * dst_scalar_step_in_vector);
},
Number<num_src_vector>{});
// get SrcScalarPerVector # of references to dst vectors from
// dst_thread_scratch_
auto dst_vector_refs = generate_tie(
[&](auto i) -> dst_vector_t& {
// i increment corresponds to movement in SrcVectorDim
return dst_thread_scratch_.GetVectorTypeReference(
data_idx_seq + i * src_scalar_step_in_vector);
},
Number<num_dst_vector>{});
// do data transpose
transpose_vectors<DstData, DstScalarPerVector, SrcScalarPerVector>{}(
src_vector_refs, dst_vector_refs);
});
}
else
{
static_ford<SliceLengths>{}(
[&](auto idx) { dst_thread_scratch_(idx) = elm_thread_scratch_[idx]; });
}
dst_vectors_tuple_(thread_scratch_id) = bit_cast<DstVectorTuple>(dst_thread_scratch_.data_);
}
// DstDescs: Tuple<const DstDesc0&, const DstDesc1&, ...>
// DstBuffers: Tuple<const DstBuffer0&, const DstBuffer1&, ...>
template <typename DstBuffers,
index_t ThreadScratchId = 0,
enable_if_t<DstDescs::Size() == 1 && DstBuffers::Size() == 1, bool> = false>
__device__ void RunWrite(const DstDescs& dst_descs,
DstBuffers dst_bufs,
Number<ThreadScratchId> thread_scratch_id = Number<ThreadScratchId>{})
{
OOBCheck(thread_scratch_id);
TransposeFromElmToDst(thread_scratch_id);
// loop over space-filling curve
static_for<0, dst_num_access, 1>{}([&](auto iAccess) {
auto dst_vectors = dst_vectors_tuple_[thread_scratch_id][iAccess];
// copy data from buf_vectors into dst_bufs
static_for<0, nDst, 1>{}([&](auto i) {
using dst_vector_t = typename remove_cvref_t<decltype(dst_vectors[i])>::type;
const bool is_dst_valid =
coordinate_has_valid_offset_assuming_visible_index_is_valid(dst_descs[i],
dst_coords_[i]);
constexpr InMemoryDataOperationEnum DstInMemOp =
static_cast<InMemoryDataOperationEnum>(DstInMemOps::At(i.value));
dst_bufs(i).template Update<DstInMemOp, dst_vector_t>(
dst_coords_[i].GetOffset(),
is_dst_valid,
dst_vectors[i].template AsType<dst_vector_t>()[I0]);
});
// move coordinate
if constexpr(iAccess.value != dst_num_access - 1)
{
constexpr auto forward_step = DstSpaceFillingCurve::GetForwardStep(iAccess);
static_for<0, nDst, 1>{}([&](auto i) {
move_tensor_coordinate(dst_descs[i],
dst_coords_(i),
make_tensor_coordinate_step(dst_descs[i], forward_step));
});
}
});
static_for<0, nDst, 1>{}([&](auto i) {
if constexpr(DstResetCoordinateAfterRunFlags::At(i))
{
const auto dst_reset_step =
make_tensor_coordinate_step(dst_descs[i], GetDstCoordinateResetStep());
move_tensor_coordinate(dst_descs[i], dst_coords_(i), dst_reset_step);
}
});
}
// SrcDescs: Tuple<const SrcDesc0&, const SrcDesc1&, ...>
// SrcBuffers: Tuple<const SrcBuffer0&, const SrcBuffer1&, ...>
// DstDescs: Tuple<const DstDesc0&, const DstDesc1&, ...>
// DstBuffers: Tuple<const DstBuffer0&, const DstBuffer1&, ...>
template <typename SrcBuffers,
typename DstBuffers,
enable_if_t<SrcDescs::Size() == SrcBuffers::Size() &&
DstDescs::Size() == DstBuffers::Size(),
bool> = false>
__device__ void Run(const SrcDescs& src_descs,
const SrcBuffers& src_bufs,
const DstDescs& dst_descs,
DstBuffers dst_bufs)
{
RunRead(src_descs, src_bufs);
RunWrite(dst_descs, dst_bufs);
}
__device__ static constexpr auto GetSrcCoordinateResetStep()
{
if constexpr(src_num_access == 0)
{
return typename SrcSpaceFillingCurve::Index{};
}
else
{
return SrcSpaceFillingCurve::GetStepBetween(Number<src_num_access - 1>{}, Number<0>{});
}
}
__device__ static constexpr auto GetDstCoordinateResetStep()
{
if constexpr(dst_num_access == 0)
{
return typename DstSpaceFillingCurve::Index{};
}
else
{
return DstSpaceFillingCurve::GetStepBetween(Number<dst_num_access - 1>{}, Number<0>{});
}
}
__device__ static constexpr auto GetSrcThreadScratchDescriptor()
{
// constexpr auto src_scalar_per_access = generate_sequence(
// detail::lambda_scalar_per_access<SrcVectorDim, SrcScalarPerVector>{},
// Number<nDim>{});
constexpr auto src_access_lengths = SliceLengths{} / src_scalar_per_access;
constexpr auto src_access_lengths_and_vector_length = container_push_back(
sequence_to_tuple_of_number(src_access_lengths), Number<SrcScalarPerVector>{});
// 1st stage of transforms
constexpr auto desc0 =
make_naive_tensor_descriptor_packed(src_access_lengths_and_vector_length);
// 2nd stage of transforms
constexpr auto transforms = generate_tuple(
[&](auto i) {
if constexpr(i == SrcVectorDim)
{
return make_merge_transform_v3_division_mod(
make_tuple(src_access_lengths_and_vector_length[i],
src_access_lengths_and_vector_length[Number<nDim>{}]));
}
else
{
return make_pass_through_transform(src_access_lengths_and_vector_length[i]);
}
},
Number<nDim>{});
constexpr auto low_dim_idss = generate_tuple(
[&](auto i) {
if constexpr(i == SrcVectorDim)
{
return Sequence<i.value, nDim>{};
}
else
{
return Sequence<i.value>{};
}
},
Number<nDim>{});
constexpr auto up_dim_idss =
generate_tuple([&](auto i) { return Sequence<i.value>{}; }, Number<nDim>{});
return transform_tensor_descriptor(desc0, transforms, low_dim_idss, up_dim_idss);
}
__device__ static constexpr auto GetDstThreadScratchDescriptor()
{
// 1st stage of transforms
// constexpr auto dst_scalar_per_access = generate_sequence(
// detail::lambda_scalar_per_access<DstVectorDim, DstScalarPerVector>{},
// Number<nDim>{});
constexpr auto dst_access_lengths = SliceLengths{} / dst_scalar_per_access;
constexpr auto dst_access_lengths_and_vector_length = container_push_back(
sequence_to_tuple_of_number(dst_access_lengths), Number<DstScalarPerVector>{});
constexpr auto desc0 =
make_naive_tensor_descriptor_packed(dst_access_lengths_and_vector_length);
// 2nd stage of transforms
constexpr auto transforms = generate_tuple(
[&](auto i) {
if constexpr(i == DstVectorDim)
{
return make_merge_transform_v3_division_mod(
make_tuple(dst_access_lengths_and_vector_length[i],
dst_access_lengths_and_vector_length[Number<nDim>{}]));
}
else
{
return make_pass_through_transform(dst_access_lengths_and_vector_length[i]);
}
},
Number<nDim>{});
constexpr auto low_dim_idss = generate_tuple(
[&](auto i) {
if constexpr(i == DstVectorDim)
{
return Sequence<i.value, nDim>{};
}
else
{
return Sequence<i.value>{};
}
},
Number<nDim>{});
constexpr auto up_dim_idss =
generate_tuple([&](auto i) { return Sequence<i.value>{}; }, Number<nDim>{});
return transform_tensor_descriptor(desc0, transforms, low_dim_idss, up_dim_idss);
}
// src_slice_origin_step_idx need to be known at compile-time, for performance reason
template <index_t ISrc>
__device__ void MoveSrcSliceWindow(const SrcDescs& src_descs,
Number<ISrc> iSrc,
const Index& src_slice_origin_step_idx)
{
// if src coord was not reset by RunRead(), then need to adjust the step here
const auto adjusted_step_idx =
SrcResetCoordinateAfterRunFlags::At(iSrc)
? src_slice_origin_step_idx
: src_slice_origin_step_idx + GetSrcCoordinateResetStep();
// is it OK to construct a new step every time?
const auto adjusted_step = make_tensor_coordinate_step(src_descs[iSrc], adjusted_step_idx);
move_tensor_coordinate(src_descs[iSrc], src_coords_(iSrc), adjusted_step);
}
// dst_slice_origin_step_idx need to be known at compile-time, for performance reason
template <index_t IDst>
__device__ void MoveDstSliceWindow(const DstDescs& dst_descs,
Number<IDst> iDst,
const Index& dst_slice_origin_step_idx)
{
// if dst coord was not reset by Run(), then need to adjust the step here
const auto adjusted_step_idx =
DstResetCoordinateAfterRunFlags::At(iDst)
? dst_slice_origin_step_idx
: dst_slice_origin_step_idx + GetDstCoordinateResetStep();
// is it OK to construct a new step every time?
const auto adjusted_step = make_tensor_coordinate_step(dst_descs[iDst], adjusted_step_idx);
move_tensor_coordinate(dst_descs[iDst], dst_coords_(iDst), adjusted_step);
}
private:
using SrcVectorsType = decltype(generate_vectors<SrcDatas, SrcScalarPerVector>());
using ElmVectorsType = decltype(generate_vectors<DstDatas, SrcScalarPerVector>());
using DstVectorsType = decltype(generate_vectors<DstDatas, DstScalarPerVector>());
static constexpr auto src_num_access = SrcSpaceFillingCurve::GetNumOfAccess();
static constexpr auto dst_num_access = DstSpaceFillingCurve::GetNumOfAccess();
using ElmVectorTuple = StaticallyIndexedArray<ElmVectorsType, src_num_access>;
using DstVectorTuple = StaticallyIndexedArray<DstVectorsType, dst_num_access>;
StaticallyIndexedArray<ElmVectorTuple, NumThreadScratch> elm_vectors_tuple_;
StaticallyIndexedArray<DstVectorTuple, NumThreadScratch> dst_vectors_tuple_;
using OOBVectorTuple = StaticallyIndexedArray<bool, src_num_access>;
StaticallyIndexedArray<OOBVectorTuple, NumThreadScratch> oob_vectors_tuple_;
SrcCoords src_coords_;
DstCoords dst_coords_;
const ElementwiseOperation element_op_;
};
} // namespace ck
......@@ -29,6 +29,25 @@ CK_TILE_DEVICE int32x4_t make_wave_buffer_resource(const void* ptr, uint32_t siz
return __builtin_bit_cast(int32x4_t, res);
}
namespace impl {
// below type indicate the data type used for buffer load inline asm
// clang-format off
template<index_t N, typename T> struct buffer_load_trait;
template<typename T> struct buffer_load_trait<16, T> { using payload_t = fp32x4_t; };
template<typename T> struct buffer_load_trait<8 , T> { using payload_t = fp32x2_t; };
template<typename T> struct buffer_load_trait<4 , T> { using payload_t = float; };
template<typename T> struct buffer_load_trait<2 , T> { using payload_t = float; };
template<typename T> struct buffer_load_trait<1 , T> { using payload_t = float; };
#if CK_TILE_BUFFER_LOAD_RAW_BF16_WA
template<> struct buffer_load_trait<16, thread_buffer<bf16_t, 8>> { using payload_t = bf16x8_t; };
template<> struct buffer_load_trait<8 , thread_buffer<bf16_t, 4>> { using payload_t = bf16x4_t; };
template<> struct buffer_load_trait<4 , thread_buffer<bf16_t, 2>> { using payload_t = bf16x2_t; };
#endif
// clang-format on
} // namespace impl
// TODO: glc/slc/...
template <index_t bytes>
struct buffer_load;
......@@ -48,7 +67,7 @@ struct buffer_load<16>
index_t /*flag*/ = 0)
{
static_assert(sizeof(T) == 16);
using mbuf_t = fp32x4_t;
using mbuf_t = typename impl::buffer_load_trait<16, T>::payload_t;
asm volatile("buffer_load_dwordx4 %0, %1, %2, %3 offen offset:%4"
: "+v"(reinterpret_cast<mbuf_t&>(value))
: "v"(v_offset), "s"(res), "s"(s_offset), "n"(i_offset)
......@@ -68,7 +87,7 @@ struct buffer_load<8>
index_t /*flag*/ = 0)
{
static_assert(sizeof(T) == 8);
using mbuf_t = fp32x2_t;
using mbuf_t = typename impl::buffer_load_trait<8, T>::payload_t;
asm volatile("buffer_load_dwordx2 %0, %1, %2, %3 offen offset:%4"
: "+v"(reinterpret_cast<mbuf_t&>(value))
: "v"(v_offset), "s"(res), "s"(s_offset), "n"(i_offset)
......@@ -88,7 +107,7 @@ struct buffer_load<4>
index_t /*flag*/ = 0)
{
static_assert(sizeof(T) == 4);
using mbuf_t = float;
using mbuf_t = typename impl::buffer_load_trait<4, T>::payload_t;
asm volatile("buffer_load_dword %0, %1, %2, %3 offen offset:%4"
: "+v"(reinterpret_cast<mbuf_t&>(value))
: "v"(v_offset), "s"(res), "s"(s_offset), "n"(i_offset)
......@@ -108,7 +127,7 @@ struct buffer_load<2>
index_t /*flag*/ = 0)
{
static_assert(sizeof(T) == 4); // subdword is buggy, use dword buf and convert manually
using mbuf_t = float;
using mbuf_t = typename impl::buffer_load_trait<2, T>::payload_t;
asm volatile("buffer_load_ushort %0, %1, %2, %3 offen offset:%4"
: "+v"(reinterpret_cast<mbuf_t&>(value))
: "v"(v_offset), "s"(res), "s"(s_offset), "n"(i_offset)
......@@ -128,7 +147,7 @@ struct buffer_load<1>
index_t /*flag*/ = 0)
{
static_assert(sizeof(T) == 4);
using mbuf_t = float;
using mbuf_t = typename impl::buffer_load_trait<1, T>::payload_t;
asm volatile("buffer_load_ubyte %0, %1, %2, %3 offen offset:%4"
: "+v"(reinterpret_cast<mbuf_t&>(value))
: "v"(v_offset), "s"(res), "s"(s_offset), "n"(i_offset)
......@@ -152,7 +171,7 @@ struct buffer_load_if<16>
{
static_assert(sizeof(T) == 16);
auto saved_exec = __builtin_amdgcn_read_exec();
using mbuf_t = fp32x4_t;
using mbuf_t = typename impl::buffer_load_trait<16, T>::payload_t;
static_assert(sizeof(mbuf_t) == sizeof(T));
asm volatile(
"v_cmpx_le_u32 exec, 1, %5\n"
......@@ -177,7 +196,7 @@ struct buffer_load_if<8>
{
static_assert(sizeof(T) == 8);
auto saved_exec = __builtin_amdgcn_read_exec();
using mbuf_t = fp32x2_t;
using mbuf_t = typename impl::buffer_load_trait<8, T>::payload_t;
asm volatile(
"v_cmpx_le_u32 exec, 1, %5\n"
"buffer_load_dwordx2 %0, %1, %2, %3 offen offset:%4\n"
......@@ -201,7 +220,7 @@ struct buffer_load_if<4>
{
static_assert(sizeof(T) == 4);
auto saved_exec = __builtin_amdgcn_read_exec();
using mbuf_t = float;
using mbuf_t = typename impl::buffer_load_trait<4, T>::payload_t;
asm volatile(
"v_cmpx_le_u32 exec, 1, %5\n"
"buffer_load_dword %0, %1, %2, %3 offen offset:%4\n"
......@@ -225,7 +244,7 @@ struct buffer_load_if<2>
{
static_assert(sizeof(T) == 4);
auto saved_exec = __builtin_amdgcn_read_exec();
using mbuf_t = float;
using mbuf_t = typename impl::buffer_load_trait<2, T>::payload_t;
asm volatile(
"v_cmpx_le_u32 exec, 1, %5\n"
"buffer_load_ushort %0, %1, %2, %3 offen offset:%4\n"
......@@ -249,7 +268,7 @@ struct buffer_load_if<1>
{
static_assert(sizeof(T) == 4);
auto saved_exec = __builtin_amdgcn_read_exec();
using mbuf_t = float;
using mbuf_t = typename impl::buffer_load_trait<1, T>::payload_t;
asm volatile(
"v_cmpx_le_u32 exec, 1, %5\n"
"buffer_load_ubyte %0, %1, %2, %3 offen offset:%4\n"
......
......@@ -171,3 +171,7 @@
#ifndef CK_TILE_FMHA_FWD_FAST_EXP2
#define CK_TILE_FMHA_FWD_FAST_EXP2 0
#endif
#ifndef CK_TILE_BUFFER_LOAD_RAW_BF16_WA
#define CK_TILE_BUFFER_LOAD_RAW_BF16_WA 1
#endif
......@@ -20,3 +20,4 @@
#include "ck_tile/host/reference/reference_reduce.hpp"
#include "ck_tile/host/reference/reference_softmax.hpp"
#include "ck_tile/host/stream_config.hpp"
#include "ck_tile/host/timer.hpp"
......@@ -27,7 +27,14 @@ struct DeviceMem
DeviceMem() : mpDeviceBuf(nullptr), mMemSize(0) {}
DeviceMem(std::size_t mem_size) : mMemSize(mem_size)
{
HIP_CHECK_ERROR(hipMalloc(static_cast<void**>(&mpDeviceBuf), mMemSize));
if(mMemSize != 0)
{
HIP_CHECK_ERROR(hipMalloc(static_cast<void**>(&mpDeviceBuf), mMemSize));
}
else
{
mpDeviceBuf = nullptr;
}
}
void Realloc(std::size_t mem_size)
{
......@@ -36,7 +43,14 @@ struct DeviceMem
HIP_CHECK_ERROR(hipFree(mpDeviceBuf));
}
mMemSize = mem_size;
HIP_CHECK_ERROR(hipMalloc(static_cast<void**>(&mpDeviceBuf), mMemSize));
if(mMemSize != 0)
{
HIP_CHECK_ERROR(hipMalloc(static_cast<void**>(&mpDeviceBuf), mMemSize));
}
else
{
mpDeviceBuf = nullptr;
}
}
void* GetDeviceBuffer() const { return mpDeviceBuf; }
std::size_t GetBufferSize() const { return mMemSize; }
......@@ -47,15 +61,18 @@ struct DeviceMem
HIP_CHECK_ERROR(
hipMemcpy(mpDeviceBuf, const_cast<void*>(p), mMemSize, hipMemcpyHostToDevice));
}
else
{
throw std::runtime_error("ToDevice with an empty pointer");
}
// else
// {
// throw std::runtime_error("ToDevice with an empty pointer");
// }
}
void ToDevice(const void* p, const std::size_t cpySize) const
{
HIP_CHECK_ERROR(
hipMemcpy(mpDeviceBuf, const_cast<void*>(p), cpySize, hipMemcpyHostToDevice));
if(mpDeviceBuf)
{
HIP_CHECK_ERROR(
hipMemcpy(mpDeviceBuf, const_cast<void*>(p), cpySize, hipMemcpyHostToDevice));
}
}
void FromDevice(void* p) const
{
......@@ -63,14 +80,17 @@ struct DeviceMem
{
HIP_CHECK_ERROR(hipMemcpy(p, mpDeviceBuf, mMemSize, hipMemcpyDeviceToHost));
}
else
{
throw std::runtime_error("FromDevice with an empty pointer");
}
// else
// {
// throw std::runtime_error("FromDevice with an empty pointer");
// }
}
void FromDevice(void* p, const std::size_t cpySize) const
{
HIP_CHECK_ERROR(hipMemcpy(p, mpDeviceBuf, cpySize, hipMemcpyDeviceToHost));
if(mpDeviceBuf)
{
HIP_CHECK_ERROR(hipMemcpy(p, mpDeviceBuf, cpySize, hipMemcpyDeviceToHost));
}
}
void SetZero() const
{
......@@ -82,13 +102,16 @@ struct DeviceMem
template <typename T>
void SetValue(T x) const
{
if(mMemSize % sizeof(T) != 0)
if(mpDeviceBuf)
{
throw std::runtime_error("wrong! not entire DeviceMem will be set");
}
if(mMemSize % sizeof(T) != 0)
{
throw std::runtime_error("wrong! not entire DeviceMem will be set");
}
// TODO: call a gpu kernel to set the value (?)
set_buffer_value<T><<<1, 1024>>>(static_cast<T*>(mpDeviceBuf), x, mMemSize / sizeof(T));
// TODO: call a gpu kernel to set the value (?)
set_buffer_value<T><<<1, 1024>>>(static_cast<T*>(mpDeviceBuf), x, mMemSize / sizeof(T));
}
}
~DeviceMem()
{
......
......@@ -6,6 +6,7 @@
#include "ck_tile/core/config.hpp"
#include "ck_tile/host/stream_config.hpp"
#include "ck_tile/host/hip_check_error.hpp"
#include "ck_tile/host/timer.hpp"
#include <hip/hip_runtime.h>
#include <cstddef>
......@@ -14,153 +15,92 @@ template <int MaxThreadPerBlock, int MinBlockPerCu, typename Kernel, typename...
#if CK_TILE_USE_LAUNCH_BOUNDS
__launch_bounds__(MaxThreadPerBlock, MinBlockPerCu)
#endif
__global__ void kentry(Kernel f, Args... args)
__global__ void kentry(Args... args)
{
f(args...);
Kernel{}(args...);
}
template <typename... Args, typename F>
CK_TILE_HOST float launch_and_time_kernel(const stream_config& s,
F kernel,
dim3 grid_dim,
dim3 block_dim,
std::size_t lds_byte,
Args... args)
//
// return a anonymous functor(lambda) to be called later
// the KernelImpl should be a class without non-static data member, or let's say
// can be instantiate with "KernelImpl{}"
//
// the "static __device__ operator()(some_arg)" is the entry point of KernelImpl
//
template <int MaxThreadPerBlock = CK_TILE_MAX_THREAD_PER_BLOCK,
int MinBlockPerCu = CK_TILE_MIN_BLOCK_PER_CU,
typename KernelImpl,
typename... Args>
CK_TILE_HOST auto
make_kernel(KernelImpl /*f*/, dim3 grid_dim, dim3 block_dim, std::size_t lds_byte, Args... args)
{
#if CK_TILE_TIME_KERNEL
if(s.time_kernel_)
{
// warm up
for(int i = 0; i < s.cold_niters_; ++i)
{
kernel<<<grid_dim, block_dim, lds_byte, s.stream_id_>>>(args...);
hip_check_error(hipGetLastError());
}
const int nrepeat = s.nrepeat_;
hipEvent_t start, stop;
HIP_CHECK_ERROR(hipEventCreate(&start));
HIP_CHECK_ERROR(hipEventCreate(&stop));
HIP_CHECK_ERROR(hipDeviceSynchronize());
HIP_CHECK_ERROR(hipEventRecord(start, s.stream_id_));
for(int i = 0; i < nrepeat; ++i)
{
kernel<<<grid_dim, block_dim, lds_byte, s.stream_id_>>>(args...);
hip_check_error(hipGetLastError());
}
HIP_CHECK_ERROR(hipEventRecord(stop, s.stream_id_));
HIP_CHECK_ERROR(hipEventSynchronize(stop));
float total_time = 0;
HIP_CHECK_ERROR(hipEventElapsedTime(&total_time, start, stop));
const auto kernel = kentry<MaxThreadPerBlock, MinBlockPerCu, KernelImpl, Args...>;
return total_time / nrepeat;
}
else
{
return [=](const stream_config& s) {
kernel<<<grid_dim, block_dim, lds_byte, s.stream_id_>>>(args...);
hip_check_error(hipGetLastError());
return 0;
}
#else
kernel<<<grid_dim, block_dim, lds_byte, s.stream_id_>>>(args...);
hip_check_error(hipGetLastError());
return 0;
#endif
};
}
template <typename... Args, typename F, typename PreProcessFunc>
CK_TILE_HOST float launch_and_time_kernel_with_preprocess(const stream_config& s,
PreProcessFunc preprocess,
F kernel,
dim3 grid_dim,
dim3 block_dim,
std::size_t lds_byte,
Args... args)
// clang-format off
/*
* launch_kernel()
*
* this is the function to launch arbitrary number of kernels with optional timer(selected by stream_config)
* the callables should have signature as "operator()(const stream_config& s){ ... }" to call
*
* the simplest way is pass in a lambda function, with "[=](const stream_config& s){ call_your_kernel_here() }"
* as signature, for the callable (pay attention to the capture list)
*
* e.g.
* ck_tile::launch_kernel(s,
* [=](const stream_config& s){ hipMemset(ptr, 0, size) },
* [=](const stream_config& s){ some_kernel<<<grids, blocks>>>(arg); }
* );
*
* if you use ck_tile kernel, or similiar to this style (structure with "static __device__ operator()(...){}")
* you can pass your kernel to ck_tile::make_kernel(), which will create a anonymous functor for you,
* then pass it to ck_tile::launch_kernel()
*
* e.g.
* ck_tile::launch_kernel(s,
* ck_tile::make_kernel<T0, B0>(kernel_0{}, grids0, blocks0, 0, kargs0),
* ck_tile::make_kernel<T0, B1>(kernel_1{}, grids1, blocks1, 0, kargs1),
* ...);
**/
// clang-format on
template <typename... Callables>
CK_TILE_HOST float launch_kernel(const stream_config& s, Callables... callables)
{
#if CK_TILE_TIME_KERNEL
if(s.time_kernel_)
{
#if CK_TILE_DEBUG_LOG
printf("%s: grid_dim {%d, %d, %d}, block_dim {%d, %d, %d} \n",
__func__,
grid_dim.x,
grid_dim.y,
grid_dim.z,
block_dim.x,
block_dim.y,
block_dim.z);
printf("Warm up 1 time\n");
#endif
// warm up
preprocess();
kernel<<<grid_dim, block_dim, lds_byte, s.stream_id_>>>(args...);
hip_check_error(hipGetLastError());
const int nrepeat = 10;
#if CK_TILE_DEBUG_LOG
printf("Start running %d times...\n", nrepeat);
#endif
hipEvent_t start, stop;
HIP_CHECK_ERROR(hipEventCreate(&start));
HIP_CHECK_ERROR(hipEventCreate(&stop));
HIP_CHECK_ERROR(hipDeviceSynchronize());
HIP_CHECK_ERROR(hipEventRecord(start, s.stream_id_));
// clang-format off
if(!s.time_kernel_) {
(callables(s),...); hip_check_error(hipGetLastError());
return 0;
}
if(s.is_gpu_timer_) {
gpu_timer timer {};
for(int i = 0; i < nrepeat; ++i)
{
preprocess();
kernel<<<grid_dim, block_dim, lds_byte, s.stream_id_>>>(args...);
hip_check_error(hipGetLastError());
}
// warmup
for(int i = 0; i < s.cold_niters_; i++) { (callables(s),...); } hip_check_error(hipGetLastError());
HIP_CHECK_ERROR(hipEventRecord(stop, s.stream_id_));
HIP_CHECK_ERROR(hipEventSynchronize(stop));
timer.start(s.stream_id_);
for(int i = 0; i < s.nrepeat_; i++) { (callables(s),...); } hip_check_error(hipGetLastError());
timer.stop(s.stream_id_);
float total_time = 0;
return timer.duration() / s.nrepeat_;
}
else {
cpu_timer timer {};
HIP_CHECK_ERROR(hipEventElapsedTime(&total_time, start, stop));
// warmup
for(int i = 0; i < s.cold_niters_; i++) { (callables(s),...); } hip_check_error(hipGetLastError());
return total_time / nrepeat;
}
else
{
preprocess();
kernel<<<grid_dim, block_dim, lds_byte, s.stream_id_>>>(args...);
hip_check_error(hipGetLastError());
timer.start(s.stream_id_);
for(int i = 0; i < s.nrepeat_; i++) { (callables(s),...); } hip_check_error(hipGetLastError());
timer.stop(s.stream_id_);
return 0;
return timer.duration() / s.nrepeat_;
}
#else
kernel<<<grid_dim, block_dim, lds_byte, s.stream_id_>>>(args...);
hip_check_error(hipGetLastError());
return 0;
#endif
// clang-format on
}
template <int MaxThreadPerBlock = CK_TILE_MAX_THREAD_PER_BLOCK,
int MinBlockPerCu = CK_TILE_MIN_BLOCK_PER_CU,
typename KernelImpl,
typename... Args>
CK_TILE_HOST float launch_kernel(const stream_config& s,
KernelImpl kernel_impl,
dim3 grid_dim,
dim3 block_dim,
std::size_t dynamic_smem_byte,
Args... args)
{
const auto kernel = kentry<MaxThreadPerBlock, MinBlockPerCu, KernelImpl, Args...>;
return launch_and_time_kernel(
s, kernel, grid_dim, block_dim, dynamic_smem_byte, kernel_impl, args...);
}
} // namespace ck_tile
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment