Unverified Commit 781005a5 authored by arai713's avatar arai713 Committed by GitHub
Browse files

Merge branch 'develop' into codegen_hiprtc

parents a11cf2c6 39dc25a9
......@@ -70,9 +70,7 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config&
ck_tile::TileGemmTraits<kPadM, kPadN, kPadK, ALayout, BLayout, CLayout>;
using CodegenPipelineProblem = ck_tile::
GemmPipelineProblem<ADataType, BDataType, AccDataType, CodegenGemmShape, CodegenGemmTraits>;
using CodegenGemmPolicy = ck_tile::UniversalGemmPipelineAgBgCrPolicy;
using CodegenGemmPipeline =
ck_tile::GemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem, CodegenGemmPolicy>;
using CodegenGemmPipeline = ck_tile::GemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem>;
// ToDo: Will add the codegen part to test different pipeline policies in GEMM.
// Now we only use the BlockGemmASmemBSmemCRegV1DefaultPolicy.
using Kernel = ck_tile::GemmKernel<TilePartitioner, CodegenGemmPipeline, GemmEpilogue>;
......@@ -103,4 +101,26 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config&
#include "run_gemm_example.inc"
int run_gemm_example(int argc, char* argv[])
{
auto [result, arg_parser] = create_args(argc, argv);
if(!result)
return -1;
using Row = ck_tile::tensor_layout::gemm::RowMajor;
using Col = ck_tile::tensor_layout::gemm::ColumnMajor;
std::string a_layout = arg_parser.get_str("a_layout");
std::string b_layout = arg_parser.get_str("b_layout");
if(a_layout == "R" && b_layout == "C")
{
return run_gemm_example_with_layouts(argc, argv, Row{}, Col{}, Row{});
}
else
{
throw std::runtime_error("Unsupported data layout configuration for A,B and C tensors!");
}
}
int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
......@@ -217,39 +217,3 @@ int run_gemm_example_with_layouts(int argc,
return pass;
}
int run_gemm_example(int argc, char* argv[])
{
auto [result, arg_parser] = create_args(argc, argv);
if(!result)
return -1;
using Row = ck_tile::tensor_layout::gemm::RowMajor;
using Col = ck_tile::tensor_layout::gemm::ColumnMajor;
std::string a_layout = arg_parser.get_str("a_layout");
std::string b_layout = arg_parser.get_str("b_layout");
if(a_layout == "R" && b_layout == "R")
{
return run_gemm_example_with_layouts(argc, argv, Row{}, Row{}, Row{});
}
else if(a_layout == "R" && b_layout == "C")
{
return run_gemm_example_with_layouts(argc, argv, Row{}, Col{}, Row{});
}
// TODO: Fixme: with latest changes to GemmPipelineAGmemBGmemCRegV1DefaultPolicy below do not
// work.
// else if(a_layout == "C" && b_layout == "C")
// {
// return run_gemm_example_with_layouts(argc, argv, Col{}, Col{}, Row{});
// }
// else if(a_layout == "C" && b_layout == "R")
// {
// return run_gemm_example_with_layouts(argc, argv, Col{}, Row{}, Row{});
// }
else
{
throw std::runtime_error("Unsupported data layout configuration for A,B and C tensors!");
}
}
......@@ -28,8 +28,8 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config&
constexpr ck_tile::index_t M_Warp_Tile = 32;
constexpr ck_tile::index_t N_Warp_Tile = 32;
constexpr ck_tile::index_t K_Warp_Tile = 8;
#elif(CK_TILE_PIPELINE_DEFAULT == CK_TILE_PIPELINE_COMPUTE)
#endif
#if(CK_TILE_PIPELINE_DEFAULT == CK_TILE_PIPELINE_COMPUTE)
// Compute friendly for Intrawave scheduler
constexpr ck_tile::index_t M_Tile = 256;
constexpr ck_tile::index_t N_Tile = 256;
......@@ -48,6 +48,8 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config&
constexpr bool kPadN = false;
constexpr bool kPadK = false;
constexpr bool TransposeC = false;
constexpr int kBlockPerCu = 1;
// ===============================================
......@@ -62,7 +64,8 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config&
ck_tile::Default2DEpilogueProblem<AccDataType, CDataType, kPadM, kPadN>>;
using Traits = ck_tile::TileGemmTraits<kPadM, kPadN, kPadK, ALayout, BLayout, CLayout>;
using GemmUniversalTraits = ck_tile::
TileGemmUniversalTraits<kPadM, kPadN, kPadK, ALayout, BLayout, CLayout, TransposeC>;
using GemmPipelineProblem =
ck_tile::GemmPipelineProblem<ADataType, BDataType, AccDataType, GemmShape, Traits>;
......@@ -85,14 +88,15 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config&
BDataType,
AccDataType,
GemmShape,
Traits,
GemmUniversalTraits,
scheduler,
has_hot_loop_v,
tail_number_v>;
using GemmPipeline = GEMM_PIPELINE<UniversalGemmProblem>;
using Kernel = ck_tile::GemmKernel<TilePartitioner, GemmPipeline, GemmEpilogue>;
auto kargs = Kernel::MakeKernelArgs(args);
using GemmPipeline =
GEMM_PIPELINE<UniversalGemmProblem, ck_tile::UniversalGemmPipelineAgBgCrPolicy>;
using Kernel = ck_tile::GemmKernel<TilePartitioner, GemmPipeline, GemmEpilogue>;
auto kargs = Kernel::MakeKernelArgs(args);
const dim3 grids = Kernel::GridSize(args.M, args.N, args.k_batch);
constexpr dim3 blocks = Kernel::BlockSize();
......@@ -117,6 +121,21 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config&
if(has_hot_loop)
{
#if(CK_TILE_PIPELINE_DEFAULT == CK_TILE_PIPELINE_COMPUTE)
if(tail_num == ck_tile::TailNumber::Full)
{
Run(ck_tile::bool_constant<true>{},
ck_tile::integral_constant<ck_tile::TailNumber, ck_tile::TailNumber::Full>{});
}
else
{
std::ostringstream err;
err << "For compute pipeline tail number should always be Full, but have \"" << tail_num
<< "\" which is not supported! PrefetchStages: " << BaseGemmPipeline::PrefetchStages
<< "\n File: " << __FILE__ << ":" << __LINE__ << ", in function: " << __func__;
throw std::runtime_error(err.str());
}
#elif(CK_TILE_PIPELINE_DEFAULT == CK_TILE_PIPELINE_MEMORY)
// Tail pipeline One to Seven
if(tail_num == ck_tile::TailNumber::One)
{
......@@ -177,6 +196,7 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config&
ck_tile::integral_constant<ck_tile::TailNumber, ck_tile::TailNumber::Seven>{});
}
}
#endif
}
else
{
......@@ -201,4 +221,38 @@ float gemm_calc(const ck_tile::GemmHostArgs& args, const ck_tile::stream_config&
#include "run_gemm_example.inc"
int run_gemm_example(int argc, char* argv[])
{
auto [result, arg_parser] = create_args(argc, argv);
if(!result)
return -1;
using Row = ck_tile::tensor_layout::gemm::RowMajor;
using Col = ck_tile::tensor_layout::gemm::ColumnMajor;
std::string a_layout = arg_parser.get_str("a_layout");
std::string b_layout = arg_parser.get_str("b_layout");
if(a_layout == "R" && b_layout == "R")
{
return run_gemm_example_with_layouts(argc, argv, Row{}, Row{}, Row{});
}
else if(a_layout == "R" && b_layout == "C")
{
return run_gemm_example_with_layouts(argc, argv, Row{}, Col{}, Row{});
}
else if(a_layout == "C" && b_layout == "C")
{
return run_gemm_example_with_layouts(argc, argv, Col{}, Col{}, Row{});
}
else if(a_layout == "C" && b_layout == "R")
{
return run_gemm_example_with_layouts(argc, argv, Col{}, Row{}, Row{});
}
else
{
throw std::runtime_error("Unsupported data layout configuration for A,B and C tensors!");
}
}
int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
......@@ -72,9 +72,7 @@ float batched_gemm(const ck_tile::BatchedGemmHostArgs& args, const ck_tile::stre
ck_tile::TileGemmTraits<kPadM, kPadN, kPadK, ALayout, BLayout, CLayout>;
using CodegenPipelineProblem = ck_tile::
GemmPipelineProblem<ADataType, BDataType, AccDataType, CodegenGemmShape, CodegenGemmTraits>;
using CodegenGemmPolicy = ck_tile::UniversalGemmPipelineAgBgCrPolicy;
using CodegenGemmPipeline =
ck_tile::GemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem, CodegenGemmPolicy>;
using CodegenGemmPipeline = ck_tile::GemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem>;
// ToDo: Will add the codegen part to test different pipeline policies in GEMM.
// Now we only use the BlockGemmASmemBSmemCRegV1DefaultPolicy.
using Kernel = ck_tile::BatchedGemmKernel<TilePartitioner, CodegenGemmPipeline, GemmEpilogue>;
......
......@@ -39,7 +39,7 @@ auto create_args(int argc, char* argv[])
.insert("stride_b", "0", "Tensor B stride")
.insert("stride_c", "0", "Tensor C stride")
.insert("a_layout", "R", "A tensor data layout - Row by default")
.insert("b_layout", "R", "B tensor data layout - Row by default")
.insert("b_layout", "C", "B tensor data layout - Row by default")
.insert("c_layout", "R", "C tensor data layout - Row by default")
.insert("batch_stride_a", "32768", "Batch A stride")
.insert("batch_stride_b", "16384", "Batch B stride")
......
......@@ -3,13 +3,6 @@
#pragma once
template <typename Layout>
static constexpr inline auto is_row_major(Layout layout_)
{
return ck_tile::bool_constant<std::is_same_v<ck_tile::remove_cvref_t<decltype(layout_)>,
ck_tile::tensor_layout::gemm::RowMajor>>{};
}
auto calculate_rtol_atol(const ck_tile::index_t K,
const ck_tile::index_t kbatch,
const float max_accumulated_value)
......@@ -113,16 +106,56 @@ int run_batched_gemm_example_with_layouts(int argc,
int n_warmup = arg_parser.get_int("warmup");
int n_repeat = arg_parser.get_int("repeat");
stride_A = ck_tile::get_default_stride(M, K, stride_A, is_row_major(a_layout));
stride_B = ck_tile::get_default_stride(K, N, stride_B, is_row_major(b_layout));
stride_C = ck_tile::get_default_stride(M, N, stride_C, is_row_major(c_layout));
ck_tile::HostTensor<ADataType> a_m_k(ck_tile::host_tensor_descriptor(
batch_count, M, K, stride_A, batch_stride_A, is_row_major(a_layout)));
ck_tile::HostTensor<BDataType> b_k_n(ck_tile::host_tensor_descriptor(
batch_count, K, N, stride_B, batch_stride_B, is_row_major(b_layout)));
ck_tile::HostTensor<CDataType> c_m_n_dev_result(ck_tile::host_tensor_descriptor(
batch_count, M, N, stride_C, batch_stride_C, is_row_major(c_layout)));
using namespace ck_tile::literals;
auto f_host_tensor_descriptor = [](std::size_t batch_count_,
std::size_t row,
std::size_t col,
std::size_t stride,
std::size_t batch_stride,
auto layout) {
if constexpr(std::is_same_v<decltype(layout), ck_tile::tensor_layout::gemm::RowMajor>)
{
return ck_tile::HostTensorDescriptor({batch_count_, row, col},
{batch_stride, stride, 1_uz});
}
else
{
return ck_tile::HostTensorDescriptor({batch_count_, row, col},
{batch_stride, 1_uz, stride});
}
};
auto f_get_default_stride = [](std::size_t row,
std::size_t col,
std::size_t stride,
auto layout) {
if(stride == 0)
{
// give a chance if stride is zero, return a default packed stride
if constexpr(std::is_same_v<decltype(layout), ck_tile::tensor_layout::gemm::RowMajor>)
{
return col;
}
else
{
return row;
}
}
else
return stride;
};
stride_A = f_get_default_stride(M, K, stride_A, a_layout);
stride_B = f_get_default_stride(K, N, stride_B, b_layout);
stride_C = f_get_default_stride(M, N, stride_C, c_layout);
ck_tile::HostTensor<ADataType> a_m_k(
f_host_tensor_descriptor(batch_count, M, K, stride_A, batch_stride_A, a_layout));
ck_tile::HostTensor<BDataType> b_k_n(
f_host_tensor_descriptor(batch_count, K, N, stride_B, batch_stride_B, b_layout));
ck_tile::HostTensor<CDataType> c_m_n_dev_result(
f_host_tensor_descriptor(batch_count, M, N, stride_C, batch_stride_C, c_layout));
ck_tile::FillUniformDistribution<ADataType>{-5.f, 5.f}(a_m_k);
ck_tile::FillUniformDistribution<BDataType>{-5.f, 5.f}(b_k_n);
......@@ -158,8 +191,8 @@ int run_batched_gemm_example_with_layouts(int argc,
if(arg_parser.get_int("v") == 1)
{
ck_tile::HostTensor<CDataType> c_m_n_host_ref(ck_tile::host_tensor_descriptor(
batch_count, M, N, stride_C, batch_stride_C, is_row_major(CLayout){}));
ck_tile::HostTensor<CDataType> c_m_n_host_ref(
f_host_tensor_descriptor(batch_count, M, N, stride_C, batch_stride_C, CLayout{}));
c_m_n_host_ref.SetZero();
const auto b_n_k = b_k_n.transpose({0, 2, 1});
......@@ -183,8 +216,8 @@ int run_batched_gemm_example_with_layouts(int argc,
}
else if(arg_parser.get_int("v") == 2)
{
ck_tile::HostTensor<CDataType> c_m_n_gpu_ref(ck_tile::host_tensor_descriptor(
batch_count, M, N, stride_C, batch_stride_C, is_row_major(CLayout){}));
ck_tile::HostTensor<CDataType> c_m_n_gpu_ref(
f_host_tensor_descriptor(batch_count, M, N, stride_C, batch_stride_C, CLayout{}));
ck_tile::DeviceMem c_m_n_gpu_buf_ref(c_m_n_gpu_ref.get_element_space_size_in_bytes());
c_m_n_gpu_ref.SetZero();
c_m_n_gpu_buf_ref.SetZero();
......@@ -268,11 +301,11 @@ int run_batched_gemm_example(int argc, char* argv[])
std::string a_layout = arg_parser.get_str("a_layout");
std::string b_layout = arg_parser.get_str("b_layout");
if(a_layout == "R" && b_layout == "R")
{
return run_batched_gemm_example_with_layouts(argc, argv, Row{}, Row{}, Row{});
}
else if(a_layout == "R" && b_layout == "C")
// if(a_layout == "R" && b_layout == "R")
// {
// return run_batched_gemm_example_with_layouts(argc, argv, Row{}, Row{}, Row{});
// }
if(a_layout == "R" && b_layout == "C")
{
return run_batched_gemm_example_with_layouts(argc, argv, Row{}, Col{}, Row{});
}
......
......@@ -88,12 +88,9 @@ using CodegenPipelineProblem =
CodegenGemmShape,
CodegenGemmTraits<ALayout, BLayout, CLayout>>;
using CodegenGemmPolicy = ck_tile::UniversalGemmPipelineAgBgCrPolicy;
template <typename ALayout, typename BLayout, typename CLayout>
using CodegenGemmPipeline =
ck_tile::GemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem<ALayout, BLayout, CLayout>,
CodegenGemmPolicy>;
ck_tile::GemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem<ALayout, BLayout, CLayout>>;
template <typename ALayout, typename BLayout, typename CLayout>
using Kernel = ck_tile::GroupedGemmKernel<TilePartitioner,
......
......@@ -41,7 +41,7 @@ auto create_args(int argc, char* argv[])
.insert("stride_Bs", "", "Tensor B strides - it is empty by default.")
.insert("stride_Cs", "", "Tensor C strides - it is empty by default.")
.insert("a_layout", "R", "A tensor data layout - Row by default.")
.insert("b_layout", "R", "B tensor data layout - Row by default.")
.insert("b_layout", "C", "B tensor data layout - Row by default.")
.insert("c_layout", "R", "C tensor data layout - Row by default.")
.insert("validate", "1", "0. No validation, 1. Validation on CPU.")
.insert("warmup", "10", "number of iterations before benchmark the kernel.")
......
......@@ -135,12 +135,9 @@ int run_grouped_gemm_example_with_layouts(int argc,
const ck_tile::index_t N = Ns[i];
const ck_tile::index_t K = Ks[i];
stride_As[i] =
ck_tile::get_default_stride(M, N, stride_As[i], is_row_major(a_layout));
stride_Bs[i] =
ck_tile::get_default_stride(K, N, stride_Bs[i], is_row_major(b_layout));
stride_Cs[i] =
ck_tile::get_default_stride(M, N, stride_Cs[i], is_row_major(CLayout{}));
stride_As[i] = ck_tile::get_default_stride(M, N, stride_As[i], is_row_major(a_layout));
stride_Bs[i] = ck_tile::get_default_stride(K, N, stride_Bs[i], is_row_major(b_layout));
stride_Cs[i] = ck_tile::get_default_stride(M, N, stride_Cs[i], is_row_major(CLayout{}));
a_m_k_tensors.push_back(ck_tile::HostTensor<ADataType>(
ck_tile::host_tensor_descriptor(M, K, stride_As[i], is_row_major(a_layout))));
......@@ -229,10 +226,10 @@ int run_grouped_gemm_example(int argc, char* argv[])
{
return run_grouped_gemm_example_with_layouts(argc, argv, Row{}, Col{}, Row{});
}
else if(a_layout == "R" && b_layout == "R")
{
return run_grouped_gemm_example_with_layouts(argc, argv, Row{}, Row{}, Row{});
}
// else if(a_layout == "R" && b_layout == "R")
// {
// return run_grouped_gemm_example_with_layouts(argc, argv, Row{}, Row{}, Row{});
// }
else
{
throw std::runtime_error("Unsupported data layout configuration for A,B and C tensors!");
......
......@@ -7,6 +7,7 @@
#include "ck_tile/core/algorithm/coordinate_transform.hpp"
#include "ck_tile/core/algorithm/indexing_adaptor.hpp"
#include "ck_tile/core/algorithm/space_filling_curve.hpp"
#include "ck_tile/core/algorithm/static_encoding_pattern.hpp"
#include "ck_tile/core/arch/amd_buffer_addressing.hpp"
#include "ck_tile/core/arch/arch.hpp"
#include "ck_tile/core/arch/generic_memory_space_atomic.hpp"
......@@ -53,6 +54,7 @@
#include "ck_tile/core/tensor/tile_window.hpp"
#include "ck_tile/core/tensor/tile_window_linear.hpp"
#include "ck_tile/core/tensor/tile_window_utils.hpp"
#include "ck_tile/core/tensor/transpose_tile.hpp"
#include "ck_tile/core/tensor/update_tile.hpp"
#include "ck_tile/core/utility/bit_cast.hpp"
#include "ck_tile/core/utility/functional.hpp"
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core/arch/arch.hpp"
#include "ck_tile/core/config.hpp"
#include "ck_tile/core/container/sequence.hpp"
#include "ck_tile/core/container/tuple.hpp"
#include "ck_tile/core/numeric/integer.hpp"
#include "ck_tile/core/tensor/tile_distribution.hpp"
#include "ck_tile/core/tensor/tile_distribution_encoding.hpp"
namespace ck_tile {
/**
* @brief Enumeration describing static tile distribution patterns.
*
*/
enum struct tile_distribution_pattern
{
/**
* @brief Thread raked pattern.
*
*/
thread_raked,
/**
* @brief Warp raked pattern.
*
*/
warp_raked,
/**
* @brief Block raked pattern - aka linear.
*
*/
block_raked,
};
struct TileDistributionEncodingPattern
{
};
/**
* @brief Class creating 2D static tile distribution with different load/store patterns.
*
* @note We always assume that Tile is YPerTile x XPerTile where X dim (rightmost)
* is contiguous and we can do vector load on this dimension.
*
* @tparam BlockSize Number of threads in a workgroup.
* @tparam YPerTile The tile size of outer/leftmost dimension.
* @tparam XPerTile The tile size of inner/rightmost dimension (contiguous).
* @tparam VecSize The vector access size.
* @tparam DistributionPattern The enumeration describing used access pattern.
*/
template <index_t BlockSize,
index_t YPerTile,
index_t XPerTile,
index_t VecSize,
tile_distribution_pattern DistributionPattern>
struct TileDistributionEncodingPattern2D : public TileDistributionEncodingPattern
{
};
// Thread raked
template <index_t BlockSize, index_t YPerTile, index_t XPerTile, index_t VecSize>
struct TileDistributionEncodingPattern2D<BlockSize,
YPerTile,
XPerTile,
VecSize,
tile_distribution_pattern::thread_raked>
: public TileDistributionEncodingPattern
{
// TODO: make pattern where below condition does not need to hold - GGemmMultiDSplitk!
static_assert(XPerTile % VecSize == 0, "XPerTile must be a multiple of VecSize!");
static constexpr index_t warp_size = get_warp_size();
static constexpr index_t num_warps = BlockSize / get_warp_size();
static constexpr index_t X1 = VecSize;
static constexpr index_t X0 = XPerTile / X1; // # of threads in X dim
// # of rows in Y dim accessed by single wavefront in one iteration
static constexpr index_t Y1 = warp_size / X0;
static_assert(X0 * Y1 == warp_size, "X0 * Y1 must cover whole wavefront!");
static constexpr index_t Y0 = num_warps;
// YPerWarp = YPerTile / Y0;
// Y2 = YPerWarp / Y1;
static constexpr index_t Y2 = YPerTile / (Y1 * Y0); // # of iters within wavefront
static_assert(X0 * Y1 * Y0 == BlockSize, "X0 * warp_ys * Y0 must cover whole workgroup!");
static_assert(Y0 * Y1 * Y2 == YPerTile, "Y0, Y1, Y2 must cover whole YPerTile");
CK_TILE_HOST_DEVICE static constexpr auto Make2DStaticTileDistribution()
{
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<Y0, Y1, Y2>, sequence<X0, X1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<0>, sequence<1, 0>>,
sequence<1, 2>,
sequence<2, 1>>{});
}
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffled2DStaticTileDistribution()
{
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<X0, X1>, sequence<Y0, Y1, Y2>>,
tuple<sequence<2>, sequence<2, 1>>,
tuple<sequence<0>, sequence<1, 0>>,
sequence<1, 2>,
sequence<1, 2>>{});
}
};
// Warp raked
template <index_t BlockSize, index_t YPerTile, index_t XPerTile, index_t VecSize>
struct TileDistributionEncodingPattern2D<BlockSize,
YPerTile,
XPerTile,
VecSize,
tile_distribution_pattern::warp_raked>
: public TileDistributionEncodingPattern
{
static_assert(XPerTile % VecSize == 0, "XPerTile must be a multiple of VecSize!");
static constexpr index_t warp_size = get_warp_size();
static constexpr index_t num_warps = BlockSize / get_warp_size();
static constexpr index_t X1 = VecSize;
static constexpr index_t X0 = XPerTile / X1; // # of threads in X dim
static constexpr index_t Y2 = warp_size / X0; // # of rows in Y dim to cover whole wavefront
static_assert(X0 * Y2 == warp_size, "X0 * Y2 must cover whole wavefront!");
static constexpr index_t Y0 = num_warps;
static_assert(X0 * Y2 * Y0 == BlockSize, "X0 * Y2 * Y1 must cover whole workgroup!");
static constexpr index_t Y1 = YPerTile / (Y2 * Y0); // # of iters within wavefront
static_assert(Y0 * Y1 * Y2 == YPerTile, "Y0, Y1, Y2 must cover whole YPerTile");
CK_TILE_HOST_DEVICE static constexpr auto Make2DStaticTileDistribution()
{
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<Y0, Y1, Y2>, sequence<X0, X1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<0>, sequence<2, 0>>,
sequence<1, 2>,
sequence<1, 1>>{});
}
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffled2DStaticTileDistribution()
{
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<X0, X1>, sequence<Y0, Y1, Y2>>,
tuple<sequence<2>, sequence<2, 1>>,
tuple<sequence<0>, sequence<2, 0>>,
sequence<1, 2>,
sequence<1, 1>>{});
}
};
// Block raked
template <index_t BlockSize, index_t YPerTile, index_t XPerTile, index_t VecSize>
struct TileDistributionEncodingPattern2D<BlockSize,
YPerTile,
XPerTile,
VecSize,
tile_distribution_pattern::block_raked>
: public TileDistributionEncodingPattern
{
// TODO: make pattern where below condition does not need to hold - GGemmMultiDSplitk!
static_assert(XPerTile % VecSize == 0, "XPerTile must be a multiple of VecSize!");
static constexpr index_t warp_size = get_warp_size();
static constexpr index_t num_warps = BlockSize / get_warp_size();
static constexpr index_t X1 = VecSize;
static constexpr index_t X0 = XPerTile / X1; // # of threads in X dim
static constexpr index_t Y2 = warp_size / X0; // # of rows in Y dim to cover whole wavefront
static_assert(X0 * Y2 == warp_size, "X0 * Y2 must cover whole wavefront!");
static constexpr index_t Y1 = num_warps;
static_assert(X0 * Y2 * Y1 == BlockSize, "X0 * Y2 * Y1 must cover whole workgroup!");
static constexpr index_t Y0 = YPerTile / (Y2 * Y1); // # of iters
static_assert(Y0 * Y1 * Y2 == YPerTile, "Y0, Y1, Y2 must cover whole YPerTile");
CK_TILE_HOST_DEVICE static constexpr auto Make2DStaticTileDistribution()
{
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<Y0, Y1, Y2>, sequence<X0, X1>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
}
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffled2DStaticTileDistribution()
{
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<X0, X1>, sequence<Y0, Y1, Y2>>,
tuple<sequence<2>, sequence<2, 1>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<1, 0>>{});
}
};
} // namespace ck_tile
......@@ -546,7 +546,7 @@ CK_TILE_HOST_DEVICE constexpr auto tuple_reverse(const tuple<Ts...>& t)
using Idx = number<tuple<Ts...>::size() - i - 1>;
return t.at(Idx{});
},
number<tuple<Ts...>::size()()>{});
number<tuple<Ts...>::size()>{});
}
// Reduce tuple values in specific range using Function
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -18,8 +18,17 @@
namespace ck_tile {
// Note: this tile window do not support single issue
// you need to use tile_window_linear structure for this purpose
/**
* @brief This class provides tile (windowed) view and access to the device memory.
*
* @note This tile window does not support single issue you need to use tile_window_linear
* structure for this purpose
*
* @tparam BottomTensorView_ Class describing & holding device tensor memory.
* @tparam WindowLengths_ Spatial sizes of windowed view on tensor.
* @tparam StaticTileDistribution_ Thread distribution (mapping) into Tile dimensions
* @tparam NumCoord TBD
*/
template <typename BottomTensorView_,
typename WindowLengths_,
typename StaticTileDistribution_,
......@@ -1009,6 +1018,14 @@ CK_TILE_DEVICE void move_tile_window(
window.move(step);
}
/**
* @brief This class provides description of tile windowed view on the device memory.
*
* @note This class does not provide any functions to read or modify device memory.
*
* @tparam BottomTensorView_ Class describing & holding device tensor memory.
* @tparam WindowLengths_ Spatial sizes of windowed view on tensor.
*/
template <typename BottomTensorView_, typename WindowLengths_>
struct tile_window_with_static_lengths
{
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core/config.hpp"
#include "ck_tile/core/numeric/integer.hpp"
#include "ck_tile/core/numeric/integral_constant.hpp"
#include "ck_tile/core/utility/functional.hpp"
#include "ck_tile/core/algorithm/coordinate_transform.hpp"
#include "ck_tile/core/algorithm/space_filling_curve.hpp"
#include "ck_tile/core/container/container_helper.hpp"
#include "ck_tile/core/container/thread_buffer.hpp"
#include "ck_tile/core/container/statically_indexed_array.hpp"
#include "ck_tile/core/numeric/math.hpp"
#include "ck_tile/core/utility/type_traits.hpp"
#include "ck_tile/core/tensor/tile_elementwise.hpp"
#include "ck_tile/core/utility/transpose_vectors.hpp"
namespace ck_tile {
namespace detail {
template <typename OutTensor, typename InTensor>
CK_TILE_DEVICE void transpose_tile2d_impl_in_thread(OutTensor& out_tensor,
const InTensor& in_tensor)
{
constexpr auto I0 = number<0>{};
static_assert(std::is_same_v<typename InTensor::DataType, typename OutTensor::DataType>,
"Data type for InTensor and OutTensor must be the same!");
using DataType = typename InTensor::DataType;
constexpr auto y_in_desc = InTensor::get_tile_distribution().get_ys_to_d_descriptor();
constexpr auto y_out_desc = OutTensor::get_tile_distribution().get_ys_to_d_descriptor();
// y_dim_out_to_in
// For swapped Hs tile case I need only get_rh_minor_to_y
// since rh_major are already swapped due to swapped Hs.
constexpr auto get_rh_minor_to_y = [](auto dstr_tensor) {
using DstrEncode = typename decltype(dstr_tensor.get_tile_distribution())::DstrEncode;
map<index_t, index_t> rh_minor_to_y_;
static_for<0, DstrEncode::NDimY, 1>{}([&](auto i) {
constexpr index_t rh_minor = DstrEncode::ys_to_rhs_minor_[i];
rh_minor_to_y_(rh_minor) = i;
});
return rh_minor_to_y_;
};
// In swapped Hs case <Y,X> -> <X,Y> tile
// we have same rh_major, but reversed rh_minor!
constexpr auto rh_minor_to_y_in = get_rh_minor_to_y(InTensor{});
constexpr auto rh_minor_to_y_out = get_rh_minor_to_y(OutTensor{});
// Is this really needed?? Should we have simple reverse here??
constexpr auto y_dim_out_to_in = [&] {
map<index_t, index_t> y_dim_out_to_in_;
for(const auto& [rh_minor, y_out] : rh_minor_to_y_out)
{
y_dim_out_to_in_(y_out) = rh_minor_to_y_in[rh_minor];
}
return y_dim_out_to_in_;
}();
constexpr index_t NDimY = InTensor::get_tile_distribution().get_num_of_dimension_y();
constexpr auto y_lengths = to_sequence(y_in_desc.get_lengths());
// input and output vector dim in the order of input Y dims
constexpr index_t y_dim_vec_in = NDimY - 1;
constexpr index_t y_dim_vec_out = y_dim_out_to_in[NDimY - 1];
// vector lengths
constexpr index_t vec_length_in = y_lengths[y_dim_vec_in];
constexpr index_t vec_length_out = y_lengths[y_dim_vec_out];
// # of vectors
constexpr index_t num_vec_in = vec_length_out;
constexpr index_t num_vec_out = vec_length_in;
using InVec = array<DataType, vec_length_in>;
using OutVec = array<DataType, vec_length_out>;
// SFC
constexpr auto scalars_per_access_arr = generate_array(
[&](auto i) { return (i == y_dim_vec_in or i == y_dim_vec_out) ? y_lengths[i] : 1; },
number<NDimY>{});
constexpr auto scalars_per_access = TO_SEQUENCE(scalars_per_access_arr, NDimY);
using SFC_Y = space_filling_curve<decltype(y_lengths),
typename arithmetic_sequence_gen<0, NDimY, 1>::type,
decltype(scalars_per_access)>;
constexpr index_t num_access = SFC_Y::get_num_of_access();
static_assert(num_access > 0, "wrong! num_access should be larger than 0");
// in/out vectors to be transposed
thread_buffer<InVec, num_vec_in> in_vectors;
thread_buffer<OutVec, num_vec_out> out_vectors;
// loop over SFC and do transpose
static_for<0, num_access, 1>{}([&](auto iAccess) {
// data index [y0, y1, ...] in the order of input tensor
constexpr auto idx_y_start = SFC_Y::get_index(iAccess);
// get input vectors
static_for<0, num_vec_in, 1>{}([&](auto i) {
constexpr auto idx_y_in = generate_tuple(
[&](auto ii) {
return ii == y_dim_vec_out ? idx_y_start[ii] + i : idx_y_start[ii];
},
number<NDimY>{});
constexpr index_t in_offset = y_in_desc.calculate_offset(idx_y_in);
static_assert(in_offset % vec_length_in == 0);
in_vectors(i).template get_as<InVec>()(I0) =
in_tensor.get_thread_buffer()
.template get_as<InVec>()[number<in_offset / vec_length_in>{}];
});
// transpose
transpose_vectors<DataType, num_vec_in, num_vec_out>{}(in_vectors, out_vectors);
// set output vectors
static_for<0, num_vec_out, 1>{}([&](auto i) {
constexpr auto idx_y_out_tmp = generate_array(
[&](auto ii) { return ii == y_dim_vec_in ? idx_y_start[ii] + i : idx_y_start[ii]; },
number<NDimY>{});
constexpr auto idx_y_out =
container_reorder_given_new2old(idx_y_out_tmp, y_dim_out_to_in);
constexpr index_t out_offset = y_out_desc.calculate_offset(idx_y_out);
static_assert(out_offset % vec_length_out == 0);
out_tensor.get_thread_buffer().template set_as<OutVec>(
number<out_offset / vec_length_out>{},
out_vectors[i].template get_as<OutVec>()[I0]);
});
});
}
} // namespace detail
template <typename OutTensor, typename InTensor>
CK_TILE_DEVICE void transpose_tile2d(OutTensor& out, const InTensor& in)
{
using InDataType = typename InTensor::DataType;
using OutDataType = typename OutTensor::DataType;
using InTileDistr = typename InTensor::StaticTileDistribution;
using OutTileDistr = typename OutTensor::StaticTileDistribution;
using InDstrEncode = typename InTileDistr::DstrEncode;
using OutDstrEncode = typename OutTileDistr::DstrEncode;
using InThreadTensorDesc = typename InTensor::ThreadTensorDesc;
using OutThreadTensorDesc = typename OutTensor::ThreadTensorDesc;
// Ys:
constexpr auto in_thread_desc_lengths = InThreadTensorDesc{}.get_lengths();
constexpr auto out_thread_desc_lengths = OutThreadTensorDesc{}.get_lengths();
// type convert
const auto in_tmp = [&]() {
if constexpr(std::is_same_v<OutDataType, InDataType>)
{
return in;
}
else
{
return tile_elementwise_in(type_convert<OutDataType, InDataType>, in);
}
}();
// Scenario where we switch from tile <Y, X> -> <X, Y> - only 2D tiles!
// we preserve Ps but swap Ys: <Y1, Y0> -> <Y0, Y1>
if constexpr(InDstrEncode::rs_lengths_ == OutDstrEncode::rs_lengths_ &&
InDstrEncode::hs_lengthss_ == tuple_reverse(OutDstrEncode::hs_lengthss_) &&
InDstrEncode::NDimY == OutDstrEncode::NDimY && InDstrEncode::NDimY == 2 &&
in_thread_desc_lengths == tuple_reverse(out_thread_desc_lengths))
// Any condition on Ps ??
// InDstrEncode::ps_to_rhss_major_ == OutDstrEncode::ps_to_rhss_major_ &&
// InDstrEncode::ps_to_rhss_minor_ == OutDstrEncode::ps_to_rhss_minor_ &&
{
detail::transpose_tile2d_impl_in_thread(out, in_tmp);
}
else
{
static_assert(false, "Provided tensors could not be transposed!");
}
}
} // namespace ck_tile
......@@ -80,7 +80,7 @@ struct BlockUniversalGemmAsBsCr
static constexpr index_t InterWaveSchedulingMacClusters = 1;
static constexpr index_t KPack = WarpGemm::kKPerThread;
static constexpr index_t KPerThread = KPerBlock / WarpGemm::kK * KPack;
static constexpr index_t KPerThread = KIterPerWarp * KPack;
static constexpr index_t KRepeat = KPerThread / KPack;
};
......
......@@ -8,7 +8,6 @@
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_scheduler.hpp"
namespace ck_tile {
......@@ -69,6 +68,7 @@ struct GemmKernel
using ADataType = remove_cvref_t<typename GemmPipeline::ADataType>;
using BDataType = remove_cvref_t<typename GemmPipeline::BDataType>;
// Below type is actually accumulation data type - the output of block GEMM.
using CDataType = remove_cvref_t<typename EpiloguePipeline::ODataType>;
static constexpr auto I0 = number<0>();
......@@ -168,6 +168,7 @@ struct GemmKernel
{
if(kargs.KBatch != 1)
{
std::cerr << "Conditions not met for Kbatch >1 !" << std::endl;
return false;
}
}
......@@ -176,10 +177,14 @@ struct GemmKernel
{
if(kargs.K % TilePartitioner::KPerBlock != 0 && GemmPipeline::kPadK == false)
{
std::cerr << "Can't support K that is not a multiple of KPerBlock"
" without padding!"
<< std::endl;
return false;
}
if(kargs.K % GemmPipeline::VectorSizeA != 0)
{
std::cerr << "K is not a multiple of vector load size for A tensor!" << std::endl;
return false;
}
}
......@@ -187,10 +192,14 @@ struct GemmKernel
{
if(kargs.M % TilePartitioner::MPerBlock != 0 && GemmPipeline::kPadM == false)
{
std::cerr << "Can't support M that is not a multiple of MPerBlock"
" without padding!"
<< std::endl;
return false;
}
if(kargs.M % GemmPipeline::VectorSizeA != 0)
{
std::cerr << "M is not a multiple of vector load size for A tensor!" << std::endl;
return false;
}
}
......@@ -199,10 +208,14 @@ struct GemmKernel
{
if(kargs.N % TilePartitioner::NPerBlock != 0 && GemmPipeline::kPadN == false)
{
std::cerr << "Can't support N that is not a multiple of NPerBlock"
" without padding!"
<< std::endl;
return false;
}
if(kargs.N % GemmPipeline::VectorSizeB != 0)
{
std::cerr << "N is not a multiple of vector load size for B tensor!" << std::endl;
return false;
}
}
......@@ -210,10 +223,14 @@ struct GemmKernel
{
if(kargs.K % TilePartitioner::KPerBlock != 0 && GemmPipeline::kPadK == false)
{
std::cerr << "Can't support K that is not a multiple of KPerBlock"
" without padding!"
<< std::endl;
return false;
}
if(kargs.K % GemmPipeline::VectorSizeB != 0)
{
std::cerr << "K is not a multiple of vector load size for B tensor!" << std::endl;
return false;
}
}
......@@ -222,10 +239,14 @@ struct GemmKernel
{
if(kargs.N % TilePartitioner::NPerBlock != 0 && GemmPipeline::kPadN == false)
{
std::cerr << "Can't support N that is not a multiple of NPerBlock"
" without padding!"
<< std::endl;
return false;
}
if(kargs.N % GemmPipeline::VectorSizeC != 0)
{
std::cerr << "N is not a multiple of vector load size for C tensor!" << std::endl;
return false;
}
}
......@@ -233,10 +254,14 @@ struct GemmKernel
{
if(kargs.M % TilePartitioner::MPerBlock != 0 && GemmPipeline::kPadM == false)
{
std::cerr << "Can't support M that is not a multiple of MPerBlock"
" without padding!"
<< std::endl;
return false;
}
if(kargs.M % GemmPipeline::VectorSizeC != 0)
{
std::cerr << "M is not a multiple of vector load size for C tensor!" << std::endl;
return false;
}
}
......@@ -250,6 +275,14 @@ struct GemmKernel
const GemmKernelArgs& kargs,
const SplitKBatchOffset& splitk_batch_offset)
{
// const auto idxs = TilePartitioner{}();
// const auto i_m = idxs.at(number<0>{});
// const auto i_n = idxs.at(number<1>{});
// // options
// const ADataType* a_start = static_cast<const ADataType*>(kargs.a_ptr);
// const BDataType* b_start = static_cast<const BDataType*>(kargs.b_ptr);
// // Convert pointers to tensor views
// auto a_tensor_view = [&]() {
const auto& a_tensor_view = [&]() {
if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::RowMajor>)
{
......@@ -264,9 +297,9 @@ struct GemmKernel
{
return make_naive_tensor_view<address_space_enum::global>(
a_ptr,
make_tuple(kargs.M, splitk_batch_offset.splitted_k),
make_tuple(1, kargs.stride_A),
number<1>{},
make_tuple(splitk_batch_offset.splitted_k, kargs.M),
make_tuple(kargs.stride_A, 1),
number<GemmPipeline::VectorSizeA>{},
number<1>{});
}
}();
......@@ -276,9 +309,9 @@ struct GemmKernel
{
return make_naive_tensor_view<address_space_enum::global>(
b_ptr,
make_tuple(kargs.N, splitk_batch_offset.splitted_k),
make_tuple(1, kargs.stride_B),
number<1>{},
make_tuple(splitk_batch_offset.splitted_k, kargs.N),
make_tuple(kargs.stride_B, 1),
number<GemmPipeline::VectorSizeB>{},
number<1>{});
}
else
......@@ -292,6 +325,7 @@ struct GemmKernel
}
}();
// TODO: enable vector write for C in ColMajor
const auto& c_tensor_view = [&]() {
if constexpr(std::is_same_v<CLayout, tensor_layout::gemm::RowMajor>)
{
......@@ -331,9 +365,9 @@ struct GemmKernel
else
{
return pad_tensor_view(a_tensor_view,
make_tuple(number<TilePartitioner::MPerBlock>{},
number<TilePartitioner::KPerBlock>{}),
sequence<GemmPipeline::kPadM, false>{});
make_tuple(number<TilePartitioner::KPerBlock>{},
number<TilePartitioner::MPerBlock>{}),
sequence<false, GemmPipeline::kPadM>{});
}
}();
......@@ -349,12 +383,13 @@ struct GemmKernel
else
{
return pad_tensor_view(b_tensor_view,
make_tuple(number<TilePartitioner::NPerBlock>{},
number<TilePartitioner::KPerBlock>{}),
sequence<GemmPipeline::kPadN, false>{});
make_tuple(number<TilePartitioner::KPerBlock>{},
number<TilePartitioner::NPerBlock>{}),
sequence<false, GemmPipeline::kPadN>{});
}
}();
// TODO vector write in for C in ColMajor
const auto& c_pad_view = [&]() {
const auto& c_tensor_view = views.at(I2);
if constexpr(std::is_same_v<CLayout, tensor_layout::gemm::RowMajor>)
......@@ -380,20 +415,45 @@ struct GemmKernel
CK_TILE_DEVICE static auto
MakeGemmTileWindows(const PadView& views, const index_t i_m, const index_t i_n)
{
const auto& a_pad_view = views.at(I0);
const auto& a_block_window = make_tile_window(
a_pad_view,
make_tuple(number<TilePartitioner::MPerBlock>{}, number<TilePartitioner::KPerBlock>{}),
{i_m, 0});
const auto& b_pad_view = views.at(I1);
const auto& b_block_window = make_tile_window(
b_pad_view,
make_tuple(number<TilePartitioner::NPerBlock>{}, number<TilePartitioner::KPerBlock>{}),
{i_n, 0});
const auto& a_pad_view = views.at(I0);
const auto& b_pad_view = views.at(I1);
const auto& c_pad_view = views.at(I2);
auto c_block_window = make_tile_window(
const auto& a_block_window = [&]() {
if constexpr(std::is_same_v<ALayout, tensor_layout::gemm::RowMajor>)
{
return make_tile_window(a_pad_view,
make_tuple(number<TilePartitioner::MPerBlock>{},
number<TilePartitioner::KPerBlock>{}),
{i_m, 0});
}
else
{
return make_tile_window(a_pad_view,
make_tuple(number<TilePartitioner::KPerBlock>{},
number<TilePartitioner::MPerBlock>{}),
{0, i_m});
}
}();
const auto& b_block_window = [&]() {
if constexpr(std::is_same_v<BLayout, tensor_layout::gemm::ColumnMajor>)
{
return make_tile_window(b_pad_view,
make_tuple(number<TilePartitioner::NPerBlock>{},
number<TilePartitioner::KPerBlock>{}),
{i_n, 0});
}
else
{
return make_tile_window(b_pad_view,
make_tuple(number<TilePartitioner::KPerBlock>{},
number<TilePartitioner::NPerBlock>{}),
{0, i_n});
}
}();
auto c_block_window = make_tile_window(
c_pad_view,
make_tuple(number<TilePartitioner::MPerBlock>{}, number<TilePartitioner::NPerBlock>{}),
{i_m, i_n});
......
......@@ -50,7 +50,6 @@ struct GroupedGemmKernel : public GemmKernel<TilePartitioner_, GemmPipeline_, Ep
using GemmKernelArgs = typename Base::GemmKernelArgs;
static constexpr index_t KernelBlockSize = GemmPipeline::BlockSize;
static constexpr index_t KBatch = 1;
struct GemmTransKernelArg
{
......@@ -124,7 +123,7 @@ struct GroupedGemmKernel : public GemmKernel<TilePartitioner_, GemmPipeline_, Ep
stride_a,
stride_b,
stride_c,
KBatch};
gemm_descs[i].k_batch};
gemm_kernel_args_.emplace_back(std::move(karg), block_start, block_end);
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2024-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
namespace ck_tile {
......@@ -12,18 +13,21 @@ struct GemmPipelineAgBgCrImplBase
{
using ADataType = remove_cvref_t<typename Problem::ADataType>;
using BDataType = remove_cvref_t<typename Problem::BDataType>;
using ALayout = remove_cvref_t<typename Problem::ALayout>;
using BLayout = remove_cvref_t<typename Problem::BLayout>;
using BlockGemmShape = remove_cvref_t<typename Problem::BlockGemmShape>;
static constexpr index_t MPerBlock = BlockGemmShape::kM;
static constexpr index_t NPerBlock = BlockGemmShape::kN;
static constexpr index_t KPerBlock = BlockGemmShape::kK;
template <typename DstBlockTile, typename SrcTileWindow>
template <typename DstBlockTile, typename SrcTileWindow, typename DramTileWindowStep>
CK_TILE_DEVICE void GlobalPrefetch(DstBlockTile& dst_block_tile,
SrcTileWindow& dram_tile_window) const
SrcTileWindow& dram_tile_window,
const DramTileWindowStep& dram_tile_window_step) const
{
load_tile(dst_block_tile, dram_tile_window);
move_tile_window(dram_tile_window, {0, KPerBlock});
move_tile_window(dram_tile_window, dram_tile_window_step);
}
template <typename DstTileWindow, typename SrcBlockTile, typename ElementFunction>
......@@ -60,19 +64,21 @@ struct GemmPipelineAgBgCrImplBase
CK_TILE_DEVICE auto GetAWindows(const ADramBlockWindowTmp& a_dram_block_window_tmp,
const ALdsTensorView& a_lds_block_view) const
{
constexpr bool is_col_major = std::is_same_v<ALayout, tensor_layout::gemm::ColumnMajor>;
using YPerTile = std::conditional_t<is_col_major, number<KPerBlock>, number<MPerBlock>>;
using XPerTile = std::conditional_t<is_col_major, number<MPerBlock>, number<KPerBlock>>;
// A DRAM tile window for load
auto a_copy_dram_window =
make_tile_window(a_dram_block_window_tmp.get_bottom_tensor_view(),
make_tuple(number<MPerBlock>{}, number<KPerBlock>{}),
make_tuple(YPerTile{}, XPerTile{}),
a_dram_block_window_tmp.get_window_origin(),
Policy::template MakeADramTileDistribution<Problem>());
// A LDS tile window for store
auto a_copy_lds_window =
make_tile_window(a_lds_block_view,
make_tuple(number<MPerBlock>{}, number<KPerBlock>{}),
{0, 0},
a_copy_dram_window.get_tile_distribution());
auto a_copy_lds_window = make_tile_window(
a_lds_block_view, make_tuple(number<MPerBlock>{}, number<KPerBlock>{}), {0, 0});
auto a_lds_gemm_window = make_tile_window(
a_lds_block_view, make_tuple(number<MPerBlock>{}, number<KPerBlock>{}), {0, 0});
......@@ -86,18 +92,22 @@ struct GemmPipelineAgBgCrImplBase
CK_TILE_DEVICE auto GetBWindows(const BDramBlockWindowTmp& b_dram_block_window_tmp,
const BLdsTensorView& b_lds_block_view) const
{
constexpr bool is_row_major = std::is_same_v<BLayout, tensor_layout::gemm::RowMajor>;
using YPerTile = std::conditional_t<is_row_major, number<KPerBlock>, number<NPerBlock>>;
using XPerTile = std::conditional_t<is_row_major, number<NPerBlock>, number<KPerBlock>>;
auto b_copy_dram_window =
make_tile_window(b_dram_block_window_tmp.get_bottom_tensor_view(),
make_tuple(number<NPerBlock>{}, number<KPerBlock>{}),
make_tuple(YPerTile{}, XPerTile{}),
b_dram_block_window_tmp.get_window_origin(),
Policy::template MakeBDramTileDistribution<Problem>());
// TODO: Do we really need those two tile windows???
// They're exactly same...
// B LDS tile window for store
auto b_copy_lds_window =
make_tile_window(b_lds_block_view,
make_tuple(number<NPerBlock>{}, number<KPerBlock>{}),
{0, 0},
b_copy_dram_window.get_tile_distribution());
auto b_copy_lds_window = make_tile_window(
b_lds_block_view, make_tuple(number<NPerBlock>{}, number<KPerBlock>{}), {0, 0});
auto b_lds_gemm_window = make_tile_window(
b_lds_block_view, make_tuple(number<NPerBlock>{}, number<KPerBlock>{}), {0, 0});
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2024-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_agmem_bgmem_creg_v1_default_policy.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_universal_pipeline_ag_bg_cr_policy.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_scheduler.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_base.hpp"
......@@ -37,7 +37,7 @@ struct BaseGemmPipelineAgBgCrCompV3
// LocalPreFillStages: 1
// LocalPreFetchStages: 1
// LocalSharedMemoryBuffer: 1
template <typename Problem, typename Policy = GemmPipelineAGmemBGmemCRegV1DefaultPolicy>
template <typename Problem, typename Policy = UniversalGemmPipelineAgBgCrPolicy>
struct GemmPipelineAgBgCrCompV3 : public BaseGemmPipelineAgBgCrCompV3<Problem>
{
using Base = BaseGemmPipelineAgBgCrCompV3<Problem>;
......@@ -62,15 +62,14 @@ struct GemmPipelineAgBgCrCompV3 : public BaseGemmPipelineAgBgCrCompV3<Problem>
static constexpr index_t NPerBlock = BlockGemmShape::kN;
static constexpr index_t KPerBlock = BlockGemmShape::kK;
static constexpr index_t VectorSizeA = Problem::VectorSizeA;
static constexpr index_t VectorSizeB = Problem::VectorSizeB;
static constexpr index_t VectorSizeC = Problem::VectorSizeC;
static constexpr index_t VectorSizeA = Policy::template GetVectorSizeA<Problem>();
static constexpr index_t VectorSizeB = Policy::template GetVectorSizeB<Problem>();
static constexpr index_t VectorSizeC = Policy::template GetVectorSizeC<Problem>();
static constexpr bool kPadM = Problem::kPadM;
static constexpr bool kPadN = Problem::kPadN;
static constexpr bool kPadK = Problem::kPadK;
// Where is the right place for HasHotLoop and TailNum ???
static constexpr bool HasHotLoop = Problem::HasHotLoop;
static constexpr auto TailNum = Problem::TailNum;
static constexpr auto Scheduler = Problem::Scheduler;
......@@ -82,7 +81,10 @@ struct GemmPipelineAgBgCrCompV3 : public BaseGemmPipelineAgBgCrCompV3<Problem>
return Policy::template GetSmemSize<Problem>();
}
CK_TILE_HOST_DEVICE static constexpr auto IsTransposeC() { return Policy::IsTransposeC(); }
CK_TILE_HOST_DEVICE static constexpr auto IsTransposeC()
{
return Policy::template IsTransposeC<Problem>();
}
template <GemmPipelineScheduler Scheduler>
struct PipelineImpl : public PipelineImplBase
......@@ -248,11 +250,22 @@ struct GemmPipelineAgBgCrCompV3 : public BaseGemmPipelineAgBgCrCompV3<Problem>
"A/B Dram block window should have the same data type as appropriate "
"([A|B]DataType) defined in Problem definition!");
static_assert(MPerBlock == ADramBlockWindowTmp{}.get_window_lengths()[I0{}] &&
NPerBlock == BDramBlockWindowTmp{}.get_window_lengths()[I0{}] &&
KPerBlock == ADramBlockWindowTmp{}.get_window_lengths()[I1{}],
"A/B block window appropriate sizes must be equal to MPerBlock/NPerblock"
" or KPerBlock!");
constexpr bool is_a_col_major =
std::is_same_v<ALayout, tensor_layout::gemm::ColumnMajor>;
constexpr bool is_b_row_major = std::is_same_v<BLayout, tensor_layout::gemm::RowMajor>;
static_assert(is_a_col_major
? (KPerBlock == ADramBlockWindowTmp{}.get_window_lengths()[I0{}] &&
MPerBlock == ADramBlockWindowTmp{}.get_window_lengths()[I1{}])
: (MPerBlock == ADramBlockWindowTmp{}.get_window_lengths()[I0{}] &&
KPerBlock == ADramBlockWindowTmp{}.get_window_lengths()[I1{}]),
"A block window has incorrect lengths for defined ALayout!");
static_assert(is_b_row_major
? (KPerBlock == BDramBlockWindowTmp{}.get_window_lengths()[I0{}] &&
NPerBlock == BDramBlockWindowTmp{}.get_window_lengths()[I1{}])
: (NPerBlock == BDramBlockWindowTmp{}.get_window_lengths()[I0{}] &&
KPerBlock == BDramBlockWindowTmp{}.get_window_lengths()[I1{}]),
"B block window has incorrect lengths for defined BLayout!");
// ------------------------------------------------------------------------------------
// Definitions of all needed tiles
......@@ -287,23 +300,51 @@ struct GemmPipelineAgBgCrCompV3 : public BaseGemmPipelineAgBgCrCompV3<Problem>
ABlockTile a_block_tile;
BBlockTile b_block_tile;
using ADramTileWindowStep = typename ADramBlockWindowTmp::BottomTensorIndex;
using BDramTileWindowStep = typename BDramBlockWindowTmp::BottomTensorIndex;
constexpr ADramTileWindowStep a_dram_tile_window_step =
is_a_col_major ? make_array(KPerBlock, 0) : make_array(0, KPerBlock);
constexpr BDramTileWindowStep b_dram_tile_window_step =
is_b_row_major ? make_array(KPerBlock, 0) : make_array(0, KPerBlock);
// -----------------------------------------------------------------------------------------
// Gemm pipeline start
// prefetch
// global read 0
Base::GlobalPrefetch(a_block_tile, a_copy_dram_window);
Base::GlobalPrefetch(b_block_tile, b_copy_dram_window);
Base::GlobalPrefetch(a_block_tile, a_copy_dram_window, a_dram_tile_window_step);
Base::GlobalPrefetch(b_block_tile, b_copy_dram_window, b_dram_tile_window_step);
// initialize C
tile_elementwise_inout([](auto& c) { c = 0; }, c_block_tile);
// LDS write 0
Base::LocalPrefill(a_copy_lds_window, a_block_tile, a_element_func);
Base::LocalPrefill(b_copy_lds_window, b_block_tile, b_element_func);
if constexpr(is_a_col_major)
{
auto a_shuffle_tmp = make_static_distributed_tensor<ADataType>(
Policy::template MakeShuffledARegTileDistribution<Problem>());
transpose_tile2d(a_shuffle_tmp, a_block_tile);
Base::LocalPrefill(a_copy_lds_window, a_shuffle_tmp, a_element_func);
}
else
{
Base::LocalPrefill(a_copy_lds_window, a_block_tile, a_element_func);
}
if constexpr(is_b_row_major)
{
auto b_shuffle_tmp = make_static_distributed_tensor<BDataType>(
Policy::template MakeShuffledBRegTileDistribution<Problem>());
transpose_tile2d(b_shuffle_tmp, b_block_tile);
Base::LocalPrefill(b_copy_lds_window, b_shuffle_tmp, b_element_func);
}
else
{
Base::LocalPrefill(b_copy_lds_window, b_block_tile, b_element_func);
}
Base::GlobalPrefetch(a_block_tile, a_copy_dram_window);
Base::GlobalPrefetch(b_block_tile, b_copy_dram_window);
Base::GlobalPrefetch(a_block_tile, a_copy_dram_window, a_dram_tile_window_step);
Base::GlobalPrefetch(b_block_tile, b_copy_dram_window, b_dram_tile_window_step);
block_sync_lds();
block_gemm.LocalPrefetch(a_lds_gemm_window, b_lds_gemm_window);
......@@ -318,11 +359,31 @@ struct GemmPipelineAgBgCrCompV3 : public BaseGemmPipelineAgBgCrCompV3<Problem>
{
block_sync_lds();
Base::LocalPrefill(a_copy_lds_window, a_block_tile, a_element_func);
Base::LocalPrefill(b_copy_lds_window, b_block_tile, b_element_func);
Base::GlobalPrefetch(a_block_tile, a_copy_dram_window);
Base::GlobalPrefetch(b_block_tile, b_copy_dram_window);
if constexpr(is_a_col_major)
{
auto a_shuffle_tmp = make_static_distributed_tensor<ADataType>(
Policy::template MakeShuffledARegTileDistribution<Problem>());
transpose_tile2d(a_shuffle_tmp, a_block_tile);
Base::LocalPrefill(a_copy_lds_window, a_shuffle_tmp, a_element_func);
}
else
{
Base::LocalPrefill(a_copy_lds_window, a_block_tile, a_element_func);
}
if constexpr(is_b_row_major)
{
auto b_shuffle_tmp = make_static_distributed_tensor<BDataType>(
Policy::template MakeShuffledBRegTileDistribution<Problem>());
transpose_tile2d(b_shuffle_tmp, b_block_tile);
Base::LocalPrefill(b_copy_lds_window, b_shuffle_tmp, b_element_func);
}
else
{
Base::LocalPrefill(b_copy_lds_window, b_block_tile, b_element_func);
}
Base::GlobalPrefetch(a_block_tile, a_copy_dram_window, a_dram_tile_window_step);
Base::GlobalPrefetch(b_block_tile, b_copy_dram_window, b_dram_tile_window_step);
block_gemm(c_block_tile, a_lds_gemm_window, b_lds_gemm_window);
......
......@@ -113,9 +113,9 @@ struct GemmPipelineAgBgCrMem : public BaseGemmPipelineAgBgCrMem<Problem>
static constexpr index_t NPerBlock = BlockGemmShape::kN;
static constexpr index_t KPerBlock = BlockGemmShape::kK;
static constexpr index_t VectorSizeA = Problem::VectorSizeA;
static constexpr index_t VectorSizeB = Problem::VectorSizeB;
static constexpr index_t VectorSizeC = Problem::VectorSizeC;
static constexpr index_t VectorSizeA = Policy::template GetVectorSizeA<Problem>();
static constexpr index_t VectorSizeB = Policy::template GetVectorSizeB<Problem>();
static constexpr index_t VectorSizeC = Policy::template GetVectorSizeC<Problem>();
static constexpr bool kPadM = Problem::kPadM;
static constexpr bool kPadN = Problem::kPadN;
......@@ -133,7 +133,10 @@ struct GemmPipelineAgBgCrMem : public BaseGemmPipelineAgBgCrMem<Problem>
return Policy::template GetSmemSize<Problem>();
}
CK_TILE_HOST_DEVICE static constexpr auto IsTransposeC() { return Policy::IsTransposeC(); }
CK_TILE_HOST_DEVICE static constexpr auto IsTransposeC()
{
return Policy::template IsTransposeC<Problem>();
}
template <GemmPipelineScheduler Scheduler>
struct PipelineImpl : public PipelineImplBase
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment