"...consistency_distillation/train_lcm_distill_sdxl_wds.py" did not exist on "e607a582cfaa7dfaf7913fc3bb54c35eceee583c"
Commit 7f65ac05 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'develop' into amd-develop

parents 687d2b7e 7e5c81fe
......@@ -48,7 +48,10 @@ else()
endif()
endif()
find_package(composable_kernel COMPONENTS device_other_operations device_gemm_operations device_conv_operations device_contraction_operations device_reduction_operations)
find_package(composable_kernel COMPONENTS device_other_operations device_gemm_operations device_conv_operations device_reduction_operations)
if(GPU_TARGETS MATCHES "gfx9")
find_package(composable_kernel COMPONENTS device_contraction_operations)
endif()
find_package(hip REQUIRED PATHS /opt/rocm)
message(STATUS "Build with HIP ${hip_VERSION}")
......
rocm-docs-core==0.36.0
rocm-docs-core==0.38.0
sphinxcontrib-bibtex==2.6.2
......@@ -96,9 +96,7 @@ pygments==2.15.0
# pydata-sphinx-theme
# sphinx
pyjwt[crypto]==2.6.0
# via
# pygithub
# pyjwt
# via pygithub
pynacl==1.5.0
# via pygithub
pytz==2023.3.post1
......@@ -113,7 +111,7 @@ requests==2.31.0
# via
# pygithub
# sphinx
rocm-docs-core==0.36.0
rocm-docs-core==0.38.0
# via -r requirements.in
six==1.16.0
# via
......
......@@ -27,11 +27,6 @@ add_example_dependencies(example_gemm_xdl example_gemm_xdl_wavelet_fp16)
add_example_executable(example_gemm_xdl_skip_b_lds_fp16 gemm_xdl_skip_b_lds_fp16.cpp)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_skip_b_lds_fp16)
if(GPU_TARGETS MATCHES "gfx11")
add_custom_target(example_gemm_wmma)
add_example_executable(example_gemm_wmma_fp16 gemm_wmma_fp16.cpp)
add_example_dependencies(example_gemm_wmma example_gemm_wmma_fp16)
endif()
add_example_executable(example_gemm_xdl_bf16 gemm_xdl_bf16.cpp)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_bf16)
......@@ -47,8 +42,7 @@ if(USE_BITINT_EXTENSION_INT4)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_int4)
endif(USE_BITINT_EXTENSION_INT4)
# FIXME: re-enable this example as test when SWDEV-335738 is fixed
add_example_executable_no_testing(example_gemm_xdl_fp64 gemm_xdl_fp64.cpp)
add_example_executable(example_gemm_xdl_fp64 gemm_xdl_fp64.cpp)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp64)
add_example_executable(example_gemm_xdl_streamk gemm_xdl_streamk.cpp)
......@@ -75,3 +69,6 @@ add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp8_bf8)
add_example_executable(example_gemm_xdl_fp16_fp8 gemm_xdl_fp16_fp8.cpp)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp16_fp8)
add_custom_target(example_gemm_wmma)
add_example_executable(example_gemm_wmma_fp16 gemm_wmma_fp16.cpp)
add_example_dependencies(example_gemm_wmma example_gemm_wmma_fp16)
list(APPEND gpu_list1 gfx1100 gfx1101 gfx1102)
list(APPEND gpu_list2 gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list1 AND target EQUAL 0)
add_example_executable(example_gemm_bilinear_wmma_fp16 gemm_bilinear_wmma_fp16.cpp)
add_example_executable(example_gemm_bilinear_wmma_int8 gemm_bilinear_wmma_int8.cpp)
endif()
if(GPU_TARGETS MATCHES "gfx908" OR GPU_TARGETS MATCHES "gfx90a" OR GPU_TARGETS MATCHES "gfx940")
set(target 1)
endif()
endforeach()
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list2 AND target EQUAL 0)
add_example_executable(example_gemm_bilinear_xdl_fp16 gemm_bilinear_xdl_fp16.cpp)
set(target 1)
endif()
endforeach()
add_example_executable(example_gemm_bilinear_wmma_fp16 gemm_bilinear_wmma_fp16.cpp)
add_example_executable(example_gemm_bilinear_wmma_int8 gemm_bilinear_wmma_int8.cpp)
add_example_executable(example_gemm_bilinear_xdl_fp16 gemm_bilinear_xdl_fp16.cpp)
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_example_executable(example_gemm_bias_relu_xdl_fp16 gemm_bias_relu_xdl_fp16.cpp)
set(target 1)
endif()
endforeach()
add_example_executable(example_gemm_bias_relu_xdl_fp16 gemm_bias_relu_xdl_fp16.cpp)
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_custom_target(example_gemm_add_add_fastgelu_xdl)
add_example_executable(example_gemm_add_add_fastgelu_xdl_bf16 gemm_add_add_fastgelu_xdl_bf16.cpp)
add_example_dependencies(example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_bf16)
add_custom_target(example_gemm_add_add_fastgelu_xdl)
add_example_executable(example_gemm_add_add_fastgelu_xdl_bf16 gemm_add_add_fastgelu_xdl_bf16.cpp)
add_example_dependencies(example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_bf16)
add_example_executable(example_gemm_add_add_fastgelu_xdl_fp16 gemm_add_add_fastgelu_xdl_fp16.cpp)
add_example_dependencies(example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_fp16)
add_example_executable(example_gemm_add_add_fastgelu_xdl_fp16 gemm_add_add_fastgelu_xdl_fp16.cpp)
add_example_dependencies(example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_fp16)
add_example_executable(example_gemm_add_add_fastgelu_xdl_fp32 gemm_add_add_fastgelu_xdl_fp32.cpp)
add_example_dependencies(example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_fp32)
add_example_executable(example_gemm_add_add_fastgelu_xdl_fp32 gemm_add_add_fastgelu_xdl_fp32.cpp)
add_example_dependencies(example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_fp32)
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_gemm_add_add_fastgelu_xdl_int4 gemm_add_add_fastgelu_xdl_int4.cpp)
add_example_dependencies(example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_int4)
endif(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_gemm_add_add_fastgelu_xdl_int8 gemm_add_add_fastgelu_xdl_int8.cpp)
add_example_dependencies(example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_int8)
set(target 1)
endif()
endforeach()
add_example_executable(example_gemm_add_add_fastgelu_xdl_int8 gemm_add_add_fastgelu_xdl_int8.cpp)
add_example_dependencies(example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_int8)
set(gpu_list "")
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_gemm_add_add_fastgelu_xdl_int4 gemm_add_add_fastgelu_xdl_int4.cpp)
add_example_dependencies(example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_int4)
endif(USE_BITINT_EXTENSION_INT4)
list(APPEND gpu_list gfx90a gfx940 gfx941 gfx942)
set(target 0)
......
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_example_executable(example_convnd_fwd_xdl_fp32 convnd_fwd_xdl_fp32.cpp)
add_example_executable(example_convnd_fwd_xdl_fp16 convnd_fwd_xdl_fp16.cpp)
add_example_executable(example_convnd_fwd_xdl_bf16 convnd_fwd_xdl_bf16.cpp)
add_example_executable(example_convnd_fwd_xdl_int8 convnd_fwd_xdl_int8.cpp)
add_example_executable(example_convnd_fwd_xdl_fp8 convnd_fwd_xdl_fp8.cpp)
# FIXME: re-enable this exampe as test when SWDEV-335738 is fixed
add_example_executable_no_testing(example_convnd_fwd_xdl_fp64 convnd_fwd_xdl_fp64.cpp)
set(target 1)
endif()
endforeach()
add_example_executable(example_convnd_fwd_xdl_fp32 convnd_fwd_xdl_fp32.cpp)
add_example_executable(example_convnd_fwd_xdl_fp16 convnd_fwd_xdl_fp16.cpp)
add_example_executable(example_convnd_fwd_xdl_bf16 convnd_fwd_xdl_bf16.cpp)
add_example_executable(example_convnd_fwd_xdl_int8 convnd_fwd_xdl_int8.cpp)
add_example_executable(example_convnd_fwd_xdl_fp8 convnd_fwd_xdl_fp8.cpp)
add_example_executable(example_convnd_fwd_xdl_fp64 convnd_fwd_xdl_fp64.cpp)
add_example_executable(example_convnd_fwd_xdl_bf8 convnd_fwd_xdl_bf8.cpp)
add_example_executable(example_convnd_fwd_xdl_fp8_bf8 convnd_fwd_xdl_fp8_bf8.cpp)
add_example_executable(example_convnd_fwd_dl_fp16 convnd_fwd_dl_fp16.cpp)
add_example_executable(example_convnd_fwd_dl_fp32 convnd_fwd_dl_fp32.cpp)
add_example_executable(example_convnd_fwd_dl_int8 convnd_fwd_dl_int8.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using InDataType = ck::bf8_t;
using WeiDataType = ck::bf8_t;
using AccDataType = float;
using CShuffleDataType = ck::f8_t;
using OutDataType = ck::f8_t;
using ComputeType = ck::bf8_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial, typename InLayout, typename WeiLayout, typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<>,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8,
ComputeType>;
#include "run_convnd_fwd_example.inc"
int main(int argc, char* argv[]) { return run_convnd_fwd_example(argc, argv) ? 0 : 1; }
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using InDataType = ck::f8_t;
using WeiDataType = ck::bf8_t;
using AccDataType = float;
using CShuffleDataType = ck::f8_t;
using OutDataType = ck::f8_t;
using AComputeType = ck::f8_t;
using BComputeType = ck::bf8_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial, typename InLayout, typename WeiLayout, typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<>,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8,
AComputeType,
BComputeType>;
#include "run_convnd_fwd_example.inc"
int main(int argc, char* argv[]) { return run_convnd_fwd_example(argc, argv) ? 0 : 1; }
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_custom_target(example_convnd_fwd_reduce_xdl)
add_custom_target(example_convnd_fwd_reduce_xdl)
add_example_executable(example_convnd_fwd_max_xdl_int8 convnd_fwd_max_xdl_int8.cpp)
add_example_dependencies(example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_int8)
add_example_executable(example_convnd_fwd_max_xdl_int8 convnd_fwd_max_xdl_int8.cpp)
add_example_dependencies(example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_int8)
add_example_executable_no_testing(example_convnd_fwd_max_xdl_bf16 convnd_fwd_max_xdl_bf16.cpp)
add_example_dependencies(example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_bf16)
add_example_executable_no_testing(example_convnd_fwd_max_xdl_bf16 convnd_fwd_max_xdl_bf16.cpp)
add_example_dependencies(example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_bf16)
add_example_executable_no_testing(example_convnd_fwd_max_xdl_fp16 convnd_fwd_max_xdl_fp16.cpp)
add_example_dependencies(example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_fp16)
add_example_executable_no_testing(example_convnd_fwd_max_xdl_fp16 convnd_fwd_max_xdl_fp16.cpp)
add_example_dependencies(example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_fp16)
add_example_executable(example_convnd_fwd_max_xdl_fp32 convnd_fwd_max_xdl_fp32.cpp)
add_example_dependencies(example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_fp32)
add_example_executable(example_convnd_fwd_max_xdl_fp32 convnd_fwd_max_xdl_fp32.cpp)
add_example_dependencies(example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_fp32)
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_convnd_fwd_max_xdl_int4 convnd_fwd_max_xdl_int4.cpp)
add_example_dependencies(example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_int4)
endif(USE_BITINT_EXTENSION_INT4)
set(target 1)
endif()
endforeach()
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_convnd_fwd_max_xdl_int4 convnd_fwd_max_xdl_int4.cpp)
add_example_dependencies(example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_int4)
endif(USE_BITINT_EXTENSION_INT4)
# dlops
add_example_executable(example_gemm_dl_quantization_int8 gemm_dl_quantization_int8.cpp)
# xdlops
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_example_executable(example_gemm_xdl_bias_relu_quantization_int8 gemm_xdl_bias_relu_quantization_int8.cpp)
add_example_executable(example_gemm_xdl_quantization_int8 gemm_xdl_quantization_int8.cpp)
set(target 1)
endif()
endforeach()
add_example_executable(example_gemm_xdl_bias_relu_quantization_int8 gemm_xdl_bias_relu_quantization_int8.cpp)
add_example_executable(example_gemm_xdl_quantization_int8 gemm_xdl_quantization_int8.cpp)
......@@ -23,8 +23,8 @@ add_example_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_bf16)
add_example_executable(example_grouped_gemm_xdl_int8 grouped_gemm_xdl_int8.cpp)
add_example_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_int8)
add_example_executable(example_grouped_gemm_xdl_fixed_nk_fp8 grouped_gemm_xdl_fixed_nk_fp8.cpp)
add_example_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_fixed_nk_fp8)
add_example_executable(example_grouped_gemm_xdl_fixed_nk_fp16_fp8 grouped_gemm_xdl_fixed_nk_fp16_fp8.cpp)
add_example_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_fixed_nk_fp16_fp8)
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_grouped_gemm_xdl_int4 grouped_gemm_xdl_int4.cpp)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multiple_d_splitk_xdl_cshuffle_two_stage.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include <ck/utility/data_type.hpp>
#include <ck/utility/tuple.hpp>
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm_multiple_d.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddAdd = ck::tensor_operation::element_wise::AddAdd;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using DDataType = F16;
using DsDataType = ck::Tuple<DDataType, DDataType>;
using EDataType = F32;
using ALayout = Row;
using BLayout = Col;
using DLayout = Row;
using DsLayout = ck::Tuple<DLayout, DLayout>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddAdd;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
static constexpr int NumDMatrices = 2;
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage
// clang-format off
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 4>;
// clang-format on
struct ProblemSize final
{
std::vector<ck::index_t> Ms;
std::vector<ck::index_t> Ns;
std::vector<ck::index_t> Ks;
std::vector<ck::index_t> stride_As;
std::vector<ck::index_t> stride_Bs;
std::vector<std::vector<ck::index_t>> stride_Ds;
std::vector<ck::index_t> stride_Cs;
ck::index_t group_count;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
int k_batch = 128;
bool time_kernel = true;
};
bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
auto group_count = problem_size.group_count;
// GEMM shape
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
std::vector<void*> p_Cs;
std::vector<const void*> p_As;
std::vector<const void*> p_Bs;
std::vector<std::array<const void*, NumDMatrices>> p_Ds = {};
gemm_descs.reserve(group_count);
p_As.reserve(group_count);
p_Bs.reserve(group_count);
p_Ds.reserve(group_count);
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
std::vector<Tensor<ADataType>> a_tensors;
std::vector<Tensor<BDataType>> b_tensors;
std::vector<std::array<Tensor<DDataType>, NumDMatrices>> d_tensors;
std::vector<Tensor<EDataType>> c_host_tensors;
std::vector<Tensor<EDataType>> c_device_result_tensors;
a_tensors.reserve(group_count);
b_tensors.reserve(group_count);
d_tensors.reserve(group_count);
c_host_tensors.reserve(group_count);
c_device_result_tensors.reserve(group_count);
using DeviceMemPtr = std::unique_ptr<DeviceMem>;
std::vector<DeviceMemPtr> a_tensors_device, b_tensors_device, c_tensors_device;
std::vector<std::vector<DeviceMemPtr>> d_tensors_device;
a_tensors_device.reserve(group_count);
b_tensors_device.reserve(group_count);
d_tensors_device.reserve(group_count);
c_tensors_device.reserve(group_count);
std::size_t flop = 0, num_btype = 0;
for(int i = 0; i < group_count; i++)
{
a_tensors.push_back(Tensor<ADataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ks[i], problem_size.stride_As[i], ALayout{})));
b_tensors.push_back(Tensor<BDataType>(f_host_tensor_descriptor(
problem_size.Ks[i], problem_size.Ns[i], problem_size.stride_Bs[i], BLayout{})));
auto d0_tensor = Tensor<DDataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], DLayout{}));
auto d1_tensor = Tensor<DDataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], DLayout{}));
std::array<Tensor<DDataType>, NumDMatrices> d_tens = {d0_tensor, d1_tensor};
d_tensors.push_back(d_tens);
c_host_tensors.push_back(Tensor<EDataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], ELayout{})));
c_device_result_tensors.push_back(Tensor<EDataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], ELayout{})));
std::cout << "gemm[" << i << "] a_m_k: " << a_tensors[i].mDesc
<< " b_k_n: " << b_tensors[i].mDesc
<< " c_m_n: " << c_device_result_tensors[i].mDesc << std::endl;
flop += std::size_t(2) * problem_size.Ms[i] * problem_size.Ks[i] * problem_size.Ns[i];
num_btype += sizeof(ADataType) * a_tensors[i].GetElementSize() +
sizeof(BDataType) * b_tensors[i].GetElementSize() +
sizeof(DDataType) * d_tensors[i][0].GetElementSize() * NumDMatrices +
sizeof(EDataType) * c_device_result_tensors[i].GetElementSize();
switch(config.init_method)
{
case 0: break;
case 1:
a_tensors[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_tensors[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
for(int j = 0; j < NumDMatrices; ++j)
{
d_tensors[i][j].GenerateTensorValue(GeneratorTensor_2<DDataType>{-5, 5});
}
break;
case 2:
a_tensors[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
for(int j = 0; j < NumDMatrices; ++j)
{
d_tensors[i][j].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
}
break;
default:
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
for(int j = 0; j < NumDMatrices; ++j)
{
d_tensors[i][j].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
}
}
}
for(int i = 0; i < group_count; i++)
{
a_tensors_device.emplace_back(
std::make_unique<DeviceMem>(a_tensors[i].GetElementSpaceSize() * sizeof(ADataType)));
b_tensors_device.emplace_back(
std::make_unique<DeviceMem>(b_tensors[i].GetElementSpaceSize() * sizeof(BDataType)));
c_tensors_device.emplace_back(std::make_unique<DeviceMem>(
c_device_result_tensors[i].GetElementSpaceSize() * sizeof(EDataType)));
for(int j = 0; j < NumDMatrices; ++j)
{
d_tensors_device[i].emplace_back(std::make_unique<DeviceMem>(
d_tensors[i][j].GetElementSpaceSize() * sizeof(DDataType)));
}
a_tensors_device[i]->ToDevice(a_tensors[i].mData.data());
b_tensors_device[i]->ToDevice(b_tensors[i].mData.data());
for(int j = 0; j < NumDMatrices; ++j)
{
d_tensors_device[i][j]->ToDevice(d_tensors[i][j].mData.data());
}
c_tensors_device[i]->SetZero();
p_As.push_back(a_tensors_device[i]->GetDeviceBuffer());
p_Bs.push_back(b_tensors_device[i]->GetDeviceBuffer());
p_Ds.push_back(
{d_tensors_device[i][0]->GetDeviceBuffer(), d_tensors_device[i][1]->GetDeviceBuffer()});
p_Cs.push_back(c_tensors_device[i]->GetDeviceBuffer());
gemm_descs.push_back({problem_size.Ms[i],
problem_size.Ns[i],
problem_size.Ks[i],
problem_size.stride_As[i],
problem_size.stride_Bs[i],
problem_size.stride_Cs[i],
problem_size.stride_Ds[i]});
}
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
// do GEMM
auto argument = gemm.MakeArgument(
p_As, p_Bs, p_Ds, p_Cs, gemm_descs, a_element_op, b_element_op, cde_element_op);
gemm.SetKBatchSize(argument, config.k_batch);
if(!gemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
DeviceMem gemm_workspace_dev(gemm.GetWorkSpaceSize(&argument));
gemm.SetWorkSpacePointer(&argument, gemm_workspace_dev.GetDeviceBuffer());
DeviceMem gemm_arg_dev_mem(gemm.GetDeviceKernelArgSize(&argument));
gemm.SetDeviceKernelArgs(argument, gemm_arg_dev_mem.GetDeviceBuffer());
invoker.Run(argument, StreamConfig{nullptr, false, 1});
if(config.time_kernel)
{
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm.GetTypeString() << std::endl;
}
bool pass = true;
if(config.do_verification)
{
using ReferenceGemmInstance =
ck::tensor_operation::host::ReferenceGemmMultipleD<ADataType,
BDataType,
DsDataType,
EDataType,
AccDataType,
AElementOp,
BElementOp,
CDEElementOp>;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
auto karg = argument.gemm_kernel_args_[i].karg_;
auto dev_res_tensor =
Tensor<float>(f_host_tensor_descriptor(karg.M, karg.N, karg.StrideC, ELayout{}));
c_tensors_device[i]->FromDevice(c_device_result_tensors[i].mData.data(),
c_device_result_tensors[i].mDesc.GetElementSize() *
sizeof(EDataType));
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_tensors[i],
b_tensors[i],
d_tensors[i],
c_host_tensors[i],
a_element_op,
b_element_op,
cde_element_op);
ref_invoker.Run(ref_argument);
pass &= ck::utils::check_err(c_device_result_tensors[i], c_host_tensors[i]);
}
std::cout << "Verification: " << (pass ? "SUCCESS" : "FAILURE") << "!" << std::endl;
}
return pass;
}
std::vector<int> argToIntArray(char* input)
{
std::vector<int> out;
std::istringstream in(input);
std::string item;
while(std::getline(in, item, ','))
{
out.push_back(std::stoi(item));
}
return out;
}
int main(int argc, char* argv[])
{
ProblemSize problem_size;
ExecutionConfig config;
if(argc < 11)
{
std::vector<ck::index_t> Ms{64, 127, 255, 129, 260, 190, 77};
problem_size.group_count = Ms.size();
for(int i = 0; i < problem_size.group_count; i++)
{
problem_size.Ms.push_back(Ms[i]);
problem_size.Ns.push_back(252);
problem_size.Ks.push_back(4608);
problem_size.stride_As.push_back(problem_size.Ks[i]);
problem_size.stride_Bs.push_back(problem_size.Ks[i]);
problem_size.stride_Cs.push_back(problem_size.Ns[i]);
problem_size.stride_Ds.push_back({});
for(int j = 0; j < NumDMatrices; ++j)
{
problem_size.stride_Ds[i].push_back(problem_size.Ns[i]);
}
}
std::cout
<< "Usage:\n"
<< "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: time kernel (0=n0, 1=yes)\n"
<< "arg4 to 9: Ms, Ns, Ks, StrideAs, StrideBs, StrideCs (e.g., 256,256 128,128 64,64 "
"64,64 64,64 128,128)\n"
<< "arg10: k_batch (> 0)\n"
<< "... setting default values." << std::endl;
}
else
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
config.k_batch = std::stoi(argv[10]);
problem_size.Ms = argToIntArray(argv[4]);
problem_size.Ns = argToIntArray(argv[5]);
problem_size.Ks = argToIntArray(argv[6]);
problem_size.stride_As = argToIntArray(argv[7]);
problem_size.stride_Bs = argToIntArray(argv[8]);
problem_size.stride_Cs = argToIntArray(argv[9]);
for(int j = 0; j < NumDMatrices; ++j)
{
problem_size.stride_Ds.push_back(problem_size.stride_Cs);
}
problem_size.group_count = problem_size.Ms.size();
}
return !run_grouped_gemm(problem_size, config);
}
......@@ -36,7 +36,7 @@ using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using DsDataType = ck::Tuple<>;
using EDataType = F32;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
......@@ -55,7 +55,7 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGroupedGemm_Xdl_F
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 4>;
< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 4>;
// clang-format on
struct ProblemSize final
......@@ -298,9 +298,9 @@ int main(int argc, char* argv[])
for(int i = 0; i < problem_size.group_count; i++)
{
problem_size.Ms.push_back(256 + 256 * i);
problem_size.Ns.push_back(256);
problem_size.Ks.push_back(128);
problem_size.Ms.push_back(128 + rand() % 128);
problem_size.Ns.push_back(1024);
problem_size.Ks.push_back(1024);
problem_size.stride_As.push_back(problem_size.Ks[i]);
problem_size.stride_Bs.push_back(problem_size.Ks[i]);
......
......@@ -35,7 +35,7 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using BDataType = F8;
using AccDataType = F32;
using CShuffleDataType = F32;
using CShuffleDataType = F16;
using DsDataType = ck::Tuple<>;
using EDataType = F16;
......@@ -56,7 +56,7 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGroupedGemm_Xdl_F
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>;
< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>;
// clang-format on
struct ProblemSize final
......
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_custom_target(example_gemm_reduce_xdl)
add_custom_target(example_gemm_reduce_xdl_max)
add_custom_target(example_gemm_reduce_xdl_mean_meansquare)
add_custom_target(example_gemm_add_add_mean_meansquare_xdl)
add_example_executable(example_gemm_max_xdl_fp16 gemm_max_xdl_fp16.cpp)
add_example_dependencies(example_gemm_reduce_xdl_max example_gemm_max_xdl_fp16)
add_example_executable(example_gemm_add_add_mean_meansquare_xdl_fp16 gemm_add_add_mean_meansquare_xdl_fp16.cpp)
add_example_dependencies(example_gemm_add_add_mean_meansquare_xdl example_gemm_add_add_mean_meansquare_xdl_fp16)
add_example_executable(example_gemm_mean_meansquare_xdl_fp16 gemm_mean_meansquare_xdl_fp16.cpp)
add_example_dependencies(example_gemm_reduce_xdl_mean_meansquare example_gemm_mean_meansquare_xdl_fp16)
add_example_executable(example_gemm_max_xdl_int8 gemm_max_xdl_int8.cpp)
add_example_dependencies(example_gemm_reduce_xdl_max example_gemm_max_xdl_int8)
add_example_executable(example_gemm_add_addsquare_xdl_int8 gemm_add_addsquare_xdl_int8.cpp)
add_example_dependencies(example_gemm_reduce_xdl_mean_meansquare example_gemm_add_addsquare_xdl_int8)
add_example_executable(example_gemm_max_xdl_fp32 gemm_max_xdl_fp32.cpp)
add_example_dependencies(example_gemm_reduce_xdl_max example_gemm_max_xdl_fp32)
add_example_executable(example_gemm_mean_meansquare_xdl_fp32 gemm_mean_meansquare_xdl_fp32.cpp)
add_example_dependencies(example_gemm_reduce_xdl_mean_meansquare example_gemm_mean_meansquare_xdl_fp32)
add_example_executable(example_gemm_max_xdl_bf16 gemm_max_xdl_bf16.cpp)
add_example_dependencies(example_gemm_reduce_xdl_max example_gemm_max_xdl_bf16)
add_example_executable(example_gemm_mean_meansquare_xdl_bf16 gemm_mean_meansquare_xdl_bf16.cpp)
add_example_dependencies(example_gemm_reduce_xdl_mean_meansquare example_gemm_mean_meansquare_xdl_bf16)
add_example_dependencies(example_gemm_reduce_xdl
example_gemm_reduce_xdl_mean_meansquare
example_gemm_reduce_xdl_max
example_gemm_add_add_mean_meansquare_xdl)
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_gemm_max_xdl_int4 gemm_max_xdl_int4.cpp)
add_example_dependencies(example_gemm_reduce_xdl_max example_gemm_max_xdl_int4)
endif()
set(target 1)
endif()
endforeach()
add_custom_target(example_gemm_reduce_xdl)
add_custom_target(example_gemm_reduce_xdl_max)
add_custom_target(example_gemm_reduce_xdl_mean_meansquare)
add_custom_target(example_gemm_add_add_mean_meansquare_xdl)
add_example_executable(example_gemm_max_xdl_fp16 gemm_max_xdl_fp16.cpp)
add_example_dependencies(example_gemm_reduce_xdl_max example_gemm_max_xdl_fp16)
add_example_executable(example_gemm_add_add_mean_meansquare_xdl_fp16 gemm_add_add_mean_meansquare_xdl_fp16.cpp)
add_example_dependencies(example_gemm_add_add_mean_meansquare_xdl example_gemm_add_add_mean_meansquare_xdl_fp16)
add_example_executable(example_gemm_mean_meansquare_xdl_fp16 gemm_mean_meansquare_xdl_fp16.cpp)
add_example_dependencies(example_gemm_reduce_xdl_mean_meansquare example_gemm_mean_meansquare_xdl_fp16)
add_example_executable(example_gemm_max_xdl_int8 gemm_max_xdl_int8.cpp)
add_example_dependencies(example_gemm_reduce_xdl_max example_gemm_max_xdl_int8)
add_example_executable(example_gemm_add_addsquare_xdl_int8 gemm_add_addsquare_xdl_int8.cpp)
add_example_dependencies(example_gemm_reduce_xdl_mean_meansquare example_gemm_add_addsquare_xdl_int8)
add_example_executable(example_gemm_max_xdl_fp32 gemm_max_xdl_fp32.cpp)
add_example_dependencies(example_gemm_reduce_xdl_max example_gemm_max_xdl_fp32)
add_example_executable(example_gemm_mean_meansquare_xdl_fp32 gemm_mean_meansquare_xdl_fp32.cpp)
add_example_dependencies(example_gemm_reduce_xdl_mean_meansquare example_gemm_mean_meansquare_xdl_fp32)
add_example_executable(example_gemm_max_xdl_bf16 gemm_max_xdl_bf16.cpp)
add_example_dependencies(example_gemm_reduce_xdl_max example_gemm_max_xdl_bf16)
add_example_executable(example_gemm_mean_meansquare_xdl_bf16 gemm_mean_meansquare_xdl_bf16.cpp)
add_example_dependencies(example_gemm_reduce_xdl_mean_meansquare example_gemm_mean_meansquare_xdl_bf16)
add_example_dependencies(example_gemm_reduce_xdl
example_gemm_reduce_xdl_mean_meansquare
example_gemm_reduce_xdl_max
example_gemm_add_add_mean_meansquare_xdl)
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_gemm_max_xdl_int4 gemm_max_xdl_int4.cpp)
add_example_dependencies(example_gemm_reduce_xdl_max example_gemm_max_xdl_int4)
endif()
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_example_executable(example_convnd_bwd_data_xdl_fp16 convnd_bwd_data_xdl_fp16.cpp)
if(result EQUAL 0)
target_link_libraries(example_convnd_bwd_data_xdl_fp16 PRIVATE utility)
endif()
set(target 1)
endif()
endforeach()
add_example_executable(example_convnd_bwd_data_xdl_fp16 convnd_bwd_data_xdl_fp16.cpp)
if(result EQUAL 0)
target_link_libraries(example_convnd_bwd_data_xdl_fp16 PRIVATE utility)
endif()
add_example_executable(example_convnd_bwd_data_dl_fp16 convnd_bwd_data_dl_fp16.cpp)
if(result EQUAL 0)
......
list(APPEND gpu_list_xdl gfx908 gfx90a gfx940 gfx941 gfx942)
list(APPEND gpu_list_wmma gfx1100 gfx1101 gfx1102)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list_xdl AND target EQUAL 0)
add_custom_target(example_grouped_conv_bwd_weight)
add_example_executable(example_grouped_conv_bwd_weight_xdl_fp16 grouped_conv_bwd_weight_xdl_fp16.cpp)
add_example_dependencies(example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_fp16)
add_custom_target(example_grouped_conv_bwd_weight)
add_example_executable(example_grouped_conv_bwd_weight_xdl_fp16 grouped_conv_bwd_weight_xdl_fp16.cpp)
add_example_dependencies(example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_fp16)
add_example_executable(example_grouped_conv_bwd_weight_xdl_bf16 grouped_conv_bwd_weight_xdl_bf16.cpp)
add_example_dependencies(example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_bf16)
add_example_executable(example_grouped_conv_bwd_weight_xdl_bf16 grouped_conv_bwd_weight_xdl_bf16.cpp)
add_example_dependencies(example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_bf16)
add_example_executable(example_grouped_conv_bwd_weight_xdl_fp16_comp_bf8_fp8 grouped_conv_bwd_weight_xdl_fp16_comp_bf8_fp8.cpp)
add_example_dependencies(example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_fp16_comp_bf8_fp8)
set(target 1)
endif()
add_example_executable(example_grouped_conv_bwd_weight_xdl_fp16_comp_bf8_fp8 grouped_conv_bwd_weight_xdl_fp16_comp_bf8_fp8.cpp)
add_example_dependencies(example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_fp16_comp_bf8_fp8)
if(gpu IN_LIST gpu_list_wmma AND target EQUAL 0)
add_custom_target(example_grouped_conv_bwd_weight)
add_example_executable(example_grouped_conv_bwd_weight_wmma_fp16 grouped_conv_bwd_weight_wmma_fp16.cpp)
add_example_dependencies(example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_wmma_fp16)
set(target 1)
endif()
endforeach()
add_custom_target(example_grouped_conv_bwd_weight_dl)
add_example_executable(example_grouped_conv_bwd_weight_wmma_fp16 grouped_conv_bwd_weight_wmma_fp16.cpp)
add_example_dependencies(example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_wmma_fp16)
add_example_executable(example_grouped_conv_bwd_weight_dl_fp16 grouped_conv_bwd_weight_dl_fp16.cpp)
add_example_dependencies(example_grouped_conv_bwd_weight_dl example_grouped_conv_bwd_weight_dl_fp16)
add_example_dependencies(example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_dl_fp16)
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_example_executable(example_gemm_bias_relu_add_layernorm_xdl_welford_fp16 gemm_bias_relu_add_layernorm_xdl_welford_fp16.cpp)
add_example_executable(example_gemm_bias_relu_add_layernorm_xdl_naive_fp16 gemm_bias_relu_add_layernorm_xdl_naive_fp16.cpp)
add_example_executable(example_gemm_layernorm_xdl_naive_fp16 gemm_layernorm_xdl_naive_fp16.cpp)
add_example_executable(example_gemm_xdl_layernorm_naive_single_kernel_fp16 gemm_xdl_layernorm_naive_single_kernel_fp16.cpp)
set(target 1)
endif()
endforeach()
add_example_executable(example_gemm_bias_relu_add_layernorm_xdl_welford_fp16 gemm_bias_relu_add_layernorm_xdl_welford_fp16.cpp)
add_example_executable(example_gemm_bias_relu_add_layernorm_xdl_naive_fp16 gemm_bias_relu_add_layernorm_xdl_naive_fp16.cpp)
add_example_executable(example_gemm_layernorm_xdl_naive_fp16 gemm_layernorm_xdl_naive_fp16.cpp)
add_example_executable(example_gemm_xdl_layernorm_naive_single_kernel_fp16 gemm_xdl_layernorm_naive_single_kernel_fp16.cpp)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment