Commit 7f65ac05 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'develop' into amd-develop

parents 687d2b7e 7e5c81fe
......@@ -4,49 +4,49 @@ add_custom_target(example_contraction_bilinear)
# FP32
add_example_executable(example_contraction_bilinear_xdl_fp32 contraction_bilinear_xdl_fp32.cpp)
add_dependencies(example_contraction_bilinear example_contraction_bilinear_xdl_fp32)
add_example_dependencies(example_contraction_bilinear example_contraction_bilinear_xdl_fp32)
add_example_executable(example_contraction_scale_xdl_fp32 contraction_scale_xdl_fp32.cpp)
add_dependencies(example_contraction_scale example_contraction_scale_xdl_fp32)
add_example_dependencies(example_contraction_scale example_contraction_scale_xdl_fp32)
add_example_executable(example_contraction_bilinear_xdl_fp32_compute_bf16 contraction_bilinear_xdl_fp32_compute_bf16.cpp)
add_dependencies(example_contraction_bilinear example_contraction_bilinear_xdl_fp32_compute_bf16)
add_example_dependencies(example_contraction_bilinear example_contraction_bilinear_xdl_fp32_compute_bf16)
add_example_executable(example_contraction_scale_xdl_fp32_compute_bf16 contraction_scale_xdl_fp32_compute_bf16.cpp)
add_dependencies(example_contraction_scale example_contraction_scale_xdl_fp32_compute_bf16)
add_example_dependencies(example_contraction_scale example_contraction_scale_xdl_fp32_compute_bf16)
add_example_executable(example_contraction_bilinear_xdl_fp32_compute_fp16 contraction_bilinear_xdl_fp32_compute_fp16.cpp)
add_dependencies(example_contraction_bilinear example_contraction_bilinear_xdl_fp32_compute_fp16)
add_example_dependencies(example_contraction_bilinear example_contraction_bilinear_xdl_fp32_compute_fp16)
add_example_executable(example_contraction_scale_xdl_fp32_compute_fp16 contraction_scale_xdl_fp32_compute_fp16.cpp)
add_dependencies(example_contraction_scale example_contraction_scale_xdl_fp32_compute_fp16)
add_example_dependencies(example_contraction_scale example_contraction_scale_xdl_fp32_compute_fp16)
# FP64
add_example_executable(example_contraction_bilinear_xdl_fp64 contraction_bilinear_xdl_fp64.cpp)
add_dependencies(example_contraction_bilinear example_contraction_bilinear_xdl_fp64)
add_example_dependencies(example_contraction_bilinear example_contraction_bilinear_xdl_fp64)
add_example_executable(example_contraction_scale_xdl_fp64 contraction_scale_xdl_fp64.cpp)
add_dependencies(example_contraction_scale example_contraction_scale_xdl_fp64)
add_example_dependencies(example_contraction_scale example_contraction_scale_xdl_fp64)
add_example_executable(example_contraction_bilinear_xdl_fp64_compute_fp32 contraction_bilinear_xdl_fp64_compute_fp32.cpp)
add_dependencies(example_contraction_bilinear example_contraction_bilinear_xdl_fp64_compute_fp32)
add_example_dependencies(example_contraction_bilinear example_contraction_bilinear_xdl_fp64_compute_fp32)
add_example_executable(example_contraction_scale_xdl_fp64_compute_fp32 contraction_scale_xdl_fp64_compute_fp32.cpp)
add_dependencies(example_contraction_scale example_contraction_scale_xdl_fp64_compute_fp32)
add_example_dependencies(example_contraction_scale example_contraction_scale_xdl_fp64_compute_fp32)
# FP16
add_example_executable(example_contraction_bilinear_xdl_fp16_compute_fp32 contraction_bilinear_xdl_fp16_compute_fp32.cpp)
add_dependencies(example_contraction_bilinear example_contraction_bilinear_xdl_fp16_compute_fp32)
add_example_dependencies(example_contraction_bilinear example_contraction_bilinear_xdl_fp16_compute_fp32)
add_example_executable(example_contraction_scale_xdl_fp16_compute_fp32 contraction_scale_xdl_fp16_compute_fp32.cpp)
add_dependencies(example_contraction_scale example_contraction_scale_xdl_fp16_compute_fp32)
add_example_dependencies(example_contraction_scale example_contraction_scale_xdl_fp16_compute_fp32)
# BF16
add_example_executable(example_contraction_bilinear_xdl_bf16_compute_fp32 contraction_bilinear_xdl_bf16_compute_fp32.cpp)
add_dependencies(example_contraction_bilinear example_contraction_bilinear_xdl_bf16_compute_fp32)
add_example_dependencies(example_contraction_bilinear example_contraction_bilinear_xdl_bf16_compute_fp32)
add_example_executable(example_contraction_scale_xdl_bf16_compute_fp32 contraction_scale_xdl_bf16_compute_fp32.cpp)
add_dependencies(example_contraction_scale example_contraction_scale_xdl_bf16_compute_fp32)
add_example_dependencies(example_contraction_scale example_contraction_scale_xdl_bf16_compute_fp32)
add_dependencies(example_contraction example_contraction_scale)
add_dependencies(example_contraction example_contraction_bilinear)
add_example_dependencies(example_contraction example_contraction_scale)
add_example_dependencies(example_contraction example_contraction_bilinear)
add_example_executable(example_batched_gemm_bias_e_permute_xdl_fp16 batched_gemm_bias_e_permute_xdl_fp16.cpp)
if(GPU_TARGETS MATCHES "gfx11")
add_example_executable(example_batched_gemm_bias_e_permute_wmma_fp16 batched_gemm_bias_e_permute_wmma_fp16.cpp)
endif()
add_example_executable(example_batched_gemm_bias_e_permute_wmma_fp16 batched_gemm_bias_e_permute_wmma_fp16.cpp)
list(APPEND gpu_list1 gfx908 gfx90a gfx940 gfx941 gfx942)
list(APPEND gpu_list2 gfx1100 gfx1101 gfx1102)
add_custom_target(example_grouped_conv_fwd_multiple_d)
add_example_executable(example_grouped_conv_fwd_bias_relu_add_xdl_fp16 grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp)
add_example_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp16)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list1 AND target EQUAL 0)
add_custom_target(example_grouped_conv_fwd_multiple_d)
add_example_executable(example_grouped_conv_fwd_xdl_fp16 grouped_conv_fwd_xdl_fp16.cpp)
add_example_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_xdl_fp16)
add_example_executable(example_grouped_conv_fwd_bias_relu_add_xdl_fp16 grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp)
add_example_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp16)
add_example_executable(example_grouped_conv_fwd_bias_relu_add_xdl_fp32 grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp)
add_example_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp32)
add_example_executable(example_grouped_conv_fwd_xdl_fp16 grouped_conv_fwd_xdl_fp16.cpp)
add_example_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_xdl_fp16)
add_example_executable(example_grouped_conv_fwd_bias_relu_add_xdl_bf16 grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp)
add_example_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_bf16)
add_example_executable(example_grouped_conv_fwd_bias_relu_add_xdl_fp32 grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp)
add_example_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp32)
add_example_executable(example_grouped_conv_fwd_bias_relu_add_xdl_int8 grouped_conv_fwd_bias_relu_add_xdl_int8.cpp)
add_example_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int8)
add_example_executable(example_grouped_conv_fwd_bias_relu_add_xdl_bf16 grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp)
add_example_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_bf16)
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_grouped_conv_fwd_bias_relu_add_xdl_int4 grouped_conv_fwd_bias_relu_add_xdl_int4.cpp)
add_example_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int4)
endif() # USE_BITINT_EXTENSION_INT4
add_example_executable(example_grouped_conv_fwd_bias_relu_add_xdl_int8 grouped_conv_fwd_bias_relu_add_xdl_int8.cpp)
add_example_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int8)
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_grouped_conv_fwd_bias_relu_add_xdl_int4 grouped_conv_fwd_bias_relu_add_xdl_int4.cpp)
add_example_dependencies(example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int4)
endif() # USE_BITINT_EXTENSION_INT4
set(target 1)
endif()
endforeach()
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list2 AND target EQUAL 0)
add_example_executable(example_grouped_conv_fwd_bias_relu_add_wmma_fp16 grouped_conv_fwd_bias_relu_add_wmma_fp16.cpp)
add_example_executable(example_grouped_conv_fwd_bias_relu_add_wmma_int8 grouped_conv_fwd_bias_relu_add_wmma_int8.cpp)
set(target 1)
endif()
endforeach()
add_example_executable(example_grouped_conv_fwd_bias_relu_add_wmma_fp16 grouped_conv_fwd_bias_relu_add_wmma_fp16.cpp)
add_example_executable(example_grouped_conv_fwd_bias_relu_add_wmma_int8 grouped_conv_fwd_bias_relu_add_wmma_int8.cpp)
list(APPEND gpu_list1 gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list1 AND target EQUAL 0)
add_example_executable(example_batched_gemm_gemm_xdl_fp32 batched_gemm_gemm_xdl_fp32.cpp)
add_example_executable(example_batched_gemm_gemm_xdl_fp16 batched_gemm_gemm_xdl_fp16.cpp)
add_example_executable(example_batched_gemm_gemm_xdl_bf16 batched_gemm_gemm_xdl_bf16.cpp)
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_batched_gemm_gemm_xdl_int4 batched_gemm_gemm_xdl_int4.cpp)
endif(USE_BITINT_EXTENSION_INT4)
set(target 1)
endif()
endforeach()
add_example_executable(example_batched_gemm_gemm_xdl_fp32 batched_gemm_gemm_xdl_fp32.cpp)
add_example_executable(example_batched_gemm_gemm_xdl_fp16 batched_gemm_gemm_xdl_fp16.cpp)
add_example_executable(example_batched_gemm_gemm_xdl_bf16 batched_gemm_gemm_xdl_bf16.cpp)
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_batched_gemm_gemm_xdl_int4 batched_gemm_gemm_xdl_int4.cpp)
endif(USE_BITINT_EXTENSION_INT4)
if(NOT GPU_TARGETS MATCHES "gfx94" AND NOT GPU_TARGETS MATCHES "gfx1")
add_example_executable(example_batched_gemm_gemm_xdl_int8 batched_gemm_gemm_xdl_int8.cpp)
......
if(GPU_TARGETS MATCHES "gfx11")
add_example_executable(example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_wmma_fp16 batched_gemm_lower_triangle_scale_softmax_gemm_permute_wmma_fp16.cpp)
add_example_executable(example_batched_gemm_scale_softmax_gemm_permute_wmma_fp16 batched_gemm_scale_softmax_gemm_permute_wmma_fp16.cpp)
add_example_executable(example_self_attention_forward_wmma_fp16 self_attention_forward_wmma_fp16.cpp)
add_example_executable(example_cross_attention_forward_wmma_fp16 cross_attention_forward_wmma_fp16.cpp)
add_example_executable(example_multi_query_attention_forward_wmma_fp16 multi_query_attention_forward_wmma_fp16.cpp)
add_example_executable(example_grouped_query_attention_forward_wmma_fp16 grouped_query_attention_forward_wmma_fp16.cpp)
endif()
add_example_executable(example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_wmma_fp16 batched_gemm_lower_triangle_scale_softmax_gemm_permute_wmma_fp16.cpp)
add_example_executable(example_batched_gemm_scale_softmax_gemm_permute_wmma_fp16 batched_gemm_scale_softmax_gemm_permute_wmma_fp16.cpp)
add_example_executable(example_self_attention_forward_wmma_fp16 self_attention_forward_wmma_fp16.cpp)
add_example_executable(example_cross_attention_forward_wmma_fp16 cross_attention_forward_wmma_fp16.cpp)
add_example_executable(example_multi_query_attention_forward_wmma_fp16 multi_query_attention_forward_wmma_fp16.cpp)
add_example_executable(example_grouped_query_attention_forward_wmma_fp16 grouped_query_attention_forward_wmma_fp16.cpp)
add_custom_target(example_gemm_scale_softmax_gemm)
......
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_custom_target(example_splitK_gemm_xdl)
add_custom_target(example_splitK_gemm_xdl)
add_example_executable(example_splitK_gemm_xdl_fp32 splitK_gemm_xdl_fp32.cpp)
add_example_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_fp32)
add_example_executable(example_splitK_gemm_xdl_fp32 splitK_gemm_xdl_fp32.cpp)
add_example_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_fp32)
add_example_executable(example_splitK_gemm_xdl_fp16 splitK_gemm_xdl_fp16.cpp)
add_example_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_fp16)
add_example_executable(example_splitK_gemm_xdl_fp16 splitK_gemm_xdl_fp16.cpp)
add_example_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_fp16)
add_example_executable(example_splitK_gemm_xdl_fp16_fp8 splitK_gemm_xdl_fp16_fp8.cpp)
add_example_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_fp16_fp8)
add_example_executable(example_splitK_gemm_xdl_fp16_fp8 splitK_gemm_xdl_fp16_fp8.cpp)
add_example_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_fp16_fp8)
add_example_executable(example_splitK_gemm_xdl_lds_direct_load_fp16 splitK_gemm_xdl_lds_direct_load_fp16.cpp)
add_example_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_lds_direct_load_fp16)
add_example_executable(example_splitK_gemm_xdl_lds_direct_load_fp16 splitK_gemm_xdl_lds_direct_load_fp16.cpp)
add_example_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_lds_direct_load_fp16)
add_example_executable(example_splitK_gemm_xdl_bf16 splitK_gemm_xdl_bf16.cpp)
add_example_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_bf16)
add_example_executable(example_splitK_gemm_xdl_bf16 splitK_gemm_xdl_bf16.cpp)
add_example_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_bf16)
add_example_executable(example_splitK_gemm_xdl_int8 splitK_gemm_xdl_int8.cpp)
add_example_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_int8)
add_example_executable(example_splitK_gemm_xdl_int8 splitK_gemm_xdl_int8.cpp)
add_example_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_int8)
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_splitK_gemm_xdl_int4 splitK_gemm_xdl_int4.cpp)
add_example_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_int4)
endif()
set(target 1)
endif()
endforeach()
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_splitK_gemm_xdl_int4 splitK_gemm_xdl_int4.cpp)
add_example_dependencies(example_splitK_gemm_xdl example_splitK_gemm_xdl_int4)
endif()
list(APPEND gpu_list_xdl gfx908 gfx90a gfx940 gfx941 gfx942)
list(APPEND gpu_list_wmma gfx1100 gfx1101 gfx1102)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list_xdl AND target EQUAL 0)
add_custom_target(example_grouped_conv_bwd_data)
add_custom_target(example_grouped_conv_bwd_data)
add_example_executable(example_grouped_conv_bwd_data_xdl_fp16 grouped_conv_bwd_data_xdl_fp16.cpp)
add_example_dependencies(example_grouped_conv_bwd_data example_grouped_conv_bwd_data_xdl_fp16)
add_example_executable(example_grouped_conv_bwd_data_xdl_fp16 grouped_conv_bwd_data_xdl_fp16.cpp)
add_example_dependencies(example_grouped_conv_bwd_data example_grouped_conv_bwd_data_xdl_fp16)
add_example_executable(example_grouped_conv_bwd_data_bias_relu_xdl_fp16 grouped_conv_bwd_data_bias_relu_xdl_fp16.cpp)
add_example_dependencies(example_grouped_conv_bwd_data example_grouped_conv_bwd_data_bias_relu_xdl_fp16)
add_example_executable(example_grouped_conv_bwd_data_bias_relu_xdl_fp16 grouped_conv_bwd_data_bias_relu_xdl_fp16.cpp)
add_example_dependencies(example_grouped_conv_bwd_data example_grouped_conv_bwd_data_bias_relu_xdl_fp16)
set(target 1)
endif()
endforeach()
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list_wmma AND target EQUAL 0)
add_custom_target(example_grouped_conv_bwd_data)
add_example_executable(example_grouped_conv_bwd_data_wmma_fp16 grouped_conv_bwd_data_wmma_fp16.cpp)
add_example_dependencies(example_grouped_conv_bwd_data example_grouped_conv_bwd_data_wmma_fp16)
set(target 1)
endif()
endforeach()
add_example_executable(example_grouped_conv_bwd_data_wmma_fp16 grouped_conv_bwd_data_wmma_fp16.cpp)
add_example_dependencies(example_grouped_conv_bwd_data example_grouped_conv_bwd_data_wmma_fp16)
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_example_executable(example_conv2d_fwd_xdl_perlayer_quantization_int8 conv2d_fwd_xdl_perlayer_quantization_int8.cpp)
add_example_executable(example_conv2d_fwd_xdl_perchannel_quantization_int8 conv2d_fwd_xdl_perchannel_quantization_int8.cpp)
add_example_executable(example_conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8 conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp)
add_example_executable(example_conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8 conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp)
set(target 1)
endif()
endforeach()
add_example_executable(example_conv2d_fwd_xdl_perlayer_quantization_int8 conv2d_fwd_xdl_perlayer_quantization_int8.cpp)
add_example_executable(example_conv2d_fwd_xdl_perchannel_quantization_int8 conv2d_fwd_xdl_perchannel_quantization_int8.cpp)
add_example_executable(example_conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8 conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp)
add_example_executable(example_conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8 conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp)
# Conv perlayer quantization
add_example_executable(example_conv2d_fwd_dl_perlayer_quantization_int8 conv2d_fwd_dl_perlayer_quantization_int8.cpp)
# Conv perchannel quantization
add_example_executable(example_conv2d_fwd_dl_perchannel_quantization_int8 conv2d_fwd_dl_perchannel_quantization_int8.cpp)
# Conv + bias + relu perlayer quantization
add_example_executable(example_conv2d_fwd_dl_bias_relu_perlayer_quantization_int8 conv2d_fwd_dl_bias_relu_perlayer_quantization_int8.cpp)
# Conv + bias + relu perchannel quantization
add_example_executable(example_conv2d_fwd_dl_bias_relu_perchannel_quantization_int8 conv2d_fwd_dl_bias_relu_perchannel_quantization_int8.cpp)
# Conv + bias + tanh perlayer quantization
add_example_executable(example_conv2d_fwd_dl_bias_tanh_perlayer_quantization_int8 conv2d_fwd_dl_bias_tanh_perlayer_quantization_int8.cpp)
# Conv + bias + tanh perchannel quantization
add_example_executable(example_conv2d_fwd_dl_bias_tanh_perchannel_quantization_int8 conv2d_fwd_dl_bias_tanh_perchannel_quantization_int8.cpp)
# Conv perlayer quantization
add_example_executable(example_conv2d_fwd_dl_perlayer_quantization_int8 conv2d_fwd_dl_perlayer_quantization_int8.cpp)
# Conv perchannel quantization
add_example_executable(example_conv2d_fwd_dl_perchannel_quantization_int8 conv2d_fwd_dl_perchannel_quantization_int8.cpp)
# Conv + bias + relu perlayer quantization
add_example_executable(example_conv2d_fwd_dl_bias_relu_perlayer_quantization_int8 conv2d_fwd_dl_bias_relu_perlayer_quantization_int8.cpp)
# Conv + bias + relu perchannel quantization
add_example_executable(example_conv2d_fwd_dl_bias_relu_perchannel_quantization_int8 conv2d_fwd_dl_bias_relu_perchannel_quantization_int8.cpp)
# Conv + bias + tanh perlayer quantization
add_example_executable(example_conv2d_fwd_dl_bias_tanh_perlayer_quantization_int8 conv2d_fwd_dl_bias_tanh_perlayer_quantization_int8.cpp)
# Conv + bias + tanh perchannel quantization
add_example_executable(example_conv2d_fwd_dl_bias_tanh_perchannel_quantization_int8 conv2d_fwd_dl_bias_tanh_perchannel_quantization_int8.cpp)
list(APPEND gpu_list1 gfx908 gfx90a gfx940 gfx941 gfx942)
list(APPEND gpu_list2 gfx908 gfx90a)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list1 AND target EQUAL 0)
add_example_executable(example_grouped_conv_conv_fwd_xdl_fp32 grouped_conv_conv_fwd_xdl_fp32.cpp)
add_example_executable(example_grouped_conv_conv_fwd_xdl_fp16 grouped_conv_conv_fwd_xdl_fp16.cpp)
add_example_executable(example_grouped_conv_conv_fwd_xdl_bf16 grouped_conv_conv_fwd_xdl_bf16.cpp)
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_grouped_conv_conv_fwd_xdl_int4 grouped_conv_conv_fwd_xdl_int4.cpp)
endif(USE_BITINT_EXTENSION_INT4)
set(target 1)
endif()
endforeach()
add_example_executable(example_grouped_conv_conv_fwd_xdl_fp32 grouped_conv_conv_fwd_xdl_fp32.cpp)
add_example_executable(example_grouped_conv_conv_fwd_xdl_fp16 grouped_conv_conv_fwd_xdl_fp16.cpp)
add_example_executable(example_grouped_conv_conv_fwd_xdl_bf16 grouped_conv_conv_fwd_xdl_bf16.cpp)
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_grouped_conv_conv_fwd_xdl_int4 grouped_conv_conv_fwd_xdl_int4.cpp)
endif(USE_BITINT_EXTENSION_INT4)
if(NOT GPU_TARGETS MATCHES "gfx94" AND NOT GPU_TARGETS MATCHES "gfx1")
add_example_executable(example_grouped_conv_conv_fwd_xdl_int8 grouped_conv_conv_fwd_xdl_int8.cpp)
......
......@@ -4,6 +4,8 @@ add_example_executable(example_elementwise_permute_4D_fp32_row elementwise_permu
add_example_executable(example_elementwise_permute_4D_fp16_row elementwise_permute_4D_fp16_row.cpp)
add_example_executable(example_elementwise_permute_4D_fp32_col elementwise_permute_4D_fp32_col.cpp)
add_example_executable(example_elementwise_permute_4D_fp16_col elementwise_permute_4D_fp16_col.cpp)
add_example_executable(example_elementwise_binary_4D_fp16 elementwise_binary_4D_fp16.cpp)
add_example_executable(example_elementwise_trinary_4D_fp16 elementwise_trinary_4D_fp16.cpp)
add_example_executable(example_elementwise_permute elementwise_permute.cpp)
if((NOT GPU_TARGETS MATCHES "gfx940") AND (NOT GPU_TARGETS MATCHES "gfx941") AND (NOT GPU_TARGETS MATCHES "gfx942"))
add_example_executable(example_elementwise_permute_3d elementwise_permute_3d.cpp)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/combined_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_dynamic_vector_dims_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using F16 = ck::half_t;
using F32 = float;
using ADataType = F16;
using BDataType = F16;
using UnaryScale = ck::tensor_operation::element_wise::Scale;
using UnarySquare = ck::tensor_operation::element_wise::UnarySquare;
using UnaryScaleSquare =
ck::tensor_operation::element_wise::UnaryCombinedOp<UnarySquare, UnaryScale>;
using BinaryAdd = ck::tensor_operation::element_wise::Add;
// B = alpha * A0 * A0 + beta * A1 * A1
using BinaryAddUnaryScaleSquare = ck::tensor_operation::element_wise::
BinaryWithUnaryCombinedOp<BinaryAdd, UnaryScaleSquare, UnaryScaleSquare>;
using DeviceElementwisePermuteInstance = ck::tensor_operation::device::DeviceElementwiseImpl<
ck::Tuple<ADataType, ADataType>, // InDataTypeTuple
ck::Tuple<BDataType>, // OutDataTypeTuple
BinaryAddUnaryScaleSquare, // ElementwiseOp
4, // NumDim
256, // BlockSize
128, // M0PerBlock
128, // M1PerBlock
8, // M0PerThread
8, // M1PerThread
ck::Sequence<1, 0>, // ThreadClusterArrangeOrder
ck::Sequence<8, 8>, // InScalarPerVectorSeq
ck::Sequence<8>>; // OutScalarPerVectorSeq
int main()
{
bool do_verification = true;
bool time_kernel = true;
std::vector<std::size_t> nchw = {16, 128, 32, 64};
std::array<ck::index_t, 4> ab_lengths;
std::array<ck::index_t, 4> ab_strides = {static_cast<int>(nchw[1] * nchw[2] * nchw[3]),
static_cast<int>(nchw[2] * nchw[3]),
static_cast<int>(nchw[3]),
1};
ck::ranges::copy(nchw, ab_lengths.begin());
std::array<Tensor<ADataType>, 2> as = {Tensor<ADataType>(ab_lengths, ab_strides),
Tensor<ADataType>(ab_lengths, ab_strides)};
Tensor<ADataType>& a0 = as[0];
Tensor<ADataType>& a1 = as[1];
Tensor<BDataType> b(ab_lengths, ab_strides);
float alpha = 3.f;
float beta = 2.f;
a0.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
a1.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
DeviceMem a0_device_buf(sizeof(ADataType) * a0.mDesc.GetElementSpaceSize());
DeviceMem a1_device_buf(sizeof(ADataType) * a1.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize());
a0_device_buf.ToDevice(a0.mData.data());
a1_device_buf.ToDevice(a1.mData.data());
std::array<const void*, 2> inputs = {a0_device_buf.GetDeviceBuffer(),
a1_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
auto broadcastPermute = DeviceElementwisePermuteInstance{};
auto unary_scale_op_a0 = UnaryScaleSquare{UnarySquare{}, UnaryScale{alpha}};
auto unary_scale_op_a1 = UnaryScaleSquare{UnarySquare{}, UnaryScale{beta}};
auto argument = broadcastPermute.MakeArgumentPointer(
ab_lengths,
{ab_strides, ab_strides},
{ab_strides},
inputs,
output,
BinaryAddUnaryScaleSquare{BinaryAdd{}, unary_scale_op_a0, unary_scale_op_a1});
if(!broadcastPermute.IsSupportedArgument(argument.get()))
{
throw std::runtime_error(
"The runtime parameters seems not supported by the device instance, exiting!");
};
std::cout << "A0 (nchw): " << a0.mDesc << std::endl;
std::cout << "A1 (nchw): " << a1.mDesc << std::endl;
std::cout << "B (nchw): " << b.mDesc << std::endl;
auto broadcastPermute_invoker_ptr = broadcastPermute.MakeInvokerPointer();
float ave_time =
broadcastPermute_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(5) * nchw[0] * nchw[1] * nchw[2] * nchw[3];
std::size_t num_btype = sizeof(ADataType) * (nchw[0] * nchw[1] * nchw[2] * nchw[3]) +
sizeof(BDataType) * (nchw[0] * nchw[1] * nchw[2] * nchw[3]);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
bool pass = true;
if(do_verification)
{
Tensor<BDataType> host_b(ab_lengths, ab_strides);
using ReferenceElementwiseInstance = ck::tensor_operation::host::
ReferenceElementwise<2, ADataType, BDataType, BinaryAddUnaryScaleSquare>;
auto ref_elementwise = ReferenceElementwiseInstance{};
auto ref_invoker = ref_elementwise.MakeInvoker();
auto ref_argument = ref_elementwise.MakeArgument(
as,
host_b,
BinaryAddUnaryScaleSquare{BinaryAdd{}, unary_scale_op_a0, unary_scale_op_a1});
ref_invoker.Run(ref_argument);
b_device_buf.FromDevice(b.mData.data());
pass &=
ck::utils::check_err(b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3);
}
return pass ? 0 : 1;
}
......@@ -8,6 +8,8 @@
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
......@@ -30,20 +32,6 @@ using DeviceElementwisePermuteInstance =
ck::Sequence<1>, // InScalarPerVectorSeq
ck::Sequence<1>>; // OutScalarPerVectorSeq
template <typename HostTensorA, typename HostTensorB, typename Functor>
void host_elementwise4D(HostTensorB& B_ndhwc, const HostTensorA& A_ncdhw, Functor functor)
{
for(std::size_t n = 0; n < A_ncdhw.mDesc.GetLengths()[0]; ++n)
for(std::size_t c = 0; c < A_ncdhw.mDesc.GetLengths()[1]; ++c)
for(std::size_t d = 0; d < A_ncdhw.mDesc.GetLengths()[2]; ++d)
for(std::size_t h = 0; h < A_ncdhw.mDesc.GetLengths()[3]; ++h)
for(std::size_t w = 0; w < A_ncdhw.mDesc.GetLengths()[4]; ++w)
{
auto a_val = A_ncdhw(n, c, d, h, w);
functor(B_ndhwc(n, d, h, w, c), a_val);
}
}
int main()
{
bool do_verification = true;
......@@ -51,32 +39,7 @@ int main()
std::vector<std::size_t> ncdhw = {16, 8, 8, 8, 8};
std::vector<std::size_t> ndhwc = {16, 8, 8, 8, 8};
Tensor<ADataType> a(ncdhw);
Tensor<BDataType> b(ndhwc);
a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a.mData.data());
std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
std::array<ck::index_t, 5> ab_lengths;
/**std::array<ck::index_t, 5> a_strides = {
static_cast<int>(ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]),
static_cast<int>(ncdhw[2] * ncdhw[3] * ncdhw[4]),
static_cast<int>(ncdhw[3] * ncdhw[4]),
static_cast<int>(ncdhw[4]),
1};
std::array<ck::index_t, 5> b_strides = {
static_cast<int>(ndhwc[1] * ndhwc[2] * ndhwc[3] * ndhwc[4]),
static_cast<int>(ndhwc[2] * ndhwc[3] * ndhwc[4]),
1,
static_cast<int>(ndhwc[3] * ndhwc[4]),
static_cast<int>(ndhwc[4])};**/
std::array<ck::index_t, 5> a_strides = {
static_cast<int>(ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]),
......@@ -93,6 +56,20 @@ int main()
1};
ck::ranges::copy(ncdhw, ab_lengths.begin());
std::array<Tensor<ADataType>, 1> as = {Tensor<ADataType>(ab_lengths, a_strides)};
Tensor<ADataType>& a = as[0];
Tensor<BDataType> b(ab_lengths, b_strides);
a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a.mData.data());
std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
auto broadcastPermute = DeviceElementwisePermuteInstance{};
auto argument = broadcastPermute.MakeArgumentPointer(
ab_lengths, {a_strides}, {b_strides}, input, output, PassThrough{});
......@@ -126,10 +103,16 @@ int main()
if(do_verification)
{
b_device_buf.FromDevice(b.mData.data());
Tensor<BDataType> host_b(ndhwc);
host_elementwise4D(host_b, a, PassThrough{});
Tensor<BDataType> host_b(ab_lengths, b_strides);
using ReferenceElementwiseInstance =
ck::tensor_operation::host::ReferenceElementwise<1, ADataType, BDataType, PassThrough>;
auto ref_elementwise = ReferenceElementwiseInstance{};
auto ref_invoker = ref_elementwise.MakeInvoker();
auto ref_argument = ref_elementwise.MakeArgument(as, host_b, PassThrough{});
ref_invoker.Run(ref_argument);
b_device_buf.FromDevice(b.mData.data());
pass &=
ck::utils::check_err(b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3);
}
......
......@@ -8,6 +8,8 @@
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_3d_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
......@@ -34,20 +36,6 @@ using DeviceElementwisePermuteInstance =
ck::Sequence<4>, // InScalarPerVectorSeq
ck::Sequence<4>>; // OutScalarPerVectorSeq
template <typename HostTensorA, typename HostTensorB, typename Functor>
void host_elementwise4D(HostTensorB& B_ndhwc, const HostTensorA& A_ncdhw, Functor functor)
{
for(std::size_t n = 0; n < A_ncdhw.mDesc.GetLengths()[0]; ++n)
for(std::size_t c = 0; c < A_ncdhw.mDesc.GetLengths()[1]; ++c)
for(std::size_t d = 0; d < A_ncdhw.mDesc.GetLengths()[2]; ++d)
for(std::size_t h = 0; h < A_ncdhw.mDesc.GetLengths()[3]; ++h)
for(std::size_t w = 0; w < A_ncdhw.mDesc.GetLengths()[4]; ++w)
{
auto a_val = A_ncdhw(n, c, d, h, w);
functor(B_ndhwc(n, d, h, w, c), a_val);
}
}
int main()
{
bool do_verification = true;
......@@ -59,10 +47,13 @@ int main()
const int W = 5;
const int D = 16;
std::vector<std::size_t> ncdhw = {N, C, D, H, W};
std::vector<std::size_t> ndhwc = {N, D, H, W, C};
Tensor<ADataType> a(ncdhw);
Tensor<BDataType> b(ndhwc);
std::array<ck::index_t, 5> ab_lengths{N, C, H, W, D};
std::array<ck::index_t, 5> a_strides = {C * D * H * W, H * W, W, 1, D * H * W}; // N, C, D, H, W
std::array<ck::index_t, 5> b_strides = {C * H * W * D, H * W * D, W * D, D, 1}; // N, D, H, W, C
std::array<Tensor<ADataType>, 1> as = {Tensor<ADataType>(ab_lengths, a_strides)};
Tensor<ADataType>& a = as[0];
Tensor<BDataType> b(ab_lengths, b_strides);
a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
......@@ -74,10 +65,6 @@ int main()
std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
std::array<ck::index_t, 5> ab_lengths{N, C, H, W, D};
std::array<ck::index_t, 5> a_strides = {C * D * H * W, H * W, W, 1, D * H * W}; // N, C, D, H, W
std::array<ck::index_t, 5> b_strides = {C * H * W * D, H * W * D, W * D, D, 1}; // N, D, H, W, C
auto broadcastPermute = DeviceElementwisePermuteInstance{};
auto argument = broadcastPermute.MakeArgumentPointer(
ab_lengths, {a_strides}, {b_strides}, input, output, PassThrough{});
......@@ -94,11 +81,12 @@ int main()
auto broadcastPermute_invoker_ptr = broadcastPermute.MakeInvokerPointer();
float ave_time =
broadcastPermute_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4];
std::size_t flop = std::size_t(2) * ab_lengths[0] * ab_lengths[1] * ab_lengths[2] *
ab_lengths[3] * ab_lengths[4];
std::size_t num_btype =
sizeof(ADataType) * (ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]) +
sizeof(BDataType) * (ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]);
(sizeof(ADataType) + sizeof(BDataType)) *
(ab_lengths[0] * ab_lengths[1] * ab_lengths[2] * ab_lengths[3] * ab_lengths[4]);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
......@@ -111,10 +99,17 @@ int main()
if(do_verification)
{
b_device_buf.FromDevice(b.mData.data());
Tensor<BDataType> host_b(ndhwc);
host_elementwise4D(host_b, a, PassThrough{});
Tensor<BDataType> host_b(ab_lengths, b_strides);
using ReferenceElementwiseInstance =
ck::tensor_operation::host::ReferenceElementwise<1, ADataType, BDataType, PassThrough>;
auto ref_elementwise = ReferenceElementwiseInstance{};
auto ref_invoker = ref_elementwise.MakeInvoker();
auto ref_argument = ref_elementwise.MakeArgument(as, host_b, PassThrough{});
ref_invoker.Run(ref_argument);
b_device_buf.FromDevice(b.mData.data());
pass &=
ck::utils::check_err(b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3);
}
......
......@@ -6,7 +6,9 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_dynamic_vector_dims_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
......@@ -20,28 +22,20 @@ using F32 = float;
using ADataType = F16;
using BDataType = F16;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceElementwisePermuteInstance =
ck::tensor_operation::device::DeviceElementwiseImpl<ck::Tuple<ADataType>, // InDataTypeTuple
ck::Tuple<BDataType>, // OutDataTypeTuple
PassThrough, // Elementwise op
4, // NumDim
8, // MPerThread
ck::Sequence<8>, // InScalarPerVectorSeq
ck::Sequence<1>>; // OutScalarPerVectorSeq
template <typename HostTensorA, typename HostTensorB, typename Functor>
void host_elementwise4D(HostTensorB& B_nhwc, const HostTensorA& A_nchw, Functor functor)
{
for(std::size_t n = 0; n < A_nchw.mDesc.GetLengths()[0]; ++n)
for(std::size_t c = 0; c < A_nchw.mDesc.GetLengths()[1]; ++c)
for(std::size_t h = 0; h < A_nchw.mDesc.GetLengths()[2]; ++h)
for(std::size_t w = 0; w < A_nchw.mDesc.GetLengths()[3]; ++w)
{
auto a_val = A_nchw(n, c, h, w);
functor(B_nhwc(n, h, w, c), a_val);
}
}
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceElementwisePermuteInstance = ck::tensor_operation::device::DeviceElementwiseImpl<
ck::Tuple<ADataType>, // InDataTypeTuple
ck::Tuple<BDataType>, // OutDataTypeTuple
PassThrough, // Elementwise
4, // NumDim
256, // BlockSize
128, // M0PerBlock
128, // M1PerBlock
8, // M0PerThread
8, // M1PerThread
ck::Sequence<1, 0>, // ThreadClusterArrangeOrder
ck::Sequence<8>, // InScalarPerVectorSeq
ck::Sequence<8>>; // OutScalarPerVectorSeq
int main()
{
......@@ -50,18 +44,6 @@ int main()
std::vector<std::size_t> nchw = {16, 128, 32, 64};
std::vector<std::size_t> nhwc = {16, 32, 64, 128};
Tensor<ADataType> a(nchw);
Tensor<BDataType> b(nhwc);
a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a.mData.data());
std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
std::array<ck::index_t, 4> ab_lengths;
std::array<ck::index_t, 4> a_strides = {static_cast<int>(nchw[1] * nchw[2] * nchw[3]),
......@@ -72,9 +54,22 @@ int main()
1,
static_cast<int>(nhwc[2] * nhwc[3]),
static_cast<int>(nhwc[3])};
ck::ranges::copy(nchw, ab_lengths.begin());
std::array<Tensor<ADataType>, 1> as = {Tensor<ADataType>(ab_lengths, a_strides)};
Tensor<ADataType>& a = as[0];
Tensor<BDataType> b(ab_lengths, b_strides);
a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a.mData.data());
std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
auto broadcastPermute = DeviceElementwisePermuteInstance{};
auto argument = broadcastPermute.MakeArgumentPointer(
ab_lengths, {a_strides}, {b_strides}, input, output, PassThrough{});
......@@ -106,10 +101,16 @@ int main()
if(do_verification)
{
b_device_buf.FromDevice(b.mData.data());
Tensor<BDataType> host_b(nhwc);
host_elementwise4D(host_b, a, PassThrough{});
Tensor<BDataType> host_b(ab_lengths, b_strides);
using ReferenceElementwiseInstance =
ck::tensor_operation::host::ReferenceElementwise<1, ADataType, BDataType, PassThrough>;
auto ref_elementwise = ReferenceElementwiseInstance{};
auto ref_invoker = ref_elementwise.MakeInvoker();
auto ref_argument = ref_elementwise.MakeArgument(as, host_b, PassThrough{});
ref_invoker.Run(ref_argument);
b_device_buf.FromDevice(b.mData.data());
pass &=
ck::utils::check_err(b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3);
}
......
......@@ -8,6 +8,8 @@
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_2d_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
......@@ -30,22 +32,6 @@ using DeviceElementwisePermuteInstance =
ck::Sequence<1>, // InScalarPerVectorSeq
ck::Sequence<1>>; // OutScalarPerVectorSeq
template <typename HostTensorA, typename HostTensorB, typename Functor>
void host_elementwise4D(HostTensorB& B_nhwc,
const HostTensorA& A_nchw,
const std::vector<std::size_t>& shape_nchw,
Functor functor)
{
for(std::size_t n = 0; n < shape_nchw[0]; ++n)
for(std::size_t c = 0; c < shape_nchw[1]; ++c)
for(std::size_t h = 0; h < shape_nchw[2]; ++h)
for(std::size_t w = 0; w < shape_nchw[3]; ++w)
{
auto a_val = A_nchw(n, c, h, w);
functor(B_nhwc(n, h, w, c), a_val);
}
}
int main()
{
bool do_verification = true;
......@@ -54,13 +40,16 @@ int main()
const int N = 120;
const int C = 128;
const int H = 32;
const int W = 1024;
const int W = 32;
std::vector<std::size_t> nchw = {N, C, H, W};
std::vector<std::size_t> nhwc = {N, H, W, C};
std::array<ck::index_t, 4> ab_lengths{N, H, W, C};
std::array<ck::index_t, 4> a_strides = {C * H * W, W, 1, H * W};
std::array<ck::index_t, 4> b_strides = {H * W * C, W * C, C, 1};
Tensor<ADataType> a(nchw);
Tensor<BDataType> b(nhwc);
std::array<Tensor<ADataType>, 1> as = {Tensor<ADataType>(ab_lengths, a_strides)};
Tensor<ADataType>& a = as[0];
Tensor<BDataType> b(ab_lengths, b_strides);
a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
......@@ -72,11 +61,6 @@ int main()
std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
std::array<ck::index_t, 4> ab_lengths{N, H, W, C};
std::array<ck::index_t, 4> a_strides = {C * H * W, W, 1, H * W};
std::array<ck::index_t, 4> b_strides = {H * W * C, W * C, C, 1};
auto broadcastPermute = DeviceElementwisePermuteInstance{};
auto argument = broadcastPermute.MakeArgumentPointer(
ab_lengths, {a_strides}, {b_strides}, input, output, PassThrough{});
......@@ -94,10 +78,11 @@ int main()
float ave_time =
broadcastPermute_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * nchw[0] * nchw[1] * nchw[2] * nchw[3];
std::size_t flop =
std::size_t(2) * ab_lengths[0] * ab_lengths[1] * ab_lengths[2] * ab_lengths[3];
std::size_t num_btype = sizeof(ADataType) * (nchw[0] * nchw[1] * nchw[2] * nchw[3]) +
sizeof(BDataType) * (nchw[0] * nchw[1] * nchw[2] * nchw[3]);
std::size_t num_btype = (sizeof(ADataType) + sizeof(BDataType)) *
(ab_lengths[0] * ab_lengths[1] * ab_lengths[2] * ab_lengths[3]);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
......@@ -110,11 +95,16 @@ int main()
if(do_verification)
{
b_device_buf.FromDevice(b.mData.data());
Tensor<BDataType> host_b(ab_lengths, b_strides);
using ReferenceElementwiseInstance =
ck::tensor_operation::host::ReferenceElementwise<1, ADataType, BDataType, PassThrough>;
auto ref_elementwise = ReferenceElementwiseInstance{};
auto ref_invoker = ref_elementwise.MakeInvoker();
Tensor<BDataType> host_b(nhwc);
host_elementwise4D<Tensor<ADataType>, Tensor<BDataType>, PassThrough>(
host_b, a, nchw, PassThrough{});
auto ref_argument = ref_elementwise.MakeArgument(as, host_b, PassThrough{});
ref_invoker.Run(ref_argument);
b_device_buf.FromDevice(b.mData.data());
pass &=
ck::utils::check_err(b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3);
}
......
......@@ -6,8 +6,10 @@
#include <random>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_scale_impl.hpp"
#include "ck/tensor_operation/gpu/element/combined_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_dynamic_vector_dims_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
......@@ -21,43 +23,23 @@ using F32 = float;
using ADataType = F16;
using BDataType = F16;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using UnaryOp = ck::tensor_operation::element_wise::UnarySquare;
using Scale = ck::tensor_operation::element_wise::Scale;
using DeviceElementwisePermuteInstance =
ck::tensor_operation::device::DeviceElementwiseImpl<ck::Tuple<ADataType>, // InDataTypeTuple
ck::Tuple<BDataType>, // OutDataTypeTuple
PassThrough, // ElementwiseOp
UnaryOp, // UnaryOp
Scale, // Scalar
4, // NumDim
8, // MPerThread
ck::Sequence<1>, // InScalarPerVectorSeq
ck::Sequence<1>>; // OutScalarPerVectorSeq
template <typename HostTensorA, typename HostTensorB, typename FunctorA, typename FunctorB>
void host_elementwise4D(HostTensorB& B_nhwc,
const HostTensorA& A_nchw,
FunctorA functor_a,
FunctorB functor_b,
float scale)
{
std::size_t N = A_nchw.mDesc.GetLengths()[0];
std::size_t C = A_nchw.mDesc.GetLengths()[1];
std::size_t H = A_nchw.mDesc.GetLengths()[2];
std::size_t W = A_nchw.mDesc.GetLengths()[3];
for(std::size_t w = 0; w < W; ++w)
for(std::size_t h = 0; h < H; ++h)
for(std::size_t c = 0; c < C; ++c)
for(std::size_t n = 0; n < N; ++n)
{
ADataType tmp_val;
auto a_val = A_nchw.mData[(n) + (c * N) + (h * C * N) + (w * H * C * N)];
functor_b(tmp_val, a_val);
functor_a(B_nhwc.mData[(n) + (c * W * H * N) + (h * N) + (w * H * N)],
scale * tmp_val);
}
}
using UnaryScale = ck::tensor_operation::element_wise::Scale;
using UnarySquare = ck::tensor_operation::element_wise::UnarySquare;
using UnaryScaleSquare =
ck::tensor_operation::element_wise::UnaryCombinedOp<UnarySquare, UnaryScale>;
using DeviceElementwisePermuteInstance = ck::tensor_operation::device::DeviceElementwiseImpl<
ck::Tuple<ADataType>, // InDataTypeTuple
ck::Tuple<BDataType>, // OutDataTypeTuple
UnaryScaleSquare, // UnaryScaleSquare
4, // NumDim
256, // BlockSize
128, // M0PerBlock
128, // M1PerBlock
8, // M0PerThread
8, // M1PerThread
ck::Sequence<1, 0>, // ThreadClusterArrangeOrder
ck::Sequence<8>, // InScalarPerVectorSeq
ck::Sequence<8>>; // OutScalarPerVectorSeq
int main()
{
......@@ -66,8 +48,21 @@ int main()
std::vector<std::size_t> nchw = {16, 8, 32, 64};
std::vector<std::size_t> nhwc = {16, 32, 64, 8};
Tensor<ADataType> a(nchw);
Tensor<BDataType> b(nhwc);
std::array<ck::index_t, 4> ab_lengths;
std::array<ck::index_t, 4> a_strides = {1,
static_cast<int>(nchw[0]),
static_cast<int>(nchw[0] * nchw[1]),
static_cast<int>(nchw[0] * nchw[1] * nchw[2])};
std::array<ck::index_t, 4> b_strides = {1,
static_cast<int>(nhwc[0] * nhwc[1] * nhwc[2]),
static_cast<int>(nhwc[0]),
static_cast<int>(nhwc[0] * nhwc[1])};
ck::ranges::copy(nchw, ab_lengths.begin());
std::array<Tensor<ADataType>, 1> as = {Tensor<ADataType>(ab_lengths, a_strides)};
Tensor<ADataType>& a = as[0];
Tensor<BDataType> b(ab_lengths, b_strides);
float scale = 1.f;
auto i = 0;
std::mt19937 gen(11939);
......@@ -90,28 +85,14 @@ int main()
std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
std::array<ck::index_t, 4> ab_lengths;
std::array<ck::index_t, 4> a_strides = {1,
static_cast<int>(nchw[0]),
static_cast<int>(nchw[0] * nchw[1]),
static_cast<int>(nchw[0] * nchw[1] * nchw[2])};
std::array<ck::index_t, 4> b_strides = {1,
static_cast<int>(nhwc[0] * nhwc[1] * nhwc[2]),
static_cast<int>(nhwc[0]),
static_cast<int>(nhwc[0] * nhwc[1])};
ck::ranges::copy(nchw, ab_lengths.begin());
auto broadcastPermute = DeviceElementwisePermuteInstance{};
auto argument = broadcastPermute.MakeArgumentPointer(ab_lengths,
{a_strides},
{b_strides},
input,
output,
PassThrough{},
UnaryOp{},
Scale{scale});
auto argument =
broadcastPermute.MakeArgumentPointer(ab_lengths,
{a_strides},
{b_strides},
input,
output,
UnaryScaleSquare{UnarySquare{}, UnaryScale{scale}});
if(!broadcastPermute.IsSupportedArgument(argument.get()))
{
......@@ -125,11 +106,10 @@ int main()
auto broadcastPermute_invoker_ptr = broadcastPermute.MakeInvokerPointer();
float ave_time =
broadcastPermute_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * nchw[0] * nchw[1] * nchw[2] * nchw[3];
std::size_t num_btype = sizeof(ADataType) * (nchw[0] * nchw[1] * nchw[2] * nchw[3]) +
sizeof(BDataType) * (nchw[0] * nchw[1] * nchw[2] * nchw[3]);
std::size_t flop = std::size_t(5) * nchw[0] * nchw[1] * nchw[2] * nchw[3];
std::size_t num_btype =
(2 * sizeof(ADataType) + sizeof(BDataType)) * (nchw[0] * nchw[1] * nchw[2] * nchw[3]);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
......@@ -141,10 +121,17 @@ int main()
if(do_verification)
{
b_device_buf.FromDevice(b.mData.data());
Tensor<BDataType> host_b(nhwc);
host_elementwise4D(host_b, a, PassThrough{}, UnaryOp{}, scale);
Tensor<BDataType> host_b(ab_lengths, b_strides);
using ReferenceElementwiseInstance = ck::tensor_operation::host::
ReferenceElementwise<1, ADataType, BDataType, UnaryScaleSquare>;
auto ref_elementwise = ReferenceElementwiseInstance{};
auto ref_invoker = ref_elementwise.MakeInvoker();
auto ref_argument = ref_elementwise.MakeArgument(
as, host_b, UnaryScaleSquare{UnarySquare{}, UnaryScale{scale}});
ref_invoker.Run(ref_argument);
b_device_buf.FromDevice(b.mData.data());
pass &=
ck::utils::check_err(b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3);
}
......
......@@ -5,8 +5,10 @@
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_scale_impl.hpp"
#include "ck/tensor_operation/gpu/element/combined_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_dynamic_vector_dims_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
......@@ -20,38 +22,23 @@ using F32 = float;
using ADataType = F16;
using BDataType = F16;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using UnaryOp = ck::tensor_operation::element_wise::UnarySquare;
using Scale = ck::tensor_operation::element_wise::Scale;
using DeviceElementwisePermuteInstance =
ck::tensor_operation::device::DeviceElementwiseImpl<ck::Tuple<ADataType>, // InDataTypeTuple
ck::Tuple<BDataType>, // OutDataTypeTuple
PassThrough, // ElementwiseOp
UnaryOp, // UnaryOp
Scale, // Scalar
4, // NumDim
8, // MPerThread
ck::Sequence<8>, // InScalarPerVectorSeq
ck::Sequence<1>>; // OutScalarPerVectorSeq
template <typename HostTensorA, typename HostTensorB, typename FunctorA, typename FunctorB>
void host_elementwise4D(HostTensorB& B_nhwc,
const HostTensorA& A_nchw,
FunctorA functor_a,
FunctorB functor_b,
float scale)
{
for(std::size_t n = 0; n < A_nchw.mDesc.GetLengths()[0]; ++n)
for(std::size_t c = 0; c < A_nchw.mDesc.GetLengths()[1]; ++c)
for(std::size_t h = 0; h < A_nchw.mDesc.GetLengths()[2]; ++h)
for(std::size_t w = 0; w < A_nchw.mDesc.GetLengths()[3]; ++w)
{
ADataType tmp_val;
auto a_val = A_nchw(n, c, h, w);
functor_b(tmp_val, a_val);
functor_a(B_nhwc(n, h, w, c), scale * tmp_val);
}
}
using UnaryScale = ck::tensor_operation::element_wise::Scale;
using UnarySquare = ck::tensor_operation::element_wise::UnarySquare;
using UnaryScaleSquare =
ck::tensor_operation::element_wise::UnaryCombinedOp<UnarySquare, UnaryScale>;
using DeviceElementwisePermuteInstance = ck::tensor_operation::device::DeviceElementwiseImpl<
ck::Tuple<ADataType>, // InDataTypeTuple
ck::Tuple<BDataType>, // OutDataTypeTuple
UnaryScaleSquare, // UnaryScaleSquare
4, // NumDim
256, // BlockSize
128, // M0PerBlock
128, // M1PerBlock
8, // M0PerThread
8, // M1PerThread
ck::Sequence<1, 0>, // ThreadClusterArrangeOrder
ck::Sequence<8>, // InScalarPerVectorSeq
ck::Sequence<8>>; // OutScalarPerVectorSeq
int main()
{
......@@ -60,18 +47,6 @@ int main()
std::vector<std::size_t> nchw = {16, 128, 32, 64};
std::vector<std::size_t> nhwc = {16, 32, 64, 128};
Tensor<ADataType> a(nchw);
Tensor<BDataType> b(nhwc);
float scale = 2.f;
a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a.mData.data());
std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
std::array<ck::index_t, 4> ab_lengths;
std::array<ck::index_t, 4> a_strides = {static_cast<int>(nchw[1] * nchw[2] * nchw[3]),
......@@ -85,15 +60,29 @@ int main()
ck::ranges::copy(nchw, ab_lengths.begin());
std::array<Tensor<ADataType>, 1> as = {Tensor<ADataType>(ab_lengths, a_strides)};
Tensor<ADataType>& a = as[0];
Tensor<BDataType> b(ab_lengths, b_strides);
float scale = 2.f;
a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a.mData.data());
std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
auto broadcastPermute = DeviceElementwisePermuteInstance{};
auto argument = broadcastPermute.MakeArgumentPointer(ab_lengths,
{a_strides},
{b_strides},
input,
output,
PassThrough{},
UnaryOp{},
Scale{scale});
auto argument =
broadcastPermute.MakeArgumentPointer(ab_lengths,
{a_strides},
{b_strides},
input,
output,
UnaryScaleSquare{UnarySquare{}, UnaryScale{scale}});
if(!broadcastPermute.IsSupportedArgument(argument.get()))
{
......@@ -123,10 +112,17 @@ int main()
if(do_verification)
{
b_device_buf.FromDevice(b.mData.data());
Tensor<BDataType> host_b(nhwc);
host_elementwise4D(host_b, a, PassThrough{}, UnaryOp{}, scale);
Tensor<BDataType> host_b(ab_lengths, b_strides);
using ReferenceElementwiseInstance = ck::tensor_operation::host::
ReferenceElementwise<1, ADataType, BDataType, UnaryScaleSquare>;
auto ref_elementwise = ReferenceElementwiseInstance{};
auto ref_invoker = ref_elementwise.MakeInvoker();
auto ref_argument = ref_elementwise.MakeArgument(
as, host_b, UnaryScaleSquare{UnarySquare{}, UnaryScale{scale}});
ref_invoker.Run(ref_argument);
b_device_buf.FromDevice(b.mData.data());
pass &=
ck::utils::check_err(b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3);
}
......
......@@ -5,8 +5,10 @@
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_scale_impl.hpp"
#include "ck/tensor_operation/gpu/element/combined_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_dynamic_vector_dims_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
......@@ -20,53 +22,47 @@ using F32 = float;
using ADataType = F32;
using BDataType = F32;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using UnaryOp = ck::tensor_operation::element_wise::UnarySquare;
using Scale = ck::tensor_operation::element_wise::Scale;
using DeviceElementwisePermuteInstance =
ck::tensor_operation::device::DeviceElementwiseImpl<ck::Tuple<ADataType>, // InDataTypeTuple
ck::Tuple<BDataType>, // OutDataTypeTuple
PassThrough, // ElementwiseOp
UnaryOp, // UnaryOp
Scale, // Scalar
4, // NumDim
1, // MPerThread
ck::Sequence<1>, // InScalarPerVectorSeq
ck::Sequence<1>>; // OutScalarPerVectorSeq
template <typename HostTensorA, typename HostTensorB, typename FunctorA, typename FunctorB>
void host_elementwise4D(HostTensorB& B_nhwc,
const HostTensorA& A_nchw,
FunctorA functor_a,
FunctorB functor_b,
float scale)
{
std::size_t N = A_nchw.mDesc.GetLengths()[0];
std::size_t C = A_nchw.mDesc.GetLengths()[1];
std::size_t H = A_nchw.mDesc.GetLengths()[2];
std::size_t W = A_nchw.mDesc.GetLengths()[3];
for(std::size_t w = 0; w < W; ++w)
for(std::size_t h = 0; h < H; ++h)
for(std::size_t c = 0; c < C; ++c)
for(std::size_t n = 0; n < N; ++n)
{
ADataType tmp_val;
auto a_val = A_nchw.mData[(n) + (c * N) + (h * C * N) + (w * H * C * N)];
functor_b(tmp_val, a_val);
functor_a(B_nhwc.mData[(n) + (c * W * H * N) + (h * N) + (w * H * N)],
scale * tmp_val);
}
}
using UnaryScale = ck::tensor_operation::element_wise::Scale;
using UnarySquare = ck::tensor_operation::element_wise::UnarySquare;
using UnaryScaleSquare =
ck::tensor_operation::element_wise::UnaryCombinedOp<UnarySquare, UnaryScale>;
using DeviceElementwisePermuteInstance = ck::tensor_operation::device::DeviceElementwiseImpl<
ck::Tuple<ADataType>, // InDataTypeTuple
ck::Tuple<BDataType>, // OutDataTypeTuple
UnaryScaleSquare, // UnaryScaleSquare
4, // NumDim
256, // BlockSize
128, // M0PerBlock
128, // M1PerBlock
8, // M0PerThread
8, // M1PerThread
ck::Sequence<1, 0>, // ThreadClusterArrangeOrder
ck::Sequence<1>, // InScalarPerVectorSeq
ck::Sequence<1>>; // OutScalarPerVectorSeq
int main()
{
bool do_verification = true;
bool time_kernel = true;
std::vector<std::size_t> nchw = {5, 4, 2, 3};
std::vector<std::size_t> nhwc = {5, 2, 3, 4};
Tensor<ADataType> a(nchw);
Tensor<BDataType> b(nhwc);
std::vector<std::size_t> nchw = {16, 8, 32, 64};
std::vector<std::size_t> nhwc = {16, 32, 64, 8};
std::array<ck::index_t, 4> ab_lengths;
std::array<ck::index_t, 4> a_strides = {1,
static_cast<int>(nchw[0]),
static_cast<int>(nchw[0] * nchw[1]),
static_cast<int>(nchw[0] * nchw[1] * nchw[2])};
std::array<ck::index_t, 4> b_strides = {1,
static_cast<int>(nhwc[0] * nhwc[1] * nhwc[2]),
static_cast<int>(nhwc[0]),
static_cast<int>(nhwc[0] * nhwc[1])};
ck::ranges::copy(nchw, ab_lengths.begin());
std::array<Tensor<ADataType>, 1> as = {Tensor<ADataType>(ab_lengths, a_strides)};
Tensor<ADataType>& a = as[0];
Tensor<BDataType> b(ab_lengths, b_strides);
float scale = 1.f;
auto i = 0;
......@@ -90,28 +86,14 @@ int main()
std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
std::array<ck::index_t, 4> ab_lengths;
std::array<ck::index_t, 4> a_strides = {1,
static_cast<int>(nchw[0]),
static_cast<int>(nchw[0] * nchw[1]),
static_cast<int>(nchw[0] * nchw[1] * nchw[2])};
std::array<ck::index_t, 4> b_strides = {1,
static_cast<int>(nhwc[0] * nhwc[1] * nhwc[2]),
static_cast<int>(nhwc[0]),
static_cast<int>(nhwc[0] * nhwc[1])};
ck::ranges::copy(nchw, ab_lengths.begin());
auto broadcastPermute = DeviceElementwisePermuteInstance{};
auto argument = broadcastPermute.MakeArgumentPointer(ab_lengths,
{a_strides},
{b_strides},
input,
output,
PassThrough{},
UnaryOp{},
Scale{scale});
auto argument =
broadcastPermute.MakeArgumentPointer(ab_lengths,
{a_strides},
{b_strides},
input,
output,
UnaryScaleSquare{UnarySquare{}, UnaryScale{scale}});
if(!broadcastPermute.IsSupportedArgument(argument.get()))
{
......@@ -141,10 +123,17 @@ int main()
if(do_verification)
{
b_device_buf.FromDevice(b.mData.data());
Tensor<BDataType> host_b(nhwc);
host_elementwise4D(host_b, a, PassThrough{}, UnaryOp{}, scale);
Tensor<BDataType> host_b(ab_lengths, b_strides);
using ReferenceElementwiseInstance = ck::tensor_operation::host::
ReferenceElementwise<1, ADataType, BDataType, UnaryScaleSquare>;
auto ref_elementwise = ReferenceElementwiseInstance{};
auto ref_invoker = ref_elementwise.MakeInvoker();
auto ref_argument = ref_elementwise.MakeArgument(
as, host_b, UnaryScaleSquare{UnarySquare{}, UnaryScale{scale}});
ref_invoker.Run(ref_argument);
b_device_buf.FromDevice(b.mData.data());
pass &=
ck::utils::check_err(b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3);
}
......
......@@ -5,8 +5,10 @@
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_scale_impl.hpp"
#include "ck/tensor_operation/gpu/element/combined_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_dynamic_vector_dims_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
......@@ -20,38 +22,23 @@ using F32 = float;
using ADataType = F32;
using BDataType = F32;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using UnaryOp = ck::tensor_operation::element_wise::UnarySquare;
using Scale = ck::tensor_operation::element_wise::Scale;
using DeviceElementwisePermuteInstance =
ck::tensor_operation::device::DeviceElementwiseImpl<ck::Tuple<ADataType>, // InDataTypeTuple
ck::Tuple<BDataType>, // OutDataTypeTuple
PassThrough, // ElementwiseOp
UnaryOp, // UnaryOp
Scale, // Scalar
4, // NumDim
8, // MPerThread
ck::Sequence<8>, // InScalarPerVectorSeq
ck::Sequence<1>>; // OutScalarPerVectorSeq
template <typename HostTensorA, typename HostTensorB, typename FunctorA, typename FunctorB>
void host_elementwise4D(HostTensorB& B_nhwc,
const HostTensorA& A_nchw,
FunctorA functor_a,
FunctorB functor_b,
float scale)
{
for(std::size_t n = 0; n < A_nchw.mDesc.GetLengths()[0]; ++n)
for(std::size_t c = 0; c < A_nchw.mDesc.GetLengths()[1]; ++c)
for(std::size_t h = 0; h < A_nchw.mDesc.GetLengths()[2]; ++h)
for(std::size_t w = 0; w < A_nchw.mDesc.GetLengths()[3]; ++w)
{
ADataType tmp_val;
auto a_val = A_nchw(n, c, h, w);
functor_b(tmp_val, a_val);
functor_a(B_nhwc(n, h, w, c), scale * tmp_val);
}
}
using UnaryScale = ck::tensor_operation::element_wise::Scale;
using UnarySquare = ck::tensor_operation::element_wise::UnarySquare;
using UnaryScaleSquare =
ck::tensor_operation::element_wise::UnaryCombinedOp<UnarySquare, UnaryScale>;
using DeviceElementwisePermuteInstance = ck::tensor_operation::device::DeviceElementwiseImpl<
ck::Tuple<ADataType>, // InDataTypeTuple
ck::Tuple<BDataType>, // OutDataTypeTuple
UnaryScaleSquare, // UnaryScaleSquare
4, // NumDim
256, // BlockSize
128, // M0PerBlock
128, // M1PerBlock
8, // M0PerThread
8, // M1PerThread
ck::Sequence<1, 0>, // ThreadClusterArrangeOrder
ck::Sequence<8>, // InScalarPerVectorSeq
ck::Sequence<8>>; // OutScalarPerVectorSeq
int main()
{
......@@ -60,18 +47,6 @@ int main()
std::vector<std::size_t> nchw = {16, 128, 32, 64};
std::vector<std::size_t> nhwc = {16, 32, 64, 128};
Tensor<ADataType> a(nchw);
Tensor<BDataType> b(nhwc);
float scale = 2.f;
a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a.mData.data());
std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
std::array<ck::index_t, 4> ab_lengths;
std::array<ck::index_t, 4> a_strides = {static_cast<int>(nchw[1] * nchw[2] * nchw[3]),
......@@ -85,15 +60,28 @@ int main()
ck::ranges::copy(nchw, ab_lengths.begin());
std::array<Tensor<ADataType>, 1> as = {Tensor<ADataType>(ab_lengths, a_strides)};
Tensor<ADataType>& a = as[0];
Tensor<BDataType> b(ab_lengths, b_strides);
float scale = 2.f;
a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a.mData.data());
std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
auto broadcastPermute = DeviceElementwisePermuteInstance{};
auto argument = broadcastPermute.MakeArgumentPointer(ab_lengths,
{a_strides},
{b_strides},
input,
output,
PassThrough{},
UnaryOp{},
Scale{scale});
auto argument =
broadcastPermute.MakeArgumentPointer(ab_lengths,
{a_strides},
{b_strides},
input,
output,
UnaryScaleSquare{UnarySquare{}, UnaryScale{scale}});
if(!broadcastPermute.IsSupportedArgument(argument.get()))
{
......@@ -123,10 +111,17 @@ int main()
if(do_verification)
{
b_device_buf.FromDevice(b.mData.data());
Tensor<BDataType> host_b(nhwc);
host_elementwise4D(host_b, a, PassThrough{}, UnaryOp{}, scale);
Tensor<BDataType> host_b(ab_lengths, b_strides);
using ReferenceElementwiseInstance = ck::tensor_operation::host::
ReferenceElementwise<1, ADataType, BDataType, UnaryScaleSquare>;
auto ref_elementwise = ReferenceElementwiseInstance{};
auto ref_invoker = ref_elementwise.MakeInvoker();
auto ref_argument = ref_elementwise.MakeArgument(
as, host_b, UnaryScaleSquare{UnarySquare{}, UnaryScale{scale}});
ref_invoker.Run(ref_argument);
b_device_buf.FromDevice(b.mData.data());
pass &=
ck::utils::check_err(b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3);
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/combined_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_dynamic_vector_dims_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using F16 = ck::half_t;
using F32 = float;
using ADataType = F16;
using BDataType = F16;
using UnaryScale = ck::tensor_operation::element_wise::Scale;
using UnarySquare = ck::tensor_operation::element_wise::UnarySquare;
using UnaryScaleSquare =
ck::tensor_operation::element_wise::UnaryCombinedOp<UnarySquare, UnaryScale>;
using BinaryAdd = ck::tensor_operation::element_wise::Add;
// B = alpha * A0 * A0 + beta * A1 * A1 + gamma * A2 * A2
using TrinaryAddUnaryScaleSquare =
ck::tensor_operation::element_wise::TrinaryWithUnaryCombinedOp<BinaryAdd,
BinaryAdd,
UnaryScaleSquare,
UnaryScaleSquare,
UnaryScaleSquare>;
using DeviceElementwisePermuteInstance = ck::tensor_operation::device::DeviceElementwiseImpl<
ck::Tuple<ADataType, ADataType, ADataType>, // InDataTypeTuple
ck::Tuple<BDataType>, // OutDataTypeTuple
TrinaryAddUnaryScaleSquare, // ElementwiseOp
4, // NumDim
256, // BlockSize
128, // M0PerBlock
128, // M1PerBlock
8, // M0PerThread
8, // M1PerThread
ck::Sequence<1, 0>, // ThreadClusterArrangeOrder
ck::Sequence<8, 8, 8>, // InScalarPerVectorSeq
ck::Sequence<8>>; // OutScalarPerVectorSeq
int main()
{
bool do_verification = true;
bool time_kernel = true;
std::vector<std::size_t> nchw = {16, 128, 32, 64};
std::array<ck::index_t, 4> ab_lengths;
std::array<ck::index_t, 4> ab_strides = {static_cast<int>(nchw[1] * nchw[2] * nchw[3]),
static_cast<int>(nchw[2] * nchw[3]),
static_cast<int>(nchw[3]),
1};
ck::ranges::copy(nchw, ab_lengths.begin());
std::array<Tensor<ADataType>, 3> as = {Tensor<ADataType>(ab_lengths, ab_strides),
Tensor<ADataType>(ab_lengths, ab_strides),
Tensor<ADataType>(ab_lengths, ab_strides)};
Tensor<ADataType>& a0 = as[0];
Tensor<ADataType>& a1 = as[1];
Tensor<ADataType>& a2 = as[2];
Tensor<BDataType> b(ab_lengths, ab_strides);
float alpha = 3.f;
float beta = 2.f;
float gamma = 4.f;
a0.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
a1.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
a2.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
DeviceMem a0_device_buf(sizeof(ADataType) * a0.mDesc.GetElementSpaceSize());
DeviceMem a1_device_buf(sizeof(ADataType) * a1.mDesc.GetElementSpaceSize());
DeviceMem a2_device_buf(sizeof(ADataType) * a2.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize());
a0_device_buf.ToDevice(a0.mData.data());
a1_device_buf.ToDevice(a1.mData.data());
a2_device_buf.ToDevice(a2.mData.data());
std::array<const void*, 3> inputs = {a0_device_buf.GetDeviceBuffer(),
a1_device_buf.GetDeviceBuffer(),
a2_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
auto broadcastPermute = DeviceElementwisePermuteInstance{};
auto unary_scale_op_a0 = UnaryScaleSquare{UnarySquare{}, UnaryScale{alpha}};
auto unary_scale_op_a1 = UnaryScaleSquare{UnarySquare{}, UnaryScale{beta}};
auto unary_scale_op_a2 = UnaryScaleSquare{UnarySquare{}, UnaryScale{gamma}};
auto argument = broadcastPermute.MakeArgumentPointer(
ab_lengths,
{ab_strides, ab_strides, ab_strides},
{ab_strides},
inputs,
output,
TrinaryAddUnaryScaleSquare{
BinaryAdd{}, BinaryAdd{}, unary_scale_op_a0, unary_scale_op_a1, unary_scale_op_a2});
if(!broadcastPermute.IsSupportedArgument(argument.get()))
{
throw std::runtime_error(
"The runtime parameters seems not supported by the device instance, exiting!");
};
std::cout << "A0 (nchw): " << a0.mDesc << std::endl;
std::cout << "A1 (nchw): " << a1.mDesc << std::endl;
std::cout << "A2 (nchw): " << a2.mDesc << std::endl;
std::cout << "B (nchw): " << b.mDesc << std::endl;
auto broadcastPermute_invoker_ptr = broadcastPermute.MakeInvokerPointer();
float ave_time =
broadcastPermute_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(5) * nchw[0] * nchw[1] * nchw[2] * nchw[3];
std::size_t num_btype = sizeof(ADataType) * (nchw[0] * nchw[1] * nchw[2] * nchw[3]) +
sizeof(BDataType) * (nchw[0] * nchw[1] * nchw[2] * nchw[3]);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
bool pass = true;
if(do_verification)
{
Tensor<BDataType> host_b(ab_lengths, ab_strides);
using ReferenceElementwiseInstance = ck::tensor_operation::host::
ReferenceElementwise<3, ADataType, BDataType, TrinaryAddUnaryScaleSquare>;
auto ref_elementwise = ReferenceElementwiseInstance{};
auto ref_invoker = ref_elementwise.MakeInvoker();
auto ref_argument = ref_elementwise.MakeArgument(
as,
host_b,
TrinaryAddUnaryScaleSquare{
BinaryAdd{}, BinaryAdd{}, unary_scale_op_a0, unary_scale_op_a1, unary_scale_op_a2});
ref_invoker.Run(ref_argument);
const double threshold = std::pow(2, -10) * 2;
b_device_buf.FromDevice(b.mData.data());
pass &= ck::utils::check_err(
b.mData, host_b.mData, "Error: Incorrect results b", threshold, threshold);
}
return pass ? 0 : 1;
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment