Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
7c56cd01
Commit
7c56cd01
authored
Nov 04, 2024
by
Astha Rai
Browse files
fixing merge errors: unary_element_wise_operation.hpp
parents
7d3ee266
cb6c5d39
Changes
385
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1050 additions
and
184 deletions
+1050
-184
example/62_convnd_activ/dynamic_unary/CMakeLists.txt
example/62_convnd_activ/dynamic_unary/CMakeLists.txt
+45
-0
example/62_convnd_activ/dynamic_unary/convnd_fwd_activ_dynamic_unary_common.hpp
...v/dynamic_unary/convnd_fwd_activ_dynamic_unary_common.hpp
+238
-0
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_abs_fp16.cpp
...d_activ/dynamic_unary/convnd_fwd_xdl_dynamic_abs_fp16.cpp
+13
-0
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_clippedrelu_fp16.cpp
...dynamic_unary/convnd_fwd_xdl_dynamic_clippedrelu_fp16.cpp
+13
-0
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_elu_fp16.cpp
...d_activ/dynamic_unary/convnd_fwd_xdl_dynamic_elu_fp16.cpp
+13
-0
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_leakyrelu_fp16.cpp
...v/dynamic_unary/convnd_fwd_xdl_dynamic_leakyrelu_fp16.cpp
+13
-0
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_logistic_fp16.cpp
...iv/dynamic_unary/convnd_fwd_xdl_dynamic_logistic_fp16.cpp
+13
-0
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_passthrough_fp16.cpp
...dynamic_unary/convnd_fwd_xdl_dynamic_passthrough_fp16.cpp
+13
-0
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_pow_fp16.cpp
...d_activ/dynamic_unary/convnd_fwd_xdl_dynamic_pow_fp16.cpp
+13
-0
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_relu_fp16.cpp
..._activ/dynamic_unary/convnd_fwd_xdl_dynamic_relu_fp16.cpp
+13
-0
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_sigmoid_fp16.cpp
...tiv/dynamic_unary/convnd_fwd_xdl_dynamic_sigmoid_fp16.cpp
+13
-0
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_softrelu_fp16.cpp
...iv/dynamic_unary/convnd_fwd_xdl_dynamic_softrelu_fp16.cpp
+13
-0
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_swish_fp16.cpp
...activ/dynamic_unary/convnd_fwd_xdl_dynamic_swish_fp16.cpp
+13
-0
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_tanh_fp16.cpp
..._activ/dynamic_unary/convnd_fwd_xdl_dynamic_tanh_fp16.cpp
+13
-0
example/62_convnd_activ/run_convnd_activ_dynamic_example.inc
example/62_convnd_activ/run_convnd_activ_dynamic_example.inc
+91
-0
example/65_gemm_multiply_multiply/CMakeLists.txt
example/65_gemm_multiply_multiply/CMakeLists.txt
+1
-0
example/65_gemm_multiply_multiply/gemm_multiply_multiply_xdl_int8.cpp
...emm_multiply_multiply/gemm_multiply_multiply_xdl_int8.cpp
+304
-0
example/66_complex_contraction_bilinear/run_complex_contraction_bilinear_example.inc
...ion_bilinear/run_complex_contraction_bilinear_example.inc
+110
-113
example/ck_tile/01_fmha/codegen/ops/fmha_fwd.py
example/ck_tile/01_fmha/codegen/ops/fmha_fwd.py
+49
-33
example/ck_tile/01_fmha/codegen/ops/fmha_fwd_splitkv.py
example/ck_tile/01_fmha/codegen/ops/fmha_fwd_splitkv.py
+56
-38
No files found.
example/62_convnd_activ/dynamic_unary/CMakeLists.txt
0 → 100644
View file @
7c56cd01
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_custom_target
(
example_convnd_activ_dynamic_unary_xdl
)
# Sigmoid
add_example_executable
(
example_convnd_fwd_xdl_dynamic_sigmoid_fp16 convnd_fwd_xdl_dynamic_sigmoid_fp16.cpp
)
add_example_dependencies
(
example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_sigmoid_fp16
)
# Tanh
add_example_executable
(
example_convnd_fwd_xdl_dynamic_tanh_fp16 convnd_fwd_xdl_dynamic_tanh_fp16.cpp
)
add_example_dependencies
(
example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_tanh_fp16
)
# Relu
add_example_executable
(
example_convnd_fwd_xdl_dynamic_relu_fp16 convnd_fwd_xdl_dynamic_relu_fp16.cpp
)
add_example_dependencies
(
example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_relu_fp16
)
# SoftRelu
add_example_executable
(
example_convnd_fwd_xdl_dynamic_softrelu_fp16 convnd_fwd_xdl_dynamic_softrelu_fp16.cpp
)
add_example_dependencies
(
example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_softrelu_fp16
)
# Abs
add_example_executable
(
example_convnd_fwd_xdl_dynamic_abs_fp16 convnd_fwd_xdl_dynamic_abs_fp16.cpp
)
add_example_dependencies
(
example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_abs_fp16
)
# Pow
add_example_executable
(
example_convnd_fwd_xdl_dynamic_pow_fp16 convnd_fwd_xdl_dynamic_pow_fp16.cpp
)
add_example_dependencies
(
example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_pow_fp16
)
# Clipped Relu
add_example_executable
(
example_convnd_fwd_xdl_dynamic_clippedrelu_fp16 convnd_fwd_xdl_dynamic_clippedrelu_fp16.cpp
)
add_example_dependencies
(
example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_clippedrelu_fp16
)
# Leaky Relu
add_example_executable
(
example_convnd_fwd_xdl_dynamic_leakyrelu_fp16 convnd_fwd_xdl_dynamic_leakyrelu_fp16.cpp
)
add_example_dependencies
(
example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_leakyrelu_fp16
)
# Elu
add_example_executable
(
example_convnd_fwd_xdl_dynamic_elu_fp16 convnd_fwd_xdl_dynamic_elu_fp16.cpp
)
add_example_dependencies
(
example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_elu_fp16
)
# Swish
add_example_executable
(
example_convnd_fwd_xdl_dynamic_swish_fp16 convnd_fwd_xdl_dynamic_swish_fp16.cpp
)
add_example_dependencies
(
example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_swish_fp16
)
# PassThrough
add_example_executable
(
example_convnd_fwd_xdl_dynamic_passthrough_fp16 convnd_fwd_xdl_dynamic_passthrough_fp16.cpp
)
add_example_dependencies
(
example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_passthrough_fp16
)
# Logistic
add_example_executable
(
example_convnd_fwd_xdl_dynamic_logistic_fp16 convnd_fwd_xdl_dynamic_logistic_fp16.cpp
)
add_example_dependencies
(
example_convnd_activ_dynamic_unary_xdl example_convnd_fwd_xdl_dynamic_logistic_fp16
)
set
(
target 1
)
endif
()
endforeach
()
example/62_convnd_activ/dynamic_unary/convnd_fwd_activ_dynamic_unary_common.hpp
0 → 100644
View file @
7c56cd01
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
constexpr
ck
::
index_t
NDimSpatial
=
3
;
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNDHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNDHWK
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DynamicElementOp
=
ck
::
tensor_operation
::
element_wise
::
DynamicUnaryOp
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
DeviceGroupedConvNDActivInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
DynamicElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
DeviceConvNDFwdInstance
>
bool
run_grouped_conv
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
{
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
OutDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_device
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_host
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
2
,
2
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
2
,
2
});
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
1.0
,
1.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.05
,
0.05
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
// do Conv
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{{}},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{{}},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"The device op with the specified compilation parameters does "
"not support this convolution problem."
);
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
wei
,
out_host
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
out_element_op
);
ref_invoker
.
Run
(
ref_argument
);
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
out_device
,
out_host
,
"Error: incorrect results!"
);
}
return
true
;
}
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_abs_fp16.cpp
0 → 100644
View file @
7c56cd01
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_dynamic_unary_common.hpp"
#include "../run_convnd_activ_dynamic_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
tensor_operation
::
element_wise
::
UnaryAbs
out_element_op
;
return
!
run_convnd_example
(
argc
,
argv
,
out_element_op
);
}
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_clippedrelu_fp16.cpp
0 → 100644
View file @
7c56cd01
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_dynamic_unary_common.hpp"
#include "../run_convnd_activ_dynamic_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
tensor_operation
::
element_wise
::
ClippedRelu
out_element_op
(
0.
f
,
1.
f
);
return
!
run_convnd_example
(
argc
,
argv
,
out_element_op
);
}
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_elu_fp16.cpp
0 → 100644
View file @
7c56cd01
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_dynamic_unary_common.hpp"
#include "../run_convnd_activ_dynamic_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
tensor_operation
::
element_wise
::
Elu
out_element_op
(
2.
f
);
return
!
run_convnd_example
(
argc
,
argv
,
out_element_op
);
}
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_leakyrelu_fp16.cpp
0 → 100644
View file @
7c56cd01
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_dynamic_unary_common.hpp"
#include "../run_convnd_activ_dynamic_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
tensor_operation
::
element_wise
::
LeakyRelu
out_element_op
(
0.
f
);
return
!
run_convnd_example
(
argc
,
argv
,
out_element_op
);
}
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_logistic_fp16.cpp
0 → 100644
View file @
7c56cd01
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_dynamic_unary_common.hpp"
#include "../run_convnd_activ_dynamic_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
tensor_operation
::
element_wise
::
Logistic
out_element_op
(
1.0
f
);
return
!
run_convnd_example
(
argc
,
argv
,
out_element_op
);
}
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_passthrough_fp16.cpp
0 → 100644
View file @
7c56cd01
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_dynamic_unary_common.hpp"
#include "../run_convnd_activ_dynamic_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
tensor_operation
::
element_wise
::
PassThrough
out_element_op
;
return
!
run_convnd_example
(
argc
,
argv
,
out_element_op
);
}
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_pow_fp16.cpp
0 → 100644
View file @
7c56cd01
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_dynamic_unary_common.hpp"
#include "../run_convnd_activ_dynamic_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
tensor_operation
::
element_wise
::
Power
out_element_op
(
4.
f
,
1.
f
,
2.
f
);
return
!
run_convnd_example
(
argc
,
argv
,
out_element_op
);
}
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_relu_fp16.cpp
0 → 100644
View file @
7c56cd01
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_dynamic_unary_common.hpp"
#include "../run_convnd_activ_dynamic_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
tensor_operation
::
element_wise
::
Relu
out_element_op
;
return
!
run_convnd_example
(
argc
,
argv
,
out_element_op
);
}
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_sigmoid_fp16.cpp
0 → 100644
View file @
7c56cd01
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_dynamic_unary_common.hpp"
#include "../run_convnd_activ_dynamic_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
tensor_operation
::
element_wise
::
Sigmoid
out_element_op
;
return
!
run_convnd_example
(
argc
,
argv
,
out_element_op
);
}
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_softrelu_fp16.cpp
0 → 100644
View file @
7c56cd01
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_dynamic_unary_common.hpp"
#include "../run_convnd_activ_dynamic_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
tensor_operation
::
element_wise
::
SoftRelu
out_element_op
;
return
!
run_convnd_example
(
argc
,
argv
,
out_element_op
);
}
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_swish_fp16.cpp
0 → 100644
View file @
7c56cd01
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_dynamic_unary_common.hpp"
#include "../run_convnd_activ_dynamic_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
tensor_operation
::
element_wise
::
Swish
out_element_op
(
1.0
f
);
return
!
run_convnd_example
(
argc
,
argv
,
out_element_op
);
}
example/62_convnd_activ/dynamic_unary/convnd_fwd_xdl_dynamic_tanh_fp16.cpp
0 → 100644
View file @
7c56cd01
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_activ_dynamic_unary_common.hpp"
#include "../run_convnd_activ_dynamic_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
tensor_operation
::
element_wise
::
TanH
out_element_op
;
return
!
run_convnd_example
(
argc
,
argv
,
out_element_op
);
}
example/62_convnd_activ/run_convnd_activ_dynamic_example.inc
0 → 100644
View file @
7c56cd01
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
void
print_helper_msg
()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=no, 1=yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
}
template
<
typename
OutElementOp
>
bool
run_convnd_example
(
int
argc
,
char
*
argv
[],
const
OutElementOp
&
out_element_op
)
{
print_helper_msg
();
bool
do_verification
=
true
;
// Use floats for SoftRelu by default to avoid overflow after e^x.
int
init_method
=
std
::
is_same_v
<
OutElementOp
,
ck
::
tensor_operation
::
element_wise
::
SoftRelu
>
?
2
:
1
;
bool
time_kernel
=
false
;
// Following shapes are selected to avoid overflow. Expect inf in case of
// size increase for some elementwise ops.
ck
::
utils
::
conv
::
ConvParam
conv_param
{
3
,
2
,
16
,
128
,
8
,
{
3
,
3
,
3
},
{
17
,
17
,
17
},
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}};
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
conv_param
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
5
,
argv
);
}
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
run
=
[
&
]()
{
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
return
run_grouped_conv
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceGroupedConvNDActivInstance
>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
};
if
(
conv_param
.
num_dim_spatial_
==
3
)
{
return
run
();
}
return
false
;
}
example/65_gemm_multiply_multiply/CMakeLists.txt
View file @
7c56cd01
add_example_executable
(
example_gemm_multiply_multiply_xdl_fp8 gemm_multiply_multiply_xdl_fp8.cpp
)
add_example_executable
(
example_gemm_multiply_multiply_xdl_fp8_ab_scale gemm_multiply_multiply_xdl_fp8_ab_scale.cpp
)
add_example_executable
(
example_gemm_add_add_xdl_fp16 gemm_add_add_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_multiply_multiply_xdl_int8 gemm_multiply_multiply_xdl_int8.cpp
)
\ No newline at end of file
example/65_gemm_multiply_multiply/gemm_multiply_multiply_xdl_int8.cpp
0 → 100644
View file @
7c56cd01
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/utility/blkgemmpipe_scheduler.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
I8
=
int8_t
;
using
I32
=
int
;
using
F16
=
ck
::
half_t
;
using
FP8
=
ck
::
f8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
A0DataType
=
I8
;
using
B0DataType
=
I8
;
using
AccDataType
=
I32
;
using
CShuffleDataType
=
I32
;
using
D0DataType
=
F32
;
using
D1DataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
,
D1DataType
>
;
using
EDataType
=
F16
;
using
A0Layout
=
Row
;
using
B0Layout
=
Col
;
using
D0Layout
=
Row
;
using
D1Layout
=
Col
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
,
D1Layout
>
;
using
ELayout
=
Row
;
struct
MultiplyMultiply
{
template
<
typename
E
,
typename
C
,
typename
D0
,
typename
D1
>
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D0
&
d0
,
const
D1
&
d1
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
ck
::
half_t
,
float
,
float
,
float
>
(
ck
::
half_t
&
e
,
const
float
&
c
,
const
float
&
d0
,
const
float
&
d1
)
const
{
const
float
x0_f
=
c
*
d0
*
d1
;
e
=
ck
::
type_convert
<
ck
::
half_t
>
(
x0_f
);
}
template
<
>
__host__
__device__
constexpr
void
operator
()
<
ck
::
half_t
,
int
,
float
,
float
>
(
ck
::
half_t
&
e
,
const
int
&
c
,
const
float
&
d0
,
const
float
&
d1
)
const
{
const
float
x0_f
=
ck
::
type_convert
<
float
>
(
c
)
*
ck
::
type_convert
<
float
>
(
d0
)
*
ck
::
type_convert
<
float
>
(
d1
);
e
=
ck
::
type_convert
<
ck
::
half_t
>
(
x0_f
);
}
template
<
>
__host__
__device__
constexpr
void
operator
()
<
ck
::
bhalf_t
,
int
,
float
,
float
>
(
ck
::
bhalf_t
&
e
,
const
int
&
c
,
const
float
&
d0
,
const
float
&
d1
)
const
{
const
float
x0_f
=
ck
::
type_convert
<
float
>
(
c
)
*
ck
::
type_convert
<
float
>
(
d0
)
*
ck
::
type_convert
<
float
>
(
d1
);
e
=
ck
::
type_convert
<
ck
::
bhalf_t
>
(
x0_f
);
}
};
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
MultiplyMultiply
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultiD_Xdl_CShuffle_V3
// clang-format off
///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
///######| | | | | Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
///######| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | S<C, D0, D1>|
///###### RRR
///< Row, Row, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 256, 256, 128, 64, 16, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Interwave, ck::BlockGemmPipelineVersion::v1, I8>;
///###### RCR
<
Row
,
Col
,
DsLayout
,
ELayout
,
A0DataType
,
B0DataType
,
DsDataType
,
EDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
0
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
S
<
8
,
8
,
1
>
,
ck
::
BlockGemmPipelineScheduler
::
Interwave
,
ck
::
BlockGemmPipelineVersion
::
v1
,
I8
>
;
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
K
;
ck
::
index_t
StrideD
=
0
;
ck
::
index_t
StrideE
=
N
;
ck
::
index_t
KBatch
=
1
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
12
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideD
=
std
::
stoi
(
argv
[
9
]);
StrideE
=
std
::
stoi
(
argv
[
10
]);
KBatch
=
std
::
stoi
(
argv
[
11
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE, KBatch
\n
"
);
exit
(
0
);
}
do_verification
=
false
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
A0DataType
>
a0_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
A0Layout
{}));
Tensor
<
B0DataType
>
b0_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
B0Layout
{}));
Tensor
<
D0DataType
>
d0_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD
,
D0Layout
{}));
Tensor
<
D1DataType
>
d1_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD
,
D1Layout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
std
::
cout
<<
"a0_m_k: "
<<
a0_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_k_n: "
<<
b0_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_m_n: "
<<
d1_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_m_n: "
<<
d0_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
A0DataType
>
{
-
2
,
2
});
b0_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
0
,
2
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
0
,
2
});
d1_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D1DataType
>
{
0
,
2
});
break
;
default:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
b0_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
-
0.5
,
0.5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
-
0.5
,
0.5
});
d1_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
a0_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
b0_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
d0_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a0_device_buf
.
ToDevice
(
a0_m_k
.
mData
.
data
());
b0_device_buf
.
ToDevice
(
b0_k_n
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_m_n
.
mData
.
data
());
d1_device_buf
.
ToDevice
(
d1_m_n
.
mData
.
data
());
e_device_buf
.
ToDevice
(
e_m_n_device_result
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
constexpr
ck
::
index_t
NumDTensor
=
DsDataType
::
Size
();
constexpr
auto
I0
=
ck
::
Number
<
0
>
{};
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a0_device_buf
.
GetDeviceBuffer
(),
b0_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
NumDTensor
>
{
d0_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
I0
,
I0
},
StrideE
,
KBatch
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
,
20
,
50
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
if
(
do_verification
)
{
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
Tensor
<
CShuffleDataType
>
c_m_n
({
M
,
N
});
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
A0DataType
,
B0DataType
,
CShuffleDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a0_m_k
,
b0_k_n
,
c_m_n
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d0_m_n
(
m
,
n
),
d1_m_n
(
m
,
n
));
}
}
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
)
?
0
:
1
;
}
return
0
;
}
example/66_complex_contraction_bilinear/run_complex_contraction_bilinear_example.inc
100755 → 100644
View file @
7c56cd01
...
...
@@ -127,44 +127,47 @@ int run_complex_contraction_bilinear_example(int argc, char* argv[])
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
case
0
:
break
;
case
1
:
a_ms_ks_re
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_ns_ks_re
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_ms_ns_re
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
a_ms_ks_re
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_ns_ks_re
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_ms_ns_re
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
a_ms_ks_img
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_ns_ks_img
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_ms_ns_img
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
a_ms_ks_img
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_ns_ks_img
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_ms_ns_img
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default
:
a_ms_ks_re
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_ns_ks_re
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_ms_ns_re
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
default
:
a_ms_ks_re
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_ns_ks_re
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_ms_ns_re
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
a_ms_ks_img
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_ns_ks_img
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_ms_ns_img
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
a_ms_ks_img
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_ns_ks_img
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_ms_ns_img
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
break
;
}
DeviceMem
a_device_buf_re
(
sizeof
(
ADataType
)
*
a_ms_ks_re
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf_re
(
sizeof
(
BDataType
)
*
b_ns_ks_re
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf_re
(
sizeof
(
DDataType
)
*
d_ms_ns_re
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf_re
(
sizeof
(
EDataType
)
*
e_ms_ns_device_result_re
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf_re
(
sizeof
(
EDataType
)
*
e_ms_ns_device_result_re
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a_device_buf_img
(
sizeof
(
ADataType
)
*
a_ms_ks_img
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf_img
(
sizeof
(
BDataType
)
*
b_ns_ks_img
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf_img
(
sizeof
(
DDataType
)
*
d_ms_ns_img
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf_img
(
sizeof
(
EDataType
)
*
e_ms_ns_device_result_img
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf_img
(
sizeof
(
EDataType
)
*
e_ms_ns_device_result_img
.
mDesc
.
GetElementSpaceSize
());
// Intermediate Value For E Real and Img
DeviceMem
e_device_buf_re1
(
sizeof
(
EDataType
)
*
e_ms_ns_device_result_re
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf_img1
(
sizeof
(
EDataType
)
*
e_ms_ns_device_result_img
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf_re1
(
sizeof
(
EDataType
)
*
e_ms_ns_device_result_re
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf_img1
(
sizeof
(
EDataType
)
*
e_ms_ns_device_result_img
.
mDesc
.
GetElementSpaceSize
());
a_device_buf_re
.
ToDevice
(
a_ms_ks_re
.
mData
.
data
());
b_device_buf_re
.
ToDevice
(
b_ns_ks_re
.
mData
.
data
());
...
...
@@ -181,7 +184,7 @@ int run_complex_contraction_bilinear_example(int argc, char* argv[])
// set zero for intermediate values
e_device_buf_re1
.
SetZero
();
e_device_buf_img1
.
SetZero
();
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{
alpha
,
beta
};
...
...
@@ -189,23 +192,24 @@ int run_complex_contraction_bilinear_example(int argc, char* argv[])
// device operation
// For real Intermediate Value re_1
auto
op
=
DeviceOpInstance
{};
auto
invoker
=
op
.
MakeInvoker
();
auto
argument_re1
=
op
.
MakeArgument
(
a_device_buf_re
.
GetDeviceBuffer
(),
b_device_buf_re
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d_device_buf_re
.
GetDeviceBuffer
()},
e_device_buf_re1
.
GetDeviceBuffer
(),
a_ms_ks_lengths
,
a_ms_ks_strides
,
b_ns_ks_lengths
,
b_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_strides
},
e_ms_ns_lengths
,
e_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
op
=
DeviceOpInstance
{};
auto
invoker
=
op
.
MakeInvoker
();
auto
argument_re1
=
op
.
MakeArgument
(
a_device_buf_re
.
GetDeviceBuffer
(),
b_device_buf_re
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d_device_buf_re
.
GetDeviceBuffer
()},
e_device_buf_re1
.
GetDeviceBuffer
(),
a_ms_ks_lengths
,
a_ms_ks_strides
,
b_ns_ks_lengths
,
b_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_strides
},
e_ms_ns_lengths
,
e_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
op
.
IsSupportedArgument
(
argument_re1
))
{
...
...
@@ -216,7 +220,6 @@ int run_complex_contraction_bilinear_example(int argc, char* argv[])
float
ave_time_re1
=
invoker
.
Run
(
argument_re1
,
StreamConfig
{
nullptr
,
time_kernel
});
alpha
=
-
1.
f
;
beta
=
1.
f
;
...
...
@@ -228,21 +231,22 @@ int run_complex_contraction_bilinear_example(int argc, char* argv[])
// For real Intermediate Value re_2
// auto op = DeviceOpInstance{};
// auto invoker = op.MakeInvoker();
auto
argument_re2
=
op
.
MakeArgument
(
a_device_buf_img
.
GetDeviceBuffer
(),
b_device_buf_img
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
e_device_buf_re1
.
GetDeviceBuffer
()},
e_device_buf_re
.
GetDeviceBuffer
(),
a_ms_ks_lengths
,
a_ms_ks_strides
,
b_ns_ks_lengths
,
b_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_strides
},
e_ms_ns_lengths
,
e_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
argument_re2
=
op
.
MakeArgument
(
a_device_buf_img
.
GetDeviceBuffer
(),
b_device_buf_img
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
e_device_buf_re1
.
GetDeviceBuffer
()},
e_device_buf_re
.
GetDeviceBuffer
(),
a_ms_ks_lengths
,
a_ms_ks_strides
,
b_ns_ks_lengths
,
b_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_strides
},
e_ms_ns_lengths
,
e_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
op
.
IsSupportedArgument
(
argument_re2
))
{
...
...
@@ -253,7 +257,6 @@ int run_complex_contraction_bilinear_example(int argc, char* argv[])
float
ave_time_re2
=
invoker
.
Run
(
argument_re2
,
StreamConfig
{
nullptr
,
time_kernel
});
alpha
=
1.
f
;
beta
=
1.
f
;
...
...
@@ -261,22 +264,22 @@ int run_complex_contraction_bilinear_example(int argc, char* argv[])
b_element_op
=
BElementOp
{};
cde_element_op
=
CDEElementOp
{
alpha
,
beta
};
auto
argument_img1
=
op
.
MakeArgument
(
a_device_buf_re
.
GetDeviceBuffer
(),
b
_device_buf_
img
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d
_device_buf_img
.
GetDeviceBuffer
()
}
,
e
_device_buf_img
1
.
GetDeviceBuffer
(),
a_ms_ks_lengths
,
a_ms_ks_
stride
s
,
b_ns_ks_length
s
,
b_ns_ks_
stride
s
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_lengths
}
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_
stride
s
},
e_ms_ns_lengths
,
e_ms_ns_
stride
s
,
a_element_op
,
b
_element_op
,
cde
_element_op
);
auto
argument_img1
=
op
.
MakeArgument
(
a
_device_buf_
re
.
GetDeviceBuffer
(),
b
_device_buf_img
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d
_device_buf_img
.
GetDeviceBuffer
()
}
,
e_device_buf_img1
.
GetDeviceBuffer
()
,
a_ms_ks_
length
s
,
a_ms_ks_stride
s
,
b_ns_ks_
length
s
,
b_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_
length
s
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_strides
}
,
e_ms_ns_
length
s
,
e_ms_ns_strides
,
a
_element_op
,
b
_element_op
,
cde_element_op
);
if
(
!
op
.
IsSupportedArgument
(
argument_img1
))
{
...
...
@@ -290,23 +293,22 @@ int run_complex_contraction_bilinear_example(int argc, char* argv[])
alpha
=
1.
f
;
beta
=
1.
f
;
auto
argument_img2
=
op
.
MakeArgument
(
a_device_buf_img
.
GetDeviceBuffer
(),
b_device_buf_re
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
e_device_buf_img1
.
GetDeviceBuffer
()},
e_device_buf_img
.
GetDeviceBuffer
(),
a_ms_ks_lengths
,
a_ms_ks_strides
,
b_ns_ks_lengths
,
b_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_strides
},
e_ms_ns_lengths
,
e_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
argument_img2
=
op
.
MakeArgument
(
a_device_buf_img
.
GetDeviceBuffer
(),
b_device_buf_re
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
e_device_buf_img1
.
GetDeviceBuffer
()},
e_device_buf_img
.
GetDeviceBuffer
(),
a_ms_ks_lengths
,
a_ms_ks_strides
,
b_ns_ks_lengths
,
b_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_strides
},
e_ms_ns_lengths
,
e_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
op
.
IsSupportedArgument
(
argument_img2
))
{
...
...
@@ -317,7 +319,6 @@ int run_complex_contraction_bilinear_example(int argc, char* argv[])
float
ave_time_img2
=
invoker
.
Run
(
argument_img2
,
StreamConfig
{
nullptr
,
time_kernel
});
ck
::
index_t
M
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
(),
NumDimM
,
1
,
std
::
multiplies
<>
{});
...
...
@@ -331,9 +332,9 @@ int run_complex_contraction_bilinear_example(int argc, char* argv[])
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
DDataType
)
*
M
*
N
+
sizeof
(
EDataType
)
*
M
*
N
*
2
;
float
ave_time
=
ave_time_img2
+
ave_time_img1
+
ave_time_re2
+
ave_time_re1
;
float
ave_time
=
ave_time_img2
+
ave_time_img1
+
ave_time_re2
+
ave_time_re1
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
...
...
@@ -343,7 +344,7 @@ int run_complex_contraction_bilinear_example(int argc, char* argv[])
e_device_buf_img
.
FromDevice
(
e_ms_ns_device_result_img
.
mData
.
data
());
auto
isRealOk
=
0
;
auto
isImgOk
=
0
;
auto
isImgOk
=
0
;
if
(
do_verification
)
{
...
...
@@ -366,17 +367,16 @@ int run_complex_contraction_bilinear_example(int argc, char* argv[])
auto
ref_op
=
ReferenceOpInstance
{};
auto
ref_invoker
=
ref_op
.
MakeInvoker
();
auto
ref_argument_re
=
ref_op
.
MakeArgument
(
a_ms_ks_re
,
b_ns_ks_re
,
c_ms_ns_host_result_re
,
a_element_op
,
b_element_op
);
auto
ref_argument_re
=
ref_op
.
MakeArgument
(
a_ms_ks_re
,
b_ns_ks_re
,
c_ms_ns_host_result_re
,
a_element_op
,
b_element_op
);
ref_invoker
.
Run
(
ref_argument_re
);
alpha
=
1.
f
;
beta
=
1.
f
;
cde_element_op
=
CDEElementOp
{
alpha
,
beta
};
for
(
size_t
m0
=
0
;
m0
<
e_ms_ns_host_result_re
.
mDesc
.
GetLengths
()[
0
];
++
m0
)
{
for
(
size_t
m1
=
0
;
m1
<
e_ms_ns_host_result_re
.
mDesc
.
GetLengths
()[
1
];
++
m1
)
...
...
@@ -395,11 +395,11 @@ int run_complex_contraction_bilinear_example(int argc, char* argv[])
alpha
=
1.
f
;
beta
=
-
1.
f
;
cde_element_op
=
CDEElementOp
{
alpha
,
beta
};
auto
ref_argument_re1
=
ref_op
.
MakeArgument
(
a_ms_ks_img
,
b_ns_ks_img
,
c_ms_ns_host_result_re1
,
a_element_op
,
b_element_op
);
auto
ref_argument_re1
=
ref_op
.
MakeArgument
(
a_ms_ks_img
,
b_ns_ks_img
,
c_ms_ns_host_result_re1
,
a_element_op
,
b_element_op
);
ref_invoker
.
Run
(
ref_argument_re1
);
...
...
@@ -419,23 +419,20 @@ int run_complex_contraction_bilinear_example(int argc, char* argv[])
}
}
isRealOk
=
ck
::
utils
::
check_err
(
e_ms_ns_device_result_re
,
e_ms_ns_host_result_re
)
?
0
:
1
;
isRealOk
=
ck
::
utils
::
check_err
(
e_ms_ns_device_result_re
,
e_ms_ns_host_result_re
)
?
0
:
1
;
// Img Part Verification
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result_img
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result_img1
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
auto
ref_argument_img
=
ref_op
.
MakeArgument
(
a_ms_ks_re
,
b_ns_ks_img
,
c_ms_ns_host_result_img
,
a_element_op
,
b_element_op
);
auto
ref_argument_img
=
ref_op
.
MakeArgument
(
a_ms_ks_re
,
b_ns_ks_img
,
c_ms_ns_host_result_img
,
a_element_op
,
b_element_op
);
ref_invoker
.
Run
(
ref_argument_img
);
alpha
=
1.
f
;
beta
=
1.
f
;
cde_element_op
=
CDEElementOp
{
alpha
,
beta
};
for
(
size_t
m0
=
0
;
m0
<
e_ms_ns_host_result_img
.
mDesc
.
GetLengths
()[
0
];
++
m0
)
...
...
@@ -454,9 +451,9 @@ int run_complex_contraction_bilinear_example(int argc, char* argv[])
}
}
auto
ref_argument_img1
=
ref_op
.
MakeArgument
(
a_ms_ks_img
,
b_ns_ks_re
,
c_ms_ns_host_result_img1
,
a_element_op
,
b_element_op
);
auto
ref_argument_img1
=
ref_op
.
MakeArgument
(
a_ms_ks_img
,
b_ns_ks_re
,
c_ms_ns_host_result_img1
,
a_element_op
,
b_element_op
);
ref_invoker
.
Run
(
ref_argument_img1
);
for
(
size_t
m0
=
0
;
m0
<
e_ms_ns_host_result_img
.
mDesc
.
GetLengths
()[
0
];
++
m0
)
...
...
@@ -475,7 +472,7 @@ int run_complex_contraction_bilinear_example(int argc, char* argv[])
}
}
isImgOk
=
ck
::
utils
::
check_err
(
e_ms_ns_device_result_re
,
e_ms_ns_host_result_re
)
?
0
:
1
;
isImgOk
=
ck
::
utils
::
check_err
(
e_ms_ns_device_result_re
,
e_ms_ns_host_result_re
)
?
0
:
1
;
return
(
isRealOk
&&
isImgOk
);
}
...
...
example/ck_tile/01_fmha/codegen/ops/fmha_fwd.py
View file @
7c56cd01
...
...
@@ -21,6 +21,14 @@ DTYPE_BITS = {
"bf8"
:
8
}
K0_MAX_SUBMAX_MAP
=
{
32
:
32
,
64
:
64
,
96
:
128
,
128
:
128
,
256
:
256
}
TILE_PARTITIONER_MAP
=
{
"shb"
:
"ck_tile::FmhaFwdTilePartitioner_SHB"
,
"hbs"
:
"ck_tile::FmhaFwdTilePartitioner_HBS"
,
...
...
@@ -35,14 +43,13 @@ FMHA_FWD_KERNEL_HEADER = """// SPDX-License-Identifier: MIT
FMHA_FWD_KERNEL_BODY
=
"""
using fmha_dtype_{F_idx} = {F_dtype};
using fmha_block_tile_{F_idx} = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}>;
using fmha_block_warps_{F_idx} = ck_tile::sequence<{F_rm}, {F_rn}, {F_rk}>;
using fmha_block_tile_{F_idx} = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}>;
using fmha_warp_tile_{F_idx} = ck_tile::sequence<{F_wm}, {F_wn}, {F_wk}>;
using fmha_shape_{F_idx} = ck_tile::TileFmhaShape<fmha_block_tile_{F_idx},
fmha_block_warps_{F_idx}
,
ck_tile::sequence<{F_rm0}, {F_rn0}, {F_rk0}>
,
fmha_warp_tile_{F_idx},
fmha_block_warps_{F_idx}
,
ck_tile::sequence<{F_rm1}, {F_rn1}, {F_rk1}>
,
fmha_warp_tile_{F_idx},
{F_vlayout}>;
...
...
@@ -88,7 +95,7 @@ using fmha_kernel_{F_idx} =
fmha_pipeline_{F_idx},
fmha_epilogue_{F_idx}>;
using trait_{F_idx} = fmha_fwd_traits_<{F_hdim}, {F_dtype}, {F_mode},{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0
blen
}, {F_vlayout},
using trait_{F_idx} = fmha_fwd_traits_<{F_hdim}, {F_dtype}, {F_mode},{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0
max
}, {F_vlayout},
{F_pipeline_enum}, fmha_mask_{F_idx}, {F_bias}, {F_lse}, {F_dropout}, {F_squant}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
#include <iostream>
...
...
@@ -126,7 +133,7 @@ FMHA_FWD_API_PER_HDIM_CASE=""" {F_if} (t.hdim_q <= {F_hdim} && t.hdim_v <
FMHA_FWD_API_INNER_DISPATCH
=
""" {F_if}((t.is_group_mode == {F_mode}) && (t.is_v_rowmajor == {F_vlayout}) && ({F_mask_check}) && (t.bias_type == {F_bias_check}) && (t.has_lse == {F_lse}) && (t.has_dropout == {F_dropout}) && (t.do_fp8_static_quant == {F_squant}) &&
({F_scheck}) && ({F_skcheck}) && ({F_dcheck}) && ({F_dvcheck})) {{
using trait_ = fmha_fwd_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0
blen
}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, {F_lse}, {F_dropout}, {F_squant}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
using trait_ = fmha_fwd_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0
max
}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, {F_lse}, {F_dropout}, {F_squant}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
return fmha_fwd_<trait_>(s, a);
}}
"""
...
...
@@ -143,7 +150,7 @@ class FmhaFwdApiTrait:
bk0
:
int
# tile size along qk gemm unroll
bn1
:
int
# tile size along v head_dim
bk1
:
int
# tile size along kv gemm unroll
bk0
blen
:
int
bk0
max
:
int
vlayout
:
str
mask
:
str
bias
:
str
#
...
...
@@ -157,7 +164,7 @@ class FmhaFwdApiTrait:
@
property
def
name
(
self
)
->
str
:
return
f
'
{
self
.
hdim
}
-
{
self
.
dtype
}
-
{
self
.
mode
}
-
{
self
.
bm0
}
-
{
self
.
bn0
}
-
{
self
.
bk0
}
-
{
self
.
bn0
}
-
{
self
.
bk1
}
-
{
self
.
bk0
blen
}
-'
+
\
return
f
'
{
self
.
hdim
}
-
{
self
.
dtype
}
-
{
self
.
mode
}
-
{
self
.
bm0
}
-
{
self
.
bn0
}
-
{
self
.
bk0
}
-
{
self
.
bn0
}
-
{
self
.
bk1
}
-
{
self
.
bk0
max
}
-'
+
\
f
'
{
self
.
vlayout
}
-
{
self
.
mask
}
-
{
self
.
bias
}
-
{
self
.
lse
}
-
{
self
.
dropout
}
-
{
self
.
squant
}
-
{
self
.
spad
}
-
{
self
.
skpad
}
-
{
self
.
dpad
}
-
{
self
.
dvpad
}
'
@
property
...
...
@@ -189,8 +196,9 @@ class FmhaFwdApiTrait:
if
self
.
dpad
==
't'
:
return
f
'a.hdim_q %
{
vec
}
== 0'
else
:
assert
False
elif
self
.
pipeline_tag
in
[
'qr'
]:
if
self
.
dpad
==
't'
:
return
f
'true /*a.hdim_q %
{
self
.
bk0blen
}
!= 0*/'
# TODO: order of get_pipelines() matters! (ugly)
else
:
return
f
'a.hdim_q %
{
self
.
bk0blen
}
== 0'
bk0submax
=
K0_MAX_SUBMAX_MAP
[
self
.
bk0max
]
if
self
.
dpad
==
't'
:
return
f
'true /*a.hdim_q %
{
bk0submax
}
!= 0*/'
# TODO: order of get_pipelines() matters! (ugly)
else
:
return
f
'a.hdim_q %
{
bk0submax
}
== 0'
else
:
assert
False
@
property
...
...
@@ -200,8 +208,9 @@ class FmhaFwdApiTrait:
if
self
.
dvpad
==
't'
:
return
f
'a.hdim_v %
{
vec
}
== 0'
else
:
assert
False
elif
self
.
pipeline_tag
in
[
'qr'
]:
if
self
.
dvpad
==
't'
:
return
f
'true /*a.hdim_v %
{
self
.
bk0blen
}
!= 0*/'
# TODO: order of get_pipelines() matters! (ugly)
else
:
return
f
'a.hdim_v %
{
self
.
bk0blen
}
== 0'
bk0submax
=
K0_MAX_SUBMAX_MAP
[
self
.
bk0max
]
if
self
.
dvpad
==
't'
:
return
f
'true /*a.hdim_v %
{
bk0submax
}
!= 0*/'
# TODO: order of get_pipelines() matters! (ugly)
else
:
return
f
'a.hdim_v %
{
bk0submax
}
== 0'
else
:
assert
False
@
dataclass
...
...
@@ -272,7 +281,7 @@ class FmhaFwdApiPool:
F_lse
=
BOOL_MAP
[
trait
.
lse
],
F_dropout
=
BOOL_MAP
[
trait
.
dropout
]
,
F_squant
=
BOOL_MAP
[
trait
.
squant
],
F_scheck
=
trait
.
scheck
,
F_skcheck
=
trait
.
skcheck
,
F_dcheck
=
trait
.
dcheck
,
F_dvcheck
=
trait
.
dvcheck
,
F_spad
=
BOOL_MAP
[
trait
.
spad
],
F_skpad
=
BOOL_MAP
[
trait
.
skpad
],
F_dpad
=
BOOL_MAP
[
trait
.
dpad
],
F_dvpad
=
BOOL_MAP
[
trait
.
dvpad
],
F_bm0
=
trait
.
bm0
,
F_bn0
=
trait
.
bn0
,
F_bk0
=
trait
.
bk0
,
F_bn1
=
trait
.
bn1
,
F_bk1
=
trait
.
bk1
,
F_bk0
blen
=
trait
.
bk0
blen
,
F_bm0
=
trait
.
bm0
,
F_bn0
=
trait
.
bn0
,
F_bk0
=
trait
.
bk0
,
F_bn1
=
trait
.
bn1
,
F_bk1
=
trait
.
bk1
,
F_bk0
max
=
trait
.
bk0
max
,
F_hdim
=
hdim
,
F_dtype
=
DTYPE_MAP
[
dtype
])
if_j
=
'if'
if
j
==
0
else
'else if'
per_hdim_case
=
per_hdim_case
+
FMHA_FWD_API_PER_HDIM_CASE
.
format
(
F_if
=
if_j
,
F_hdim
=
hdim
,
F_inner_dispatch
=
inners
)
...
...
@@ -290,19 +299,22 @@ class FmhaFwdTileSize:
F_bk0
:
int
# tile size along qk gemm unroll
F_bn1
:
int
# tile size along v head_dim
F_bk1
:
int
# tile size along kv gemm unroll
F_bk0blen
:
int
# total length of K0, used for pipeline that need load Q at once (or repeately load Q as a whole tile)
F_rm
:
int
# number of warps along q seqlen (block warps)
F_rn
:
int
# number of warps along k seqlen(not used)
F_rk
:
int
# number of warps along gemm-k(not used)
F_bk0max
:
int
# total length of K0, used for pipeline that need load Q at once (or repeately load Q as a whole tile)
F_rm0
:
int
# number of warps for gemm0 along q seqlen
F_rn0
:
int
# number of warps for gemm0 along k seqlen
F_rk0
:
int
# number of warps for gemm0 along head dim q (not used)
F_rm1
:
int
# number of warps for gemm1 along q seqlen
F_rn1
:
int
# number of warps for gemm1 along head dim v
F_rk1
:
int
# number of warps for gemm1 along k seqlen (not used)
F_wm
:
int
# warp size along m (warp size)
F_wn
:
int
# warp size along n
F_wk
:
int
# warp size along k
F_occupancy
:
int
# occupancy, -1 will let pipeline decide the occupancy, other value will overwrite occupancy
@
property
def
name
(
self
)
->
str
:
return
f
"b
{
self
.
F_bm0
}
x
{
self
.
F_bn0
}
x
{
self
.
F_bk0
}
x
{
self
.
F_bn1
}
x
{
self
.
F_bk1
}
x
{
self
.
F_bk0
blen
}
"
+
\
f
"_r
{
self
.
F_rm
}
x
{
self
.
F_rn
}
x
{
self
.
F_rk
}
_
w
{
self
.
F_
wm
}
x
{
self
.
F_
wn
}
x
{
self
.
F_
wk
}
"
+
\
(
""
if
self
.
F_occupancy
==
-
1
else
f
"_o
{
self
.
F_occupancy
}
"
)
return
f
"b
{
self
.
F_bm0
}
x
{
self
.
F_bn0
}
x
{
self
.
F_bk0
}
x
{
self
.
F_bn1
}
x
{
self
.
F_bk1
}
x
{
self
.
F_bk0
max
}
"
+
\
f
"_r
{
self
.
F_rm
0
}
x
{
self
.
F_rn
0
}
x
{
self
.
F_rk
0
}
_
r
{
self
.
F_
rm1
}
x
{
self
.
F_
rn1
}
x
{
self
.
F_
rk1
}
"
+
\
f
"_w
{
self
.
F_wm
}
x
{
self
.
F_wn
}
x
{
self
.
F_wk
}
"
+
(
""
if
self
.
F_occupancy
==
-
1
else
f
"_o
{
self
.
F_occupancy
}
"
)
@
dataclass
class
FmhaFwdKernel
:
...
...
@@ -333,10 +345,13 @@ class FmhaFwdKernel:
F_bk0
=
self
.
F_tile
.
F_bk0
,
F_bn1
=
self
.
F_tile
.
F_bn1
,
F_bk1
=
self
.
F_tile
.
F_bk1
,
F_bk0blen
=
self
.
F_tile
.
F_bk0blen
,
F_rm
=
self
.
F_tile
.
F_rm
,
F_rn
=
self
.
F_tile
.
F_rn
,
F_rk
=
self
.
F_tile
.
F_rk
,
F_bk0max
=
self
.
F_tile
.
F_bk0max
,
F_rm0
=
self
.
F_tile
.
F_rm0
,
F_rn0
=
self
.
F_tile
.
F_rn0
,
F_rk0
=
self
.
F_tile
.
F_rk0
,
F_rm1
=
self
.
F_tile
.
F_rm1
,
F_rn1
=
self
.
F_tile
.
F_rn1
,
F_rk1
=
self
.
F_tile
.
F_rk1
,
F_wm
=
self
.
F_tile
.
F_wm
,
F_wn
=
self
.
F_tile
.
F_wn
,
F_wk
=
self
.
F_tile
.
F_wk
,
...
...
@@ -377,7 +392,7 @@ class FmhaFwdKernel:
bk0
=
self
.
F_tile
.
F_bk0
,
bn1
=
self
.
F_tile
.
F_bn1
,
bk1
=
self
.
F_tile
.
F_bk1
,
bk0
blen
=
self
.
F_tile
.
F_bk0
blen
,
bk0
max
=
self
.
F_tile
.
F_bk0
max
,
vlayout
=
self
.
F_pipeline
.
F_vlayout
,
mask
=
self
.
F_pipeline
.
F_mask
,
bias
=
self
.
F_pipeline
.
F_bias
,
...
...
@@ -394,16 +409,17 @@ class FmhaFwdKernel:
def
get_fmha_fwd_tile_dict_from_dtype
(
dtype
:
str
)
->
Optional
[
dict
]:
if
dtype
==
'fp16'
or
dtype
==
'bf16'
:
return
{
'32'
:
FmhaFwdTileSize
(
128
,
64
,
16
,
32
,
32
,
32
,
2
,
1
,
1
,
32
,
32
,
16
,
-
1
),
'64'
:
FmhaFwdTileSize
(
128
,
64
,
32
,
64
,
32
,
64
,
4
,
1
,
1
,
32
,
32
,
16
,
-
1
),
'128'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
128
,
32
,
128
,
4
,
1
,
1
,
32
,
32
,
16
,
-
1
),
'256'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
256
,
32
,
256
,
4
,
1
,
1
,
32
,
32
,
16
,
-
1
),
'32'
:
FmhaFwdTileSize
(
128
,
64
,
16
,
32
,
32
,
32
,
2
,
1
,
1
,
2
,
1
,
1
,
32
,
32
,
16
,
-
1
),
'64'
:
FmhaFwdTileSize
(
128
,
64
,
32
,
64
,
32
,
64
,
4
,
1
,
1
,
4
,
1
,
1
,
32
,
32
,
16
,
-
1
),
## '96' : FmhaFwdTileSize(128, 128, 32, 128, 32, 96, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1),
'128'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
128
,
32
,
128
,
4
,
1
,
1
,
4
,
1
,
1
,
32
,
32
,
16
,
-
1
),
'256'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
256
,
32
,
256
,
4
,
1
,
1
,
4
,
1
,
1
,
32
,
32
,
16
,
-
1
),
}
elif
dtype
==
'fp8'
or
dtype
==
'bf8'
:
return
{
'64'
:
FmhaFwdTileSize
(
128
,
64
,
32
,
64
,
32
,
64
,
2
,
1
,
1
,
32
,
32
,
32
,
-
1
),
'128'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
128
,
32
,
128
,
4
,
1
,
1
,
32
,
32
,
32
,
-
1
),
'256'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
256
,
32
,
256
,
4
,
1
,
1
,
32
,
32
,
32
,
-
1
)
'64'
:
FmhaFwdTileSize
(
128
,
64
,
32
,
64
,
32
,
64
,
2
,
1
,
1
,
2
,
1
,
1
,
32
,
32
,
32
,
-
1
),
'128'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
128
,
32
,
128
,
4
,
1
,
1
,
4
,
1
,
1
,
32
,
32
,
32
,
-
1
),
'256'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
256
,
32
,
256
,
4
,
1
,
1
,
4
,
1
,
1
,
32
,
32
,
32
,
-
1
)
}
else
:
return
None
...
...
@@ -505,4 +521,4 @@ def list_blobs(file_path : Path, kernel_filter : Optional[str], receipt, mask_im
_
,
kernels
=
get_fwd_blobs
(
kernel_filter
,
receipt
,
mask_impl
)
for
kernel
in
kernels
:
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
kernel
.
filename
)
+
"
\n
"
)
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
FMHA_FWD_API_FILENAME
)
+
"
\n
"
)
\ No newline at end of file
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
FMHA_FWD_API_FILENAME
)
+
"
\n
"
)
example/ck_tile/01_fmha/codegen/ops/fmha_fwd_splitkv.py
View file @
7c56cd01
...
...
@@ -29,6 +29,14 @@ DTYPE_BITS = {
"bf8"
:
8
}
K0_MAX_SUBMAX_MAP
=
{
32
:
32
,
64
:
64
,
96
:
128
,
128
:
128
,
256
:
256
}
FMHA_FWD_SPLITKV_PIPELINE_MAP
=
{
"qr"
:
"ck_tile::BlockFmhaFwdSplitKVPipelineQRKSVS"
,
"qr_async"
:
"ck_tile::BlockFmhaFwdSplitKVPipelineQRKSVSAsync"
,
...
...
@@ -41,14 +49,13 @@ using fmha_mask_{F_idx} = {F_mask};
namespace {{
template <bool kHasUnevenSplits>
struct kernel_runner {{
using fmha_block_tile = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}>;
using fmha_block_warps = ck_tile::sequence<{F_rm}, {F_rn}, {F_rk}>;
using fmha_block_tile = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}>;
using fmha_warp_tile = ck_tile::sequence<{F_wm}, {F_wn}, {F_wk}>;
using fmha_shape = ck_tile::TileFmhaShape<fmha_block_tile,
fmha_block_warps
,
ck_tile::sequence<{F_rm0}, {F_rn0}, {F_rk0}>
,
fmha_warp_tile,
fmha_block_warps
,
ck_tile::sequence<{F_rm1}, {F_rn1}, {F_rk1}>
,
fmha_warp_tile,
{F_vlayout}>;
...
...
@@ -104,7 +111,7 @@ static void run(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a)
}};
}}
using trait_{F_idx} = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0
blen
}, {F_vlayout},
using trait_{F_idx} = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0
max
}, {F_vlayout},
{F_pipeline_enum}, fmha_mask_{F_idx}, {F_bias}, {F_lse}, {F_squant}, {F_pagedkv}, {F_spad}, {F_skpad}, {F_dpad},
{F_dvpad}>;
...
...
@@ -162,10 +169,12 @@ using fmha_pipeline_problem = ck_tile::BlockFmhaSplitKVCombinePipelineProblem<
using fmha_pipeline = ck_tile::BlockFmhaFwdSplitKVCombinePipeline<
fmha_pipeline_problem>;
/// FIXME: use {F_spad}/{F_dvpad} as kPadM/kPadN parameters after solving
/// store_tile_raw() data corruption issue
using fmha_epilogue =
ck_tile::Default2DEpilogue<ck_tile::Default2DEpilogueProblem<typename FmhaFwdTypeConfig<{F_dtype}>::OaccDataType,
typename FmhaFwdTypeConfig<{F_dtype}>::ODataType,
{F_spad}, {F_dvpad}
>>;
false, false
>>;
using fmha_kernel =
ck_tile::FmhaFwdSplitKVCombineKernel<ck_tile::FmhaFwdSplitKVCombineTilePartitioner<{F_bm0}, {F_bn1}>,
...
...
@@ -191,7 +200,9 @@ using trait_{F_idx} = fmha_fwd_splitkv_combine_traits_<{F_hdim}, {F_dtype}, {F_m
template<>
void fmha_fwd_splitkv_combine_oneshot_<trait_{F_idx}>(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a)
{{
if (a.num_splits <= 16) {{
if (a.num_splits <= 8) {{
kernel_runner<3>::run(s, a);
}} else if (a.num_splits <= 16) {{
kernel_runner<4>::run(s, a);
}} else if (a.num_splits <= 32) {{
kernel_runner<5>::run(s, a);
...
...
@@ -238,8 +249,8 @@ float fmha_fwd_splitkv(fmha_fwd_splitkv_traits t, fmha_fwd_splitkv_args a, const
FMHA_FWD_SPLITKV_API_INNER_DISPATCH
=
""" {F_if}((t.is_group_mode == {F_mode}) && (t.is_v_rowmajor == {F_vlayout}) && ({F_mask_check}) && (t.bias_type == {F_bias_check}) && (t.has_lse == {F_lse}) && (t.do_fp8_static_quant == {F_squant}) &&
((a.block_table_ptr != nullptr) == {F_pagedkv}) && ({F_scheck}) && ({F_skcheck}) && ({F_dcheck}) && ({F_dvcheck})) {{
using traits_ = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0
blen
}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, {F_lse}, {F_squant}, {F_pagedkv}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
using traits2_ = fmha_fwd_splitkv_combine_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}/2, {F_bn1}, {F_lse}, {F_squant}, {F_spad}, {F_dvpad}>;
using traits_ = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0
max
}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, {F_lse}, {F_squant}, {F_pagedkv}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
using traits2_ = fmha_fwd_splitkv_combine_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}/2, {F_bn1}
/2
, {F_lse}, {F_squant}, {F_spad}, {F_dvpad}>;
return fmha_fwd_splitkv_<traits_, traits2_>(s, a);
}}
...
...
@@ -257,7 +268,7 @@ class FmhaFwdSplitKVApiTrait:
bk0
:
int
# tile size along qk gemm unroll
bn1
:
int
# tile size along v head_dim
bk1
:
int
# tile size along kv gemm unroll
bk0
blen
:
int
bk0
max
:
int
vlayout
:
str
mask
:
str
bias
:
str
#
...
...
@@ -267,11 +278,11 @@ class FmhaFwdSplitKVApiTrait:
skpad
:
str
dpad
:
str
dvpad
:
str
pagedkv
:
str
pagedkv
:
str
@
property
def
name
(
self
)
->
str
:
return
f
'
{
self
.
hdim
}
-
{
self
.
dtype
}
-
{
self
.
mode
}
-
{
self
.
bm0
}
-
{
self
.
bn0
}
-
{
self
.
bk0
}
-
{
self
.
bn0
}
-
{
self
.
bk1
}
-
{
self
.
bk0
blen
}
-'
+
\
return
f
'
{
self
.
hdim
}
-
{
self
.
dtype
}
-
{
self
.
mode
}
-
{
self
.
bm0
}
-
{
self
.
bn0
}
-
{
self
.
bk0
}
-
{
self
.
bn0
}
-
{
self
.
bk1
}
-
{
self
.
bk0
max
}
-'
+
\
f
'
{
self
.
vlayout
}
-
{
self
.
mask
}
-
{
self
.
bias
}
-
{
self
.
lse
}
-
{
self
.
squant
}
-
{
self
.
spad
}
-
{
self
.
skpad
}
-
{
self
.
dpad
}
-'
+
\
f
'
{
self
.
dvpad
}
-
{
self
.
pagedkv
}
'
...
...
@@ -304,8 +315,9 @@ class FmhaFwdSplitKVApiTrait:
if
self
.
dpad
==
't'
:
return
f
'a.hdim_q %
{
vec
}
== 0'
else
:
assert
False
elif
self
.
pipeline_tag
in
[
'qr'
]:
if
self
.
dpad
==
't'
:
return
f
'true /*a.hdim_q %
{
self
.
bk0blen
}
!= 0*/'
# TODO: order of get_pipelines() matters! (ugly)
else
:
return
f
'a.hdim_q %
{
self
.
bk0blen
}
== 0'
bk0submax
=
K0_MAX_SUBMAX_MAP
[
self
.
bk0max
]
if
self
.
dpad
==
't'
:
return
f
'true /*a.hdim_q %
{
bk0submax
}
!= 0*/'
# TODO: order of get_pipelines() matters! (ugly)
else
:
return
f
'a.hdim_q %
{
bk0submax
}
== 0'
else
:
assert
False
@
property
...
...
@@ -315,8 +327,9 @@ class FmhaFwdSplitKVApiTrait:
if
self
.
dvpad
==
't'
:
return
f
'a.hdim_v %
{
vec
}
== 0'
else
:
assert
False
elif
self
.
pipeline_tag
in
[
'qr'
]:
if
self
.
dvpad
==
't'
:
return
f
'true /*a.hdim_v %
{
self
.
bk0blen
}
!= 0*/'
# TODO: order of get_pipelines() matters! (ugly)
else
:
return
f
'a.hdim_v %
{
self
.
bk0blen
}
== 0'
bk0submax
=
K0_MAX_SUBMAX_MAP
[
self
.
bk0max
]
if
self
.
dvpad
==
't'
:
return
f
'true /*a.hdim_v %
{
bk0submax
}
!= 0*/'
# TODO: order of get_pipelines() matters! (ugly)
else
:
return
f
'a.hdim_v %
{
bk0submax
}
== 0'
else
:
assert
False
@
dataclass
...
...
@@ -411,7 +424,7 @@ class FmhaFwdSplitKVApiPool:
F_lse
=
BOOL_MAP
[
trait
.
lse
],
F_squant
=
BOOL_MAP
[
trait
.
squant
],
F_pagedkv
=
BOOL_MAP
[
trait
.
pagedkv
],
F_scheck
=
trait
.
scheck
,
F_skcheck
=
trait
.
skcheck
,
F_dcheck
=
trait
.
dcheck
,
F_dvcheck
=
trait
.
dvcheck
,
F_spad
=
BOOL_MAP
[
trait
.
spad
],
F_skpad
=
BOOL_MAP
[
trait
.
skpad
],
F_dpad
=
BOOL_MAP
[
trait
.
dpad
],
F_dvpad
=
BOOL_MAP
[
trait
.
dvpad
],
F_bm0
=
trait
.
bm0
,
F_bn0
=
trait
.
bn0
,
F_bk0
=
trait
.
bk0
,
F_bn1
=
trait
.
bn1
,
F_bk1
=
trait
.
bk1
,
F_bk0
blen
=
trait
.
bk0
blen
,
F_bm0
=
trait
.
bm0
,
F_bn0
=
trait
.
bn0
,
F_bk0
=
trait
.
bk0
,
F_bn1
=
trait
.
bn1
,
F_bk1
=
trait
.
bk1
,
F_bk0
max
=
trait
.
bk0
max
,
F_hdim
=
hdim
,
F_dtype
=
DTYPE_MAP
[
dtype
])
if_j
=
'if'
if
j
==
0
else
'else if'
per_hdim_case
=
per_hdim_case
+
FMHA_FWD_API_PER_HDIM_CASE
.
format
(
F_if
=
if_j
,
F_hdim
=
hdim
,
F_inner_dispatch
=
inners
)
...
...
@@ -455,10 +468,13 @@ class FmhaFwdSplitKVKernel:
F_bk0
=
self
.
F_tile
.
F_bk0
,
F_bn1
=
self
.
F_tile
.
F_bn1
,
F_bk1
=
self
.
F_tile
.
F_bk1
,
F_bk0blen
=
self
.
F_tile
.
F_bk0blen
,
F_rm
=
self
.
F_tile
.
F_rm
,
F_rn
=
self
.
F_tile
.
F_rn
,
F_rk
=
self
.
F_tile
.
F_rk
,
F_bk0max
=
self
.
F_tile
.
F_bk0max
,
F_rm0
=
self
.
F_tile
.
F_rm0
,
F_rn0
=
self
.
F_tile
.
F_rn0
,
F_rk0
=
self
.
F_tile
.
F_rk0
,
F_rm1
=
self
.
F_tile
.
F_rm1
,
F_rn1
=
self
.
F_tile
.
F_rn1
,
F_rk1
=
self
.
F_tile
.
F_rk1
,
F_wm
=
self
.
F_tile
.
F_wm
,
F_wn
=
self
.
F_tile
.
F_wn
,
F_wk
=
self
.
F_tile
.
F_wk
,
...
...
@@ -498,7 +514,7 @@ class FmhaFwdSplitKVKernel:
bk0
=
self
.
F_tile
.
F_bk0
,
bn1
=
self
.
F_tile
.
F_bn1
,
bk1
=
self
.
F_tile
.
F_bk1
,
bk0
blen
=
self
.
F_tile
.
F_bk0
blen
,
bk0
max
=
self
.
F_tile
.
F_bk0
max
,
vlayout
=
self
.
F_pipeline
.
F_vlayout
,
mask
=
self
.
F_pipeline
.
F_mask
,
bias
=
self
.
F_pipeline
.
F_bias
,
...
...
@@ -551,16 +567,17 @@ class FmhaFwdSplitKVCombineKernel:
def
get_fmha_fwd_tile_dict_from_dtype
(
dtype
:
str
)
->
Optional
[
dict
]:
if
dtype
==
'fp16'
or
dtype
==
'bf16'
:
return
{
'32'
:
FmhaFwdTileSize
(
128
,
64
,
16
,
32
,
32
,
32
,
2
,
1
,
1
,
32
,
32
,
16
,
-
1
),
'64'
:
FmhaFwdTileSize
(
128
,
64
,
32
,
64
,
32
,
64
,
4
,
1
,
1
,
32
,
32
,
16
,
-
1
),
'128'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
128
,
32
,
128
,
4
,
1
,
1
,
32
,
32
,
16
,
-
1
),
'256'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
256
,
32
,
256
,
4
,
1
,
1
,
32
,
32
,
16
,
-
1
),
'32'
:
FmhaFwdTileSize
(
32
,
64
,
16
,
32
,
32
,
32
,
2
,
1
,
1
,
2
,
1
,
1
,
16
,
16
,
16
,
-
1
),
'64'
:
FmhaFwdTileSize
(
64
,
64
,
32
,
64
,
32
,
64
,
4
,
1
,
1
,
4
,
1
,
1
,
16
,
16
,
16
,
-
1
),
## '96' : FmhaFwdTileSize(64, 128, 32, 128, 32, 96, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1),
'128'
:
FmhaFwdTileSize
(
64
,
128
,
32
,
128
,
32
,
128
,
4
,
1
,
1
,
4
,
1
,
1
,
16
,
16
,
16
,
-
1
),
'256'
:
FmhaFwdTileSize
(
64
,
128
,
32
,
256
,
32
,
256
,
4
,
1
,
1
,
4
,
1
,
1
,
16
,
16
,
16
,
-
1
),
}
elif
dtype
==
'fp8'
or
dtype
==
'bf8'
:
return
{
'64'
:
FmhaFwdTileSize
(
128
,
64
,
32
,
64
,
32
,
64
,
2
,
1
,
1
,
32
,
32
,
32
,
-
1
),
'128'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
128
,
32
,
128
,
4
,
1
,
1
,
32
,
32
,
32
,
-
1
),
'256'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
256
,
32
,
256
,
4
,
1
,
1
,
32
,
32
,
32
,
-
1
)
'64'
:
FmhaFwdTileSize
(
128
,
64
,
32
,
64
,
32
,
64
,
2
,
1
,
1
,
2
,
1
,
1
,
32
,
32
,
32
,
-
1
),
'128'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
128
,
32
,
128
,
4
,
1
,
1
,
4
,
1
,
1
,
32
,
32
,
32
,
-
1
),
'256'
:
FmhaFwdTileSize
(
128
,
128
,
32
,
256
,
32
,
256
,
4
,
1
,
1
,
4
,
1
,
1
,
32
,
32
,
32
,
-
1
)
}
else
:
return
None
...
...
@@ -568,16 +585,17 @@ def get_fmha_fwd_tile_dict_from_dtype(dtype : str) -> Optional[dict]:
def
get_fmha_fwd_splitkv_combine_tile_dict_from_dtype
(
dtype
:
str
)
->
Optional
[
dict
]:
if
dtype
==
'fp16'
or
dtype
==
'bf16'
:
return
{
'32'
:
FmhaFwdSplitKVCombineTileSize
(
64
,
32
,
-
1
),
'64'
:
FmhaFwdSplitKVCombineTileSize
(
64
,
64
,
-
1
),
'128'
:
FmhaFwdSplitKVCombineTileSize
(
64
,
128
,
-
1
),
'256'
:
FmhaFwdSplitKVCombineTileSize
(
64
,
256
,
-
1
),
'32'
:
FmhaFwdSplitKVCombineTileSize
(
16
,
16
,
-
1
),
'64'
:
FmhaFwdSplitKVCombineTileSize
(
32
,
32
,
-
1
),
## '96' : FmhaFwdSplitKVCombineTileSize(32, 64, -1),
'128'
:
FmhaFwdSplitKVCombineTileSize
(
32
,
64
,
-
1
),
'256'
:
FmhaFwdSplitKVCombineTileSize
(
32
,
128
,
-
1
),
}
elif
dtype
==
'fp8'
or
dtype
==
'bf8'
:
return
{
'64'
:
FmhaFwdSplitKVCombineTileSize
(
64
,
64
,
-
1
),
'128'
:
FmhaFwdSplitKVCombineTileSize
(
64
,
128
,
-
1
),
'256'
:
FmhaFwdSplitKVCombineTileSize
(
64
,
256
,
-
1
),
'64'
:
FmhaFwdSplitKVCombineTileSize
(
64
,
32
,
-
1
),
'128'
:
FmhaFwdSplitKVCombineTileSize
(
64
,
64
,
-
1
),
'256'
:
FmhaFwdSplitKVCombineTileSize
(
64
,
128
,
-
1
),
}
else
:
return
None
...
...
@@ -598,7 +616,7 @@ def get_fwd_splitkv_blobs(kernel_filter : Optional[str], receipt, mask_impl) ->
if
dtype
in
[
'fp16'
,
'bf16'
]:
for
mask
,
bias
,
lse
,
pagedkv
in
itertools
.
product
(
get_mask_map
(
mask_impl
).
keys
(),
BIAS_MAP
.
keys
(),
[
"t"
,
"f"
],
[
"t"
,
"f"
]):
# TODO: use async pipeline when compiler is more stable
if
hdim
==
256
or
hdim
in
[
32
,
64
,
128
]:
if
hdim
==
256
or
hdim
in
[
32
,
64
,
128
]:
### [32, 64, 96, 128]:
# if True:
pipelines
.
append
(
Pipeline
(
'qr'
,
'row'
,
'f'
,
't'
,
'f'
,
'f'
,
bias
,
lse
,
squant
,
pagedkv
,
mask
))
pipelines
.
append
(
Pipeline
(
'qr'
,
'col'
,
'f'
,
't'
,
'f'
,
'f'
,
bias
,
lse
,
squant
,
pagedkv
,
mask
))
...
...
@@ -737,4 +755,4 @@ def list_blobs(file_path : Path, kernel_filter : Optional[str], receipt, mask_im
_
,
kernels
=
get_fwd_splitkv_blobs
(
kernel_filter
,
receipt
,
mask_impl
)
for
kernel
in
kernels
:
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
kernel
.
filename
)
+
"
\n
"
)
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
FMHA_FWD_SPLITKV_API_FILENAME
)
+
"
\n
"
)
\ No newline at end of file
f
.
write
(
str
(
file_path
.
parent
/
GEN_DIR
/
FMHA_FWD_SPLITKV_API_FILENAME
)
+
"
\n
"
)
Prev
1
2
3
4
5
6
…
20
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment