Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
7e7640ce
Commit
7e7640ce
authored
Mar 31, 2022
by
carlushuang
Browse files
Merge remote-tracking branch 'origin/develop' into cpu_avx2
parents
cc8df39e
f015c776
Changes
54
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
831 additions
and
14 deletions
+831
-14
library/src/obselete_driver_offline/conv_fwd_driver_offline_nchwc.cpp
...obselete_driver_offline/conv_fwd_driver_offline_nchwc.cpp
+1
-1
library/src/obselete_driver_offline/conv_maxpool_fwd_driver_offline_nchwc.cpp
..._driver_offline/conv_maxpool_fwd_driver_offline_nchwc.cpp
+1
-1
library/src/obselete_driver_offline/conv_wrw_driver_offline.cpp
...y/src/obselete_driver_offline/conv_wrw_driver_offline.cpp
+1
-1
library/src/obselete_driver_offline/gemm_driver_offline.cpp
library/src/obselete_driver_offline/gemm_driver_offline.cpp
+1
-1
library/src/tensor_operation_instance/gpu/CMakeLists.txt
library/src/tensor_operation_instance/gpu/CMakeLists.txt
+1
-0
library/src/tensor_operation_instance/gpu/batched_gemm_reduce/CMakeLists.txt
...operation_instance/gpu/batched_gemm_reduce/CMakeLists.txt
+11
-0
library/src/tensor_operation_instance/gpu/batched_gemm_reduce/device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instance.cpp
...xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instance.cpp
+70
-0
library/src/tensor_operation_instance/gpu/batched_gemm_reduce/device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instance.cpp
...xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instance.cpp
+70
-0
library/src/tensor_operation_instance/gpu/batched_gemm_reduce/device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instance.cpp
...xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instance.cpp
+70
-0
library/src/tensor_operation_instance/gpu/batched_gemm_reduce/device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instance.cpp
...xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instance.cpp
+67
-0
profiler/CMakeLists.txt
profiler/CMakeLists.txt
+2
-0
profiler/include/profile_batched_gemm_impl.hpp
profiler/include/profile_batched_gemm_impl.hpp
+18
-4
profiler/include/profile_batched_gemm_reduce_impl.hpp
profiler/include/profile_batched_gemm_reduce_impl.hpp
+354
-0
profiler/include/profile_gemm_bias_2d_impl.hpp
profiler/include/profile_gemm_bias_2d_impl.hpp
+1
-1
profiler/include/profile_gemm_bias_relu_impl.hpp
profiler/include/profile_gemm_bias_relu_impl.hpp
+1
-1
profiler/include/profile_gemm_impl.hpp
profiler/include/profile_gemm_impl.hpp
+5
-1
profiler/include/profile_gemm_reduce_impl.hpp
profiler/include/profile_gemm_reduce_impl.hpp
+1
-1
profiler/include/profile_grouped_gemm_impl.hpp
profiler/include/profile_grouped_gemm_impl.hpp
+1
-1
profiler/include/profile_reduce_impl.hpp
profiler/include/profile_reduce_impl.hpp
+1
-1
profiler/src/profile_batched_gemm_reduce.cpp
profiler/src/profile_batched_gemm_reduce.cpp
+154
-0
No files found.
library/src/obselete_driver_offline/conv_fwd_driver_offline_nchwc.cpp
View file @
7e7640ce
...
@@ -282,7 +282,7 @@ int main(int argc, char* argv[])
...
@@ -282,7 +282,7 @@ int main(int argc, char* argv[])
print_array
(
"ConvStrides"
,
make_tuple
(
conv_stride_h
,
conv_stride_w
));
print_array
(
"ConvStrides"
,
make_tuple
(
conv_stride_h
,
conv_stride_w
));
print_array
(
"ConvDilations"
,
make_tuple
(
conv_dilation_h
,
conv_dilation_w
));
print_array
(
"ConvDilations"
,
make_tuple
(
conv_dilation_h
,
conv_dilation_w
));
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
()
;
std
::
size_t
num_thread
=
1
;
switch
(
init_method
)
switch
(
init_method
)
{
{
...
...
library/src/obselete_driver_offline/conv_maxpool_fwd_driver_offline_nchwc.cpp
View file @
7e7640ce
...
@@ -300,7 +300,7 @@ int main(int argc, char* argv[])
...
@@ -300,7 +300,7 @@ int main(int argc, char* argv[])
print_array
(
"ConvStrides"
,
make_tuple
(
conv_stride_h
,
conv_stride_w
));
print_array
(
"ConvStrides"
,
make_tuple
(
conv_stride_h
,
conv_stride_w
));
print_array
(
"ConvDilations"
,
make_tuple
(
conv_dilation_h
,
conv_dilation_w
));
print_array
(
"ConvDilations"
,
make_tuple
(
conv_dilation_h
,
conv_dilation_w
));
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
()
;
std
::
size_t
num_thread
=
1
;
switch
(
init_method
)
switch
(
init_method
)
{
{
...
...
library/src/obselete_driver_offline/conv_wrw_driver_offline.cpp
View file @
7e7640ce
...
@@ -289,7 +289,7 @@ int main(int argc, char* argv[])
...
@@ -289,7 +289,7 @@ int main(int argc, char* argv[])
print_array
(
"ConvStrides"
,
make_tuple
(
conv_stride_h
,
conv_stride_w
));
print_array
(
"ConvStrides"
,
make_tuple
(
conv_stride_h
,
conv_stride_w
));
print_array
(
"ConvDilations"
,
make_tuple
(
conv_dilation_h
,
conv_dilation_w
));
print_array
(
"ConvDilations"
,
make_tuple
(
conv_dilation_h
,
conv_dilation_w
));
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
()
;
std
::
size_t
num_thread
=
1
;
switch
(
init_method
)
switch
(
init_method
)
{
{
...
...
library/src/obselete_driver_offline/gemm_driver_offline.cpp
View file @
7e7640ce
...
@@ -313,7 +313,7 @@ int main(int argc, char* argv[])
...
@@ -313,7 +313,7 @@ int main(int argc, char* argv[])
ostream_HostTensorDescriptor
(
b
.
mDesc
,
std
::
cout
<<
"b: "
);
ostream_HostTensorDescriptor
(
b
.
mDesc
,
std
::
cout
<<
"b: "
);
ostream_HostTensorDescriptor
(
c_host
.
mDesc
,
std
::
cout
<<
"c: "
);
ostream_HostTensorDescriptor
(
c_host
.
mDesc
,
std
::
cout
<<
"c: "
);
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
()
;
std
::
size_t
num_thread
=
1
;
switch
(
init_method
)
switch
(
init_method
)
{
{
...
...
library/src/tensor_operation_instance/gpu/CMakeLists.txt
View file @
7e7640ce
...
@@ -39,3 +39,4 @@ add_subdirectory(conv2d_bwd_data)
...
@@ -39,3 +39,4 @@ add_subdirectory(conv2d_bwd_data)
add_subdirectory
(
reduce
)
add_subdirectory
(
reduce
)
add_subdirectory
(
convnd_bwd_data
)
add_subdirectory
(
convnd_bwd_data
)
add_subdirectory
(
grouped_gemm
)
add_subdirectory
(
grouped_gemm
)
add_subdirectory
(
batched_gemm_reduce
)
library/src/tensor_operation_instance/gpu/batched_gemm_reduce/CMakeLists.txt
0 → 100644
View file @
7e7640ce
set
(
DEVICE_BATCHED_GEMM_REDUCE_INSTANCE_SOURCE
device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instance.cpp
device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instance.cpp
device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instance.cpp
device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instance.cpp
)
add_instance_library
(
device_batched_gemm_reduce_instance
${
DEVICE_BATCHED_GEMM_REDUCE_INSTANCE_SOURCE
}
)
install
(
TARGETS device_batched_gemm_reduce_instance LIBRARY DESTINATION lib
)
clang_tidy_check
(
device_batched_gemm_reduce_instance
)
library/src/tensor_operation_instance/gpu/batched_gemm_reduce/device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instance.cpp
0 → 100644
View file @
7e7640ce
#include <stdlib.h>
#include "config.hpp"
#include "device_batched_gemm_reduce_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "element_wise_reduce_operation.hpp"
#include "device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_gemm_instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ReduceSum
=
ck
::
tensor_operation
::
element_wise
::
ReduceSum
;
using
ReduceSquareSum
=
ck
::
tensor_operation
::
element_wise
::
ReduceSquareSum
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization_t
::
Default
;
// c[g, m, n] = a[g, m, k] * b[g, n, k]
// d0[g, m] = reduce0(c[g, m, n])
// d1[g, m] = reduce1(c[g, m, n])
using
device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instances
=
std
::
tuple
<
// clang-format off
//##################################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| D0| D1| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//##################################| | | | Type| Type| Type| DataType| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//##################################| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
2
,
2
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
128
,
256
,
32
,
4
,
4
,
32
,
32
,
2
,
4
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
128
,
256
,
32
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
128
,
128
,
128
,
32
,
2
,
2
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
S
<
32
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
S
<
32
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
128
,
128
,
32
,
2
,
2
,
32
,
32
,
2
,
2
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
128
,
128
,
64
,
32
,
2
,
2
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
,
S
<
64
,
2
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
,
S
<
64
,
2
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
128
,
64
,
128
,
32
,
2
,
2
,
32
,
32
,
2
,
2
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
S
<
32
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
S
<
32
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
128
,
64
,
32
,
2
,
2
,
32
,
32
,
2
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
64
,
128
,
32
,
2
,
2
,
32
,
32
,
1
,
2
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
// clang-format on
>
;
void
add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instances
(
std
::
vector
<
DeviceGemmReducePtr
<
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instances
{});
}
}
// namespace device_gemm_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/batched_gemm_reduce/device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instance.cpp
0 → 100644
View file @
7e7640ce
#include <stdlib.h>
#include "config.hpp"
#include "device_batched_gemm_reduce_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "element_wise_reduce_operation.hpp"
#include "device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_gemm_instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ReduceSum
=
ck
::
tensor_operation
::
element_wise
::
ReduceSum
;
using
ReduceSquareSum
=
ck
::
tensor_operation
::
element_wise
::
ReduceSquareSum
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization_t
::
Default
;
// c[g, m, n] = a[g, m, k] * b[g, n, k]
// d0[g, m] = reduce0(c[g, m, n])
// d1[g, m] = reduce1(c[g, m, n])
using
device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instances
=
std
::
tuple
<
// clang-format off
//##################################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| D0| D1| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//##################################| | | | Type| Type| Type| DataType| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//##################################| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
2
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
128
,
256
,
32
,
2
,
8
,
32
,
32
,
2
,
4
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
128
,
256
,
32
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
128
,
128
,
128
,
32
,
2
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
S
<
32
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
S
<
32
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
128
,
128
,
32
,
2
,
8
,
32
,
32
,
2
,
2
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
128
,
128
,
64
,
32
,
2
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
,
S
<
64
,
2
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
,
S
<
64
,
2
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
128
,
64
,
128
,
32
,
2
,
8
,
32
,
32
,
2
,
2
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
S
<
32
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
S
<
32
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
128
,
64
,
32
,
2
,
8
,
32
,
32
,
2
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
64
,
128
,
32
,
2
,
8
,
32
,
32
,
1
,
2
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Col
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
// clang-format on
>
;
void
add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instances
(
std
::
vector
<
DeviceGemmReducePtr
<
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instances
{});
}
}
// namespace device_gemm_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/batched_gemm_reduce/device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instance.cpp
0 → 100644
View file @
7e7640ce
#include <stdlib.h>
#include "config.hpp"
#include "device_batched_gemm_reduce_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "element_wise_reduce_operation.hpp"
#include "device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_gemm_instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ReduceSum
=
ck
::
tensor_operation
::
element_wise
::
ReduceSum
;
using
ReduceSquareSum
=
ck
::
tensor_operation
::
element_wise
::
ReduceSquareSum
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization_t
::
Default
;
// c[g, m, n] = a[g, m, k] * b[g, n, k]
// d0[g, m] = reduce0(c[g, m, n])
// d1[g, m] = reduce1(c[g, m, n])
using
device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instances
=
std
::
tuple
<
// clang-format off
//##################################| ALayout| BLayout| CLayout| AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| D0| D1| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//##################################| | | | Type| Type| Type| DataType| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//##################################| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
2
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
128
,
256
,
32
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
128
,
128
,
128
,
32
,
8
,
2
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
S
<
32
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
S
<
32
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
128
,
128
,
32
,
8
,
2
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
128
,
128
,
64
,
32
,
8
,
2
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
,
S
<
64
,
2
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
,
S
<
64
,
2
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
128
,
64
,
128
,
32
,
8
,
2
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
S
<
32
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
S
<
32
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
128
,
64
,
32
,
8
,
2
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
64
,
128
,
32
,
8
,
2
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
// clang-format on
>
;
void
add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instances
(
std
::
vector
<
DeviceGemmReducePtr
<
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instances
{});
}
}
// namespace device_gemm_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/batched_gemm_reduce/device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instance.cpp
0 → 100644
View file @
7e7640ce
#include <stdlib.h>
#include "config.hpp"
#include "device_batched_gemm_reduce_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "element_wise_reduce_operation.hpp"
#include "device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_gemm_instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ReduceSum
=
ck
::
tensor_operation
::
element_wise
::
ReduceSum
;
using
ReduceSquareSum
=
ck
::
tensor_operation
::
element_wise
::
ReduceSquareSum
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization_t
::
Default
;
// c[g, m, n] = a[g, m, k] * b[g, n, k]
// d0[g, m] = reduce0(c[g, m, n])
// d1[g, m] = reduce1(c[g, m, n])
using
device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instances
=
std
::
tuple
<
// clang-format off
//##################################| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| D0| D1| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//##################################| | | | Type| Type| Type| DataType| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//##################################| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
128
,
256
,
32
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
S
<
32
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
,
S
<
64
,
2
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
S
<
32
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
,
S
<
32
,
2
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
,
S
<
64
,
2
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
128
,
32
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
S
<
32
,
4
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
,
S
<
32
,
2
>
,
4
,
1
>
,
DeviceBatchedGemmReduce_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
,
GemmDefault
,
1
,
64
,
32
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
,
S
<
32
,
2
>
,
4
,
1
>
// clang-format on
>
;
void
add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instances
(
std
::
vector
<
DeviceGemmReducePtr
<
PassThrough
,
PassThrough
,
PassThrough
,
ReduceSum
,
ReduceSquareSum
>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instances
{});
}
}
// namespace device_gemm_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
profiler/CMakeLists.txt
View file @
7e7640ce
...
@@ -35,6 +35,7 @@ set(PROFILER_SOURCE
...
@@ -35,6 +35,7 @@ set(PROFILER_SOURCE
src/profile_convnd_bwd_data.cpp
src/profile_convnd_bwd_data.cpp
src/profile_reduce.cpp
src/profile_reduce.cpp
src/profile_grouped_gemm.cpp
src/profile_grouped_gemm.cpp
src/profile_batched_gemm_reduce.cpp
)
)
add_executable
(
ckProfiler
${
PROFILER_SOURCE
}
)
add_executable
(
ckProfiler
${
PROFILER_SOURCE
}
)
...
@@ -54,3 +55,4 @@ target_link_libraries(ckProfiler PRIVATE device_convnd_bwd_data_instance)
...
@@ -54,3 +55,4 @@ target_link_libraries(ckProfiler PRIVATE device_convnd_bwd_data_instance)
target_link_libraries
(
ckProfiler PRIVATE device_reduce_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_reduce_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_reduce_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_reduce_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_grouped_gemm_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_grouped_gemm_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_batched_gemm_reduce_instance
)
profiler/include/profile_batched_gemm_impl.hpp
View file @
7e7640ce
#pragma once
#pragma once
#include <memory>
#include <memory>
#include "config.hpp"
#include "element_wise_operation.hpp"
#include "tensor_layout.hpp"
#include "device.hpp"
#include "host_tensor_generator.hpp"
#include "device_gemm.hpp"
#include "reference_batched_gemm.hpp"
#include "reference_batched_gemm.hpp"
namespace
ck
{
namespace
ck
{
...
@@ -51,7 +59,7 @@ template <typename ADataType,
...
@@ -51,7 +59,7 @@ template <typename ADataType,
typename
ALayout
,
typename
ALayout
,
typename
BLayout
,
typename
BLayout
,
typename
CLayout
>
typename
CLayout
>
void
profile_batched_gemm_impl
(
int
do_verification
,
bool
profile_batched_gemm_impl
(
int
do_verification
,
int
init_method
,
int
init_method
,
bool
do_log
,
bool
do_log
,
int
nrepeat
,
int
nrepeat
,
...
@@ -63,6 +71,8 @@ void profile_batched_gemm_impl(int do_verification,
...
@@ -63,6 +71,8 @@ void profile_batched_gemm_impl(int do_verification,
int
StrideC
,
int
StrideC
,
int
BatchCount
=
1
)
int
BatchCount
=
1
)
{
{
bool
pass
=
true
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count
,
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count
,
std
::
size_t
row
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
col
,
...
@@ -93,7 +103,7 @@ void profile_batched_gemm_impl(int do_verification,
...
@@ -93,7 +103,7 @@ void profile_batched_gemm_impl(int do_verification,
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_g_m_n: "
<<
c_g_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_g_m_n: "
<<
c_g_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
()
;
std
::
size_t
num_thread
=
1
;
switch
(
init_method
)
switch
(
init_method
)
{
{
case
0
:
break
;
case
0
:
break
;
...
@@ -378,12 +388,14 @@ void profile_batched_gemm_impl(int do_verification,
...
@@ -378,12 +388,14 @@ void profile_batched_gemm_impl(int do_verification,
{
{
bf16_to_f32_
(
c_g_m_n_device_result
,
*
c_f32_g_m_n_device_result
);
bf16_to_f32_
(
c_g_m_n_device_result
,
*
c_f32_g_m_n_device_result
);
check_error
(
*
c_f32_g_m_n_host_result
,
*
c_f32_g_m_n_device_result
);
float
err
=
check_error
(
*
c_f32_g_m_n_host_result
,
*
c_f32_g_m_n_device_result
);
pass
=
pass
&&
(
err
<
1E-6
);
}
}
else
else
{
{
check_error
(
c_g_m_n_host_result
,
c_g_m_n_device_result
);
float
err
=
check_error
(
c_g_m_n_host_result
,
c_g_m_n_device_result
);
pass
=
pass
&&
(
err
<
1E-6
);
}
}
if
(
do_log
)
if
(
do_log
)
...
@@ -407,6 +419,8 @@ void profile_batched_gemm_impl(int do_verification,
...
@@ -407,6 +419,8 @@ void profile_batched_gemm_impl(int do_verification,
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_gemm_name
<<
std
::
endl
;
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_gemm_name
<<
std
::
endl
;
return
pass
;
}
}
}
// namespace profiler
}
// namespace profiler
...
...
profiler/include/profile_batched_gemm_reduce_impl.hpp
0 → 100644
View file @
7e7640ce
#pragma once
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
#include "element_wise_reduce_operation.hpp"
#include "device_gemm_reduce.hpp"
#include "reference_batched_gemm.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
device_gemm_instance
{
using
DeviceGemmReduceNoOpPtr
=
ck
::
tensor_operation
::
device
::
DeviceGemmReducePtr
<
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
ReduceSum
,
ck
::
tensor_operation
::
element_wise
::
ReduceSquareSum
>
;
void
add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instances
(
std
::
vector
<
DeviceGemmReduceNoOpPtr
>&
);
void
add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instances
(
std
::
vector
<
DeviceGemmReduceNoOpPtr
>&
);
void
add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instances
(
std
::
vector
<
DeviceGemmReduceNoOpPtr
>&
);
void
add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instances
(
std
::
vector
<
DeviceGemmReduceNoOpPtr
>&
);
}
// namespace device_gemm_instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
DDataType
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
>
bool
profile_batched_gemm_reduce_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
int
nrepeat
,
int
M
,
int
N
,
int
K
,
int
StrideA
,
int
StrideB
,
int
StrideC
,
int
BatchCount
)
{
bool
pass
=
true
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
row
*
stride
,
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
col
*
stride
,
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
BatchCount
,
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_g_m_n_host_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
DDataType
>
d0_g_m_host_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
(
{
static_cast
<
std
::
size_t
>
(
BatchCount
),
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
DDataType
>
d1_g_m_host_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
(
{
static_cast
<
std
::
size_t
>
(
BatchCount
),
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
CDataType
>
c_g_m_n_device_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
DDataType
>
d0_g_m_device_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
(
{
static_cast
<
std
::
size_t
>
(
BatchCount
),
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
DDataType
>
d1_g_m_device_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
(
{
static_cast
<
std
::
size_t
>
(
BatchCount
),
static_cast
<
std
::
size_t
>
(
M
)})));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_g_m_n: "
<<
c_g_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_g_m: "
<<
d0_g_m_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_g_m: "
<<
d1_g_m_host_result
.
mDesc
<<
std
::
endl
;
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
();
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
std
::
srand
(
0
);
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
},
num_thread
);
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
},
num_thread
);
break
;
default:
std
::
srand
(
0
);
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
},
num_thread
);
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
},
num_thread
);
}
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
D0ReduceOp
=
ck
::
tensor_operation
::
element_wise
::
ReduceSum
;
using
D1ReduceOp
=
ck
::
tensor_operation
::
element_wise
::
ReduceSquareSum
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
const
auto
d0_reduce_op
=
D0ReduceOp
{};
const
auto
d1_reduce_op
=
D1ReduceOp
{};
if
(
do_verification
)
{
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
BDataType
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
auto
ref_batched_gemm
=
ReferenceBatchedGemmInstance
{};
auto
ref_invoker
=
ref_batched_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_batched_gemm
.
MakeArgument
(
a_g_m_k
,
b_g_k_n
,
c_g_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
for
(
int
batch
=
0
;
batch
<
BatchCount
;
++
batch
)
{
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
float
d0_acc
=
d0_reduce_op
.
GetReduceZeroValue
();
float
d1_acc
=
d1_reduce_op
.
GetReduceZeroValue
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
d0_reduce_op
.
Reduce
(
d0_acc
,
c_g_m_n_host_result
(
batch
,
m
,
n
));
d1_reduce_op
.
Reduce
(
d1_acc
,
c_g_m_n_host_result
(
batch
,
m
,
n
));
}
d0_g_m_host_result
(
batch
,
m
)
=
d0_acc
;
d1_g_m_host_result
(
batch
,
m
)
=
d1_acc
;
}
}
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_g_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_g_m_n_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
d0_device_buf
(
sizeof
(
DDataType
)
*
d0_g_m_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
d1_device_buf
(
sizeof
(
DDataType
)
*
d1_g_m_device_result
.
mDesc
.
GetElementSpace
());
a_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_g_k_n
.
mData
.
data
());
// add device GEMM instances
std
::
vector
<
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
DeviceGemmReduceNoOpPtr
>
gemm_ptrs
;
if
constexpr
(
is_same
<
ADataType
,
half_t
>::
value
&&
is_same
<
BDataType
,
half_t
>::
value
&&
is_same
<
CDataType
,
half_t
>::
value
)
{
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instances
(
gemm_ptrs
);
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instances
(
gemm_ptrs
);
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instances
(
gemm_ptrs
);
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
device_gemm_instance
::
add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instances
(
gemm_ptrs
);
}
}
if
(
gemm_ptrs
.
size
()
<=
0
)
{
throw
std
::
runtime_error
(
"wrong! no device GEMM instance found"
);
}
std
::
string
best_gemm_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device GEMM instances
for
(
auto
&
gemm_ptr
:
gemm_ptrs
)
{
auto
argument_ptr
=
gemm_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d1_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
,
d0_reduce_op
,
d1_reduce_op
,
BatchCount
);
auto
invoker_ptr
=
gemm_ptr
->
MakeInvokerPointer
();
if
(
gemm_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// warm up
invoker_ptr
->
Run
(
argument_ptr
.
get
());
// timing
float
total_time
=
0
;
for
(
int
i
=
0
;
i
<
nrepeat
;
++
i
)
{
// init DO, D1 to 0
d0_device_buf
.
SetZero
();
d1_device_buf
.
SetZero
();
KernelTimer
timer
;
timer
.
Start
();
invoker_ptr
->
Run
(
argument_ptr
.
get
());
timer
.
End
();
total_time
+=
timer
.
GetElapsedTime
();
}
float
ave_time
=
total_time
/
nrepeat
;
std
::
string
gemm_name
=
gemm_ptr
->
GetTypeString
();
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
BatchCount
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
BatchCount
*
M
*
K
+
sizeof
(
BDataType
)
*
BatchCount
*
K
*
N
+
sizeof
(
CDataType
)
*
BatchCount
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_gemm_name
=
gemm_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_g_m_n_device_result
.
mData
.
data
());
d0_device_buf
.
FromDevice
(
d0_g_m_device_result
.
mData
.
data
());
d1_device_buf
.
FromDevice
(
d1_g_m_device_result
.
mData
.
data
());
float
c_error
=
check_error
(
c_g_m_n_host_result
,
c_g_m_n_device_result
);
float
d0_error
=
check_error
(
d0_g_m_host_result
,
d0_g_m_device_result
);
float
d1_error
=
check_error
(
d1_g_m_host_result
,
d1_g_m_device_result
);
pass
=
pass
&&
(
c_error
<
1E-6
);
pass
=
pass
&&
(
d0_error
<
1E-6
);
pass
=
pass
&&
(
d1_error
<
1E-6
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_g_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_g_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host: "
,
c_g_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_g_m_n_device_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d0_host: "
,
d0_g_m_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d0_device: "
,
d0_g_m_device_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d1_host: "
,
d1_g_m_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"d1_device: "
,
d1_g_m_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
else
{
std
::
cout
<<
"does not support this GEMM problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_gemm_name
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profile_gemm_bias_2d_impl.hpp
View file @
7e7640ce
...
@@ -98,7 +98,7 @@ void profile_gemm_bias_2d_impl(int do_verification,
...
@@ -98,7 +98,7 @@ void profile_gemm_bias_2d_impl(int do_verification,
std
::
cout
<<
"c0_m_n: "
<<
c0_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c0_m_n: "
<<
c0_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
()
;
std
::
size_t
num_thread
=
1
;
switch
(
init_method
)
switch
(
init_method
)
{
{
case
0
:
break
;
case
0
:
break
;
...
...
profiler/include/profile_gemm_bias_relu_impl.hpp
View file @
7e7640ce
...
@@ -83,7 +83,7 @@ void profile_gemm_bias_relu_impl(int do_verification,
...
@@ -83,7 +83,7 @@ void profile_gemm_bias_relu_impl(int do_verification,
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c0_n: "
<<
c0_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c0_n: "
<<
c0_n
.
mDesc
<<
std
::
endl
;
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
()
;
std
::
size_t
num_thread
=
1
;
switch
(
init_method
)
switch
(
init_method
)
{
{
case
0
:
break
;
case
0
:
break
;
...
...
profiler/include/profile_gemm_impl.hpp
View file @
7e7640ce
...
@@ -120,7 +120,7 @@ void profile_gemm_impl(int do_verification,
...
@@ -120,7 +120,7 @@ void profile_gemm_impl(int do_verification,
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_device_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_device_result
.
mDesc
<<
std
::
endl
;
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
()
;
std
::
size_t
num_thread
=
1
;
switch
(
init_method
)
switch
(
init_method
)
{
{
case
0
:
break
;
case
0
:
break
;
...
@@ -408,6 +408,10 @@ void profile_gemm_impl(int do_verification,
...
@@ -408,6 +408,10 @@ void profile_gemm_impl(int do_verification,
if
(
gemm_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
if
(
gemm_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
{
// re-init C to zero before profiling next kernel
c_m_n_device_result
.
GenerateTensorValue
(
GeneratorTensor_0
<
CDataType
>
{},
num_thread
);
c_device_buf
.
ToDevice
(
c_m_n_device_result
.
mData
.
data
());
std
::
string
gemm_name
=
gemm_ptr
->
GetTypeString
();
std
::
string
gemm_name
=
gemm_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
nrepeat
);
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
nrepeat
);
...
...
profiler/include/profile_gemm_reduce_impl.hpp
View file @
7e7640ce
...
@@ -98,7 +98,7 @@ bool profile_gemm_reduce_impl(int do_verification,
...
@@ -98,7 +98,7 @@ bool profile_gemm_reduce_impl(int do_verification,
std
::
cout
<<
"d0_m: "
<<
d0_m_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_m: "
<<
d0_m_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_m: "
<<
d1_m_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_m: "
<<
d1_m_host_result
.
mDesc
<<
std
::
endl
;
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
()
;
std
::
size_t
num_thread
=
1
;
switch
(
init_method
)
switch
(
init_method
)
{
{
case
0
:
break
;
case
0
:
break
;
...
...
profiler/include/profile_grouped_gemm_impl.hpp
View file @
7e7640ce
...
@@ -95,7 +95,7 @@ void profile_grouped_gemm_impl(int do_verification,
...
@@ -95,7 +95,7 @@ void profile_grouped_gemm_impl(int do_verification,
<<
"]:"
<<
b_k_n
[
i
].
mDesc
<<
", c_m_n_device_results["
<<
i
<<
"]:"
<<
b_k_n
[
i
].
mDesc
<<
", c_m_n_device_results["
<<
i
<<
"]:"
<<
c_m_n_device_results
[
i
].
mDesc
<<
std
::
endl
;
<<
"]:"
<<
c_m_n_device_results
[
i
].
mDesc
<<
std
::
endl
;
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
()
;
std
::
size_t
num_thread
=
1
;
switch
(
init_method
)
switch
(
init_method
)
{
{
case
0
:
break
;
case
0
:
break
;
...
...
profiler/include/profile_reduce_impl.hpp
View file @
7e7640ce
...
@@ -242,7 +242,7 @@ void profile_reduce_impl_impl(bool do_verification,
...
@@ -242,7 +242,7 @@ void profile_reduce_impl_impl(bool do_verification,
size_t
invariant_total_length
=
out
.
mDesc
.
GetElementSize
();
size_t
invariant_total_length
=
out
.
mDesc
.
GetElementSize
();
size_t
reduce_total_length
=
in
.
mDesc
.
GetElementSize
()
/
invariant_total_length
;
size_t
reduce_total_length
=
in
.
mDesc
.
GetElementSize
()
/
invariant_total_length
;
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
()
;
std
::
size_t
num_thread
=
1
;
if
(
do_verification
)
if
(
do_verification
)
{
{
...
...
profiler/src/profile_batched_gemm_reduce.cpp
0 → 100644
View file @
7e7640ce
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "profile_batched_gemm_reduce_impl.hpp"
int
profile_batched_gemm_reduce
(
int
argc
,
char
*
argv
[])
{
enum
struct
GemmMatrixLayout_t
{
MK_KN_MN
,
// 0
MK_NK_MN
,
// 1
KM_KN_MN
,
// 2
KM_NK_MN
,
// 3
};
enum
struct
GemmReduceDataType_t
{
F32_F32_F32_F32_F32
,
// 0
F16_F16_F16_F32_F32
,
// 1
};
if
(
!
(
argc
==
15
||
argc
==
16
))
{
printf
(
"arg1: tensor operation (batched_gemm: BatchedGEMM+Reduce)
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16)
\n
"
);
printf
(
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 1: A[m, k] * B[n, k] = C[m, n];
\n
"
);
printf
(
" 2: A[k, m] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 3: A[k, m] * B[n, k] = C[m, n])
\n
"
);
printf
(
"arg4: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg8: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg7: run kernel # of times (>1)
\n
"
);
printf
(
"arg8 to 14: M, N, K, StrideA, StrideB, StrideC, BatchCount
\n
"
);
printf
(
"arg15: split k into mulitiple batch
\n
"
);
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
GemmReduceDataType_t
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
GemmMatrixLayout_t
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
int
nrepeat
=
std
::
stoi
(
argv
[
7
]);
const
int
M
=
std
::
stoi
(
argv
[
8
]);
const
int
N
=
std
::
stoi
(
argv
[
9
]);
const
int
K
=
std
::
stoi
(
argv
[
10
]);
const
int
StrideA
=
std
::
stoi
(
argv
[
11
]);
const
int
StrideB
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideC
=
std
::
stoi
(
argv
[
13
]);
const
int
BatchCount
=
std
::
stoi
(
argv
[
14
]);
if
(
data_type
==
GemmReduceDataType_t
::
F16_F16_F16_F32_F32
&&
layout
==
GemmMatrixLayout_t
::
MK_KN_MN
)
{
ck
::
profiler
::
profile_batched_gemm_reduce_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
float
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
nrepeat
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
K
:
StrideA
,
(
StrideB
<
0
)
?
N
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
,
BatchCount
);
}
else
if
(
data_type
==
GemmReduceDataType_t
::
F16_F16_F16_F32_F32
&&
layout
==
GemmMatrixLayout_t
::
MK_NK_MN
)
{
ck
::
profiler
::
profile_batched_gemm_reduce_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
float
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
nrepeat
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
K
:
StrideA
,
(
StrideB
<
0
)
?
K
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
,
BatchCount
);
}
else
if
(
data_type
==
GemmReduceDataType_t
::
F16_F16_F16_F32_F32
&&
layout
==
GemmMatrixLayout_t
::
KM_KN_MN
)
{
ck
::
profiler
::
profile_batched_gemm_reduce_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
float
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
nrepeat
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
M
:
StrideA
,
(
StrideB
<
0
)
?
N
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
,
BatchCount
);
}
else
if
(
data_type
==
GemmReduceDataType_t
::
F16_F16_F16_F32_F32
&&
layout
==
GemmMatrixLayout_t
::
KM_NK_MN
)
{
ck
::
profiler
::
profile_batched_gemm_reduce_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
float
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
nrepeat
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
M
:
StrideA
,
(
StrideB
<
0
)
?
K
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
,
BatchCount
);
}
else
{
throw
std
::
runtime_error
(
"wrong! this data_type & layout is not implemented"
);
}
return
1
;
}
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment