"test/git@developer.sourcefind.cn:hehl2/torchaudio.git" did not exist on "384e4471e98df3b782c1936a4da9ed3566a3f760"
Unverified Commit 730204ee authored by Po Yen Chen's avatar Po Yen Chen Committed by GitHub
Browse files

Introduce ck::accumulate_n() (#439)

We can use this template to eliminate duplicated iterator computing
logics. By providing return type to ck::accumulate_n(), we can avoid
type conversion operations.
parent dc663fae
...@@ -12,6 +12,7 @@ ...@@ -12,6 +12,7 @@
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction_bilinear.hpp" #include "ck/library/tensor_operation_instance/gpu/contraction_bilinear.hpp"
#include "ck/library/utility/numeric.hpp"
using F32 = float; using F32 = float;
...@@ -192,20 +193,14 @@ int main(int argc, char* argv[]) ...@@ -192,20 +193,14 @@ int main(int argc, char* argv[])
{ {
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
ck::index_t M = std::accumulate(e_ms_ns_lengths.begin(), ck::index_t M = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin() + NumDimM, e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t N = std::accumulate(e_ms_ns_lengths.begin() + NumDimM, ck::index_t N = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin() + NumDimM + NumDimN, e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K = std::accumulate(a_ms_ks_lengths.begin() + NumDimM, ck::index_t K = ck::accumulate_n<ck::index_t>(
a_ms_ks_lengths.begin() + NumDimM + NumDimK, a_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t flop = std::size_t(2) * M * N * K; std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
......
...@@ -12,6 +12,7 @@ ...@@ -12,6 +12,7 @@
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/contraction_scale.hpp" #include "ck/library/tensor_operation_instance/gpu/contraction_scale.hpp"
#include "ck/library/utility/numeric.hpp"
using F32 = float; using F32 = float;
...@@ -178,20 +179,14 @@ int main(int argc, char* argv[]) ...@@ -178,20 +179,14 @@ int main(int argc, char* argv[])
{ {
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
ck::index_t M = std::accumulate(e_ms_ns_lengths.begin(), ck::index_t M = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin() + NumDimM, e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t N = std::accumulate(e_ms_ns_lengths.begin() + NumDimM, ck::index_t N = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin() + NumDimM + NumDimN, e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K = std::accumulate(a_ms_ks_lengths.begin() + NumDimM, ck::index_t K = ck::accumulate_n<ck::index_t>(
a_ms_ks_lengths.begin() + NumDimM + NumDimK, a_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t flop = std::size_t(2) * M * N * K; std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = std::size_t num_btype =
......
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
...@@ -317,20 +318,14 @@ int main(int argc, char* argv[]) ...@@ -317,20 +318,14 @@ int main(int argc, char* argv[])
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel}); float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t M = std::accumulate(e_gs_ms_ns_lengths.begin() + NumDimG, std::size_t M = ck::accumulate_n<ck::index_t>(
e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM, e_gs_ms_ns_lengths.begin() + NumDimG, NumDimM, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t N = std::accumulate(e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM, std::size_t N = ck::accumulate_n<ck::index_t>(
e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM + NumDimN, e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t K = std::accumulate(a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM, std::size_t K = ck::accumulate_n<ck::index_t>(
a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM + NumDimK, a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM, NumDimK, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t flop = std::size_t(2) * M * N * K; std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
......
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template <ck::index_t... Is> template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
...@@ -317,20 +318,14 @@ int main(int argc, char* argv[]) ...@@ -317,20 +318,14 @@ int main(int argc, char* argv[])
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel}); float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
ck::index_t M = std::accumulate(e_gs_ms_ns_lengths.begin(), ck::index_t M =
e_gs_ms_ns_lengths.begin() + NumDimM, ck::accumulate_n<ck::index_t>(e_gs_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t N = std::accumulate(e_gs_ms_ns_lengths.begin() + NumDimM, ck::index_t N = ck::accumulate_n<ck::index_t>(
e_gs_ms_ns_lengths.begin() + NumDimM + NumDimN, e_gs_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K = std::accumulate(a_gs_ms_ks_lengths.begin() + NumDimM, ck::index_t K = ck::accumulate_n<ck::index_t>(
a_gs_ms_ks_lengths.begin() + NumDimM + NumDimK, a_gs_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t flop = std::size_t(2) * M * N * K; std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
......
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template <ck::index_t... Is> template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
...@@ -358,20 +359,14 @@ int main(int argc, char* argv[]) ...@@ -358,20 +359,14 @@ int main(int argc, char* argv[])
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel}); float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
ck::index_t M = std::accumulate(e_ms_ns_lengths.begin(), ck::index_t M =
e_ms_ns_lengths.begin() + NumDimM, ck::accumulate_n<ck::index_t>(e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t N = std::accumulate(e_ms_ns_lengths.begin() + NumDimM, ck::index_t N = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin() + NumDimM + NumDimN, e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K = std::accumulate(a_ms_ks_lengths.begin() + NumDimM, ck::index_t K = ck::accumulate_n<ck::index_t>(
a_ms_ks_lengths.begin() + NumDimM + NumDimK, a_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t flop = std::size_t(2) * M * N * K; std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
......
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template <ck::index_t... Is> template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
...@@ -341,20 +342,14 @@ int main(int argc, char* argv[]) ...@@ -341,20 +342,14 @@ int main(int argc, char* argv[])
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel}); float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
ck::index_t M = std::accumulate(e_ms_ns_lengths.begin(), ck::index_t M =
e_ms_ns_lengths.begin() + NumDimM, ck::accumulate_n<ck::index_t>(e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t N = std::accumulate(e_ms_ns_lengths.begin() + NumDimM, ck::index_t N = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin() + NumDimM + NumDimN, e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K = std::accumulate(a_ms_ks_lengths.begin() + NumDimM, ck::index_t K = ck::accumulate_n<ck::index_t>(
a_ms_ks_lengths.begin() + NumDimM + NumDimK, a_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t flop = std::size_t(2) * M * N * K; std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = std::size_t num_btype =
......
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template <ck::index_t... Is> template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
...@@ -302,20 +303,14 @@ int main(int argc, char* argv[]) ...@@ -302,20 +303,14 @@ int main(int argc, char* argv[])
Tensor<DDataType> d_ms_ns(d_ms_ns_lengths, d_ms_ns_strides); Tensor<DDataType> d_ms_ns(d_ms_ns_lengths, d_ms_ns_strides);
Tensor<EDataType> e_ms_ns_device_result(e_ms_ns_lengths, e_ms_ns_strides); Tensor<EDataType> e_ms_ns_device_result(e_ms_ns_lengths, e_ms_ns_strides);
ck::index_t M_ = std::accumulate(e_ms_ns_lengths.begin(), ck::index_t M_ =
e_ms_ns_lengths.begin() + NumDimM, ck::accumulate_n<ck::index_t>(e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t N_ = std::accumulate(e_ms_ns_lengths.begin() + NumDimM, ck::index_t N_ = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin() + NumDimM + NumDimN, e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K_ = std::accumulate(a_ms_ks_lengths.begin() + NumDimM, ck::index_t K_ = ck::accumulate_n<ck::index_t>(
a_ms_ks_lengths.begin() + NumDimM + NumDimK, a_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{});
a_tensors.push_back(a_ms_ks); a_tensors.push_back(a_ms_ks);
b_tensors.push_back(b_ns_ks); b_tensors.push_back(b_ns_ks);
......
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
template <ck::index_t... Is> template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
...@@ -317,25 +318,17 @@ int main(int argc, char* argv[]) ...@@ -317,25 +318,17 @@ int main(int argc, char* argv[])
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel}); float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
ck::index_t G = std::accumulate(e_gs_ms_ns_lengths.begin(), ck::index_t G =
e_gs_ms_ns_lengths.begin() + NumDimG, ck::accumulate_n<ck::index_t>(e_gs_ms_ns_lengths.begin(), NumDimG, 1, std::multiplies<>{});
ck::index_t{1},
std::multiplies<ck::index_t>{}); ck::index_t M = ck::accumulate_n<ck::index_t>(
e_gs_ms_ns_lengths.begin() + NumDimG, NumDimM, 1, std::multiplies<>{});
ck::index_t M = std::accumulate(e_gs_ms_ns_lengths.begin() + NumDimG,
e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM, ck::index_t N = ck::accumulate_n<ck::index_t>(
ck::index_t{1}, e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM, NumDimN, 1, std::multiplies<>{});
std::multiplies<ck::index_t>{});
ck::index_t K = ck::accumulate_n<ck::index_t>(
ck::index_t N = std::accumulate(e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM, a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM, NumDimK, 1, std::multiplies<>{});
e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM + NumDimN,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K = std::accumulate(a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM,
a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM + NumDimK,
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t flop = std::size_t(2) * G * M * N * K; std::size_t flop = std::size_t(2) * G * M * N * K;
std::size_t num_btype = sizeof(ADataType) * G * M * K + sizeof(BDataType) * G * K * N + std::size_t num_btype = sizeof(ADataType) * G * M * K + sizeof(BDataType) * G * K * N +
......
...@@ -120,18 +120,14 @@ bool run_grouped_conv_conv_fwd(bool do_verification, ...@@ -120,18 +120,14 @@ bool run_grouped_conv_conv_fwd(bool do_verification,
const ck::index_t gemm_batch = a0_g_n_c_wis_lengths[0]; const ck::index_t gemm_batch = a0_g_n_c_wis_lengths[0];
const ck::index_t gemm0_m_length = const ck::index_t gemm0_m_length =
e1_g_n_k_wos_lengths[1] * std::accumulate(e1_g_n_k_wos_lengths.begin() + 3, e1_g_n_k_wos_lengths[1] *
e1_g_n_k_wos_lengths.begin() + 3 + NDimSpatial, ck::accumulate_n<ck::index_t>(
ck::index_t{1}, e1_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>{});
std::multiplies<ck::index_t>{});
const ck::index_t gemm0_n_length = b0_g_k_c_xs_lengths[1]; const ck::index_t gemm0_n_length = b0_g_k_c_xs_lengths[1];
const ck::index_t gemm0_k_length = const ck::index_t gemm0_k_length = ck::accumulate_n<ck::index_t>(
std::accumulate(b0_g_k_c_xs_lengths.begin() + 2, b0_g_k_c_xs_lengths.begin() + 2, NDimSpatial + 1, 1, std::multiplies<>{});
b0_g_k_c_xs_lengths.begin() + 2 + NDimSpatial + 1,
ck::index_t{1},
std::multiplies<ck::index_t>{});
const ck::index_t gemm1_n_length = b1_g_k_c_xs_lengths[1]; const ck::index_t gemm1_n_length = b1_g_k_c_xs_lengths[1];
......
...@@ -22,6 +22,7 @@ ...@@ -22,6 +22,7 @@
#include "ck/host_utility/device_prop.hpp" #include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp" #include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/io.hpp" #include "ck/host_utility/io.hpp"
#include "ck/library/utility/numeric.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -410,10 +411,9 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle ...@@ -410,10 +411,9 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
{ {
const index_t N = r_g_n_wos_lengths[1]; const index_t N = r_g_n_wos_lengths[1];
const index_t NHoWo = N * std::accumulate(r_g_n_wos_lengths.begin() + 2, const index_t NHoWo =
r_g_n_wos_lengths.begin() + 2 + NDimSpatial, N * ck::accumulate_n<index_t>(
index_t{1}, r_g_n_wos_lengths.begin() + 2, NDimSpatial, 1, std::multiplies<>());
std::multiplies<index_t>());
const auto r_grid_desc_mraw = make_naive_tensor_descriptor_packed(make_tuple(NHoWo)); const auto r_grid_desc_mraw = make_naive_tensor_descriptor_packed(make_tuple(NHoWo));
...@@ -435,10 +435,9 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle ...@@ -435,10 +435,9 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
const index_t WoStride = r_g_n_wos_strides[NDimSpatial + 2]; const index_t WoStride = r_g_n_wos_strides[NDimSpatial + 2];
const index_t NHoWo = N * std::accumulate(r_g_n_wos_lengths.begin() + 2, const index_t NHoWo =
r_g_n_wos_lengths.begin() + 2 + NDimSpatial, N * ck::accumulate_n<index_t>(
index_t{1}, r_g_n_wos_lengths.begin() + 2, NDimSpatial, 1, std::multiplies<>());
std::multiplies<index_t>());
const auto r_grid_desc_mraw = const auto r_grid_desc_mraw =
make_naive_tensor_descriptor(make_tuple(NHoWo), make_tuple(WoStride)); make_naive_tensor_descriptor(make_tuple(NHoWo), make_tuple(WoStride));
......
...@@ -4,6 +4,7 @@ ...@@ -4,6 +4,7 @@
#pragma once #pragma once
#include "ck/library/utility/numeric.hpp"
#include "ck/utility/common_header.hpp" #include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp" #include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp" #include "ck/tensor_description/tensor_descriptor_helper.hpp"
...@@ -47,10 +48,9 @@ struct TransformConvFwdToGemm ...@@ -47,10 +48,9 @@ struct TransformConvFwdToGemm
if constexpr(ConvForwardSpecialization == if constexpr(ConvForwardSpecialization ==
device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0) device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{ {
const index_t NWo = N * std::accumulate(c_g_n_k_wos_lengths.begin() + 3, const index_t NWo =
c_g_n_k_wos_lengths.begin() + 3 + NDimSpatial, N * ck::accumulate_n<index_t>(
index_t{1}, c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
std::multiplies<index_t>());
const auto in_gemmm_gemmk_desc = const auto in_gemmm_gemmk_desc =
make_naive_tensor_descriptor_packed(make_tuple(NWo, C)); make_naive_tensor_descriptor_packed(make_tuple(NWo, C));
...@@ -146,10 +146,9 @@ struct TransformConvFwdToGemm ...@@ -146,10 +146,9 @@ struct TransformConvFwdToGemm
if constexpr(ConvForwardSpecialization == if constexpr(ConvForwardSpecialization ==
device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0) device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{ {
const index_t NHoWo = N * std::accumulate(c_g_n_k_wos_lengths.begin() + 3, const index_t NHoWo =
c_g_n_k_wos_lengths.begin() + 3 + NDimSpatial, N * ck::accumulate_n<index_t>(
index_t{1}, c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
std::multiplies<index_t>());
const auto in_gemmm_gemmk_desc = const auto in_gemmm_gemmk_desc =
make_naive_tensor_descriptor_packed(make_tuple(NHoWo, C)); make_naive_tensor_descriptor_packed(make_tuple(NHoWo, C));
...@@ -262,10 +261,8 @@ struct TransformConvFwdToGemm ...@@ -262,10 +261,8 @@ struct TransformConvFwdToGemm
device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0) device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{ {
const index_t NDoHoWo = const index_t NDoHoWo =
N * std::accumulate(c_g_n_k_wos_lengths.begin() + 3, N * ck::accumulate_n<index_t>(
c_g_n_k_wos_lengths.begin() + 3 + NDimSpatial, c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
index_t{1},
std::multiplies<index_t>());
const auto in_gemmm_gemmk_desc = const auto in_gemmm_gemmk_desc =
make_naive_tensor_descriptor_packed(make_tuple(NDoHoWo, C)); make_naive_tensor_descriptor_packed(make_tuple(NDoHoWo, C));
...@@ -390,10 +387,9 @@ struct TransformConvFwdToGemm ...@@ -390,10 +387,9 @@ struct TransformConvFwdToGemm
if constexpr(ConvForwardSpecialization == if constexpr(ConvForwardSpecialization ==
device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0) device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{ {
const index_t NHoWo = N * std::accumulate(c_g_n_k_wos_lengths.begin() + 3, const index_t NHoWo =
c_g_n_k_wos_lengths.begin() + 3 + NDimSpatial, N * ck::accumulate_n<index_t>(
index_t{1}, c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
std::multiplies<index_t>());
// This is different // This is different
const index_t WiStride = a_g_n_c_wis_strides[2 + NDimSpatial]; const index_t WiStride = a_g_n_c_wis_strides[2 + NDimSpatial];
...@@ -506,10 +502,9 @@ struct TransformConvFwdToGemm ...@@ -506,10 +502,9 @@ struct TransformConvFwdToGemm
if constexpr(ConvForwardSpecialization == if constexpr(ConvForwardSpecialization ==
device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0) device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{ {
const index_t NHoWo = N * std::accumulate(c_g_n_k_wos_lengths.begin() + 3, const index_t NHoWo =
c_g_n_k_wos_lengths.begin() + 3 + NDimSpatial, N * ck::accumulate_n<index_t>(
index_t{1}, c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
std::multiplies<index_t>());
// This is different // This is different
const index_t WiStride = a_g_n_c_wis_strides[2 + NDimSpatial]; const index_t WiStride = a_g_n_c_wis_strides[2 + NDimSpatial];
...@@ -639,10 +634,8 @@ struct TransformConvFwdToGemm ...@@ -639,10 +634,8 @@ struct TransformConvFwdToGemm
device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0) device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{ {
const index_t NDoHoWo = const index_t NDoHoWo =
N * std::accumulate(c_g_n_k_wos_lengths.begin() + 3, N * ck::accumulate_n<index_t>(
c_g_n_k_wos_lengths.begin() + 3 + NDimSpatial, c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
index_t{1},
std::multiplies<index_t>());
// This is different // This is different
const index_t WiStride = a_g_n_c_wis_strides[2 + NDimSpatial]; const index_t WiStride = a_g_n_c_wis_strides[2 + NDimSpatial];
...@@ -768,10 +761,8 @@ struct TransformConvFwdToGemm ...@@ -768,10 +761,8 @@ struct TransformConvFwdToGemm
const index_t K = b_g_k_c_xs_lengths[1]; const index_t K = b_g_k_c_xs_lengths[1];
const index_t C = b_g_k_c_xs_lengths[2]; const index_t C = b_g_k_c_xs_lengths[2];
const index_t YX = std::accumulate(b_g_k_c_xs_lengths.begin() + 3, const index_t YX = ck::accumulate_n<index_t>(
b_g_k_c_xs_lengths.begin() + 3 + NDimSpatial, b_g_k_c_xs_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
index_t{1},
std::multiplies<index_t>());
const auto wei_gemmn_gemmk_desc = const auto wei_gemmn_gemmk_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, YX * C)); make_naive_tensor_descriptor_packed(make_tuple(K, YX * C));
...@@ -794,10 +785,8 @@ struct TransformConvFwdToGemm ...@@ -794,10 +785,8 @@ struct TransformConvFwdToGemm
const index_t K = b_g_k_c_xs_lengths[1]; const index_t K = b_g_k_c_xs_lengths[1];
const index_t C = b_g_k_c_xs_lengths[2]; const index_t C = b_g_k_c_xs_lengths[2];
const index_t YX = std::accumulate(b_g_k_c_xs_lengths.begin() + 3, const index_t YX = ck::accumulate_n<index_t>(
b_g_k_c_xs_lengths.begin() + 3 + NDimSpatial, b_g_k_c_xs_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
index_t{1},
std::multiplies<index_t>());
const index_t KStride = b_g_k_c_xs_strides[1]; const index_t KStride = b_g_k_c_xs_strides[1];
const index_t XStride = b_g_k_c_xs_strides[2 + NDimSpatial]; const index_t XStride = b_g_k_c_xs_strides[2 + NDimSpatial];
...@@ -827,10 +816,9 @@ struct TransformConvFwdToGemm ...@@ -827,10 +816,9 @@ struct TransformConvFwdToGemm
const index_t N = c_g_n_k_wos_lengths[1]; const index_t N = c_g_n_k_wos_lengths[1];
const index_t K = c_g_n_k_wos_lengths[2]; const index_t K = c_g_n_k_wos_lengths[2];
const index_t NHoWo = N * std::accumulate(c_g_n_k_wos_lengths.begin() + 3, const index_t NHoWo =
c_g_n_k_wos_lengths.begin() + 3 + NDimSpatial, N * ck::accumulate_n<index_t>(
index_t{1}, c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
std::multiplies<index_t>());
const auto out_gemmm_gemmn_desc = make_naive_tensor_descriptor_packed(make_tuple(NHoWo, K)); const auto out_gemmm_gemmn_desc = make_naive_tensor_descriptor_packed(make_tuple(NHoWo, K));
...@@ -855,10 +843,9 @@ struct TransformConvFwdToGemm ...@@ -855,10 +843,9 @@ struct TransformConvFwdToGemm
const auto KStride = I1; const auto KStride = I1;
const index_t WoStride = c_g_n_k_wos_strides[NDimSpatial + 2]; const index_t WoStride = c_g_n_k_wos_strides[NDimSpatial + 2];
const index_t NHoWo = N * std::accumulate(c_g_n_k_wos_lengths.begin() + 3, const index_t NHoWo =
c_g_n_k_wos_lengths.begin() + 3 + NDimSpatial, N * ck::accumulate_n<index_t>(
index_t{1}, c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
std::multiplies<index_t>());
const auto out_gemmm_gemmn_desc = const auto out_gemmm_gemmn_desc =
make_naive_tensor_descriptor(make_tuple(NHoWo, K), make_tuple(WoStride, KStride)); make_naive_tensor_descriptor(make_tuple(NHoWo, K), make_tuple(WoStride, KStride));
...@@ -878,10 +865,9 @@ struct TransformConvFwdToGemm ...@@ -878,10 +865,9 @@ struct TransformConvFwdToGemm
const index_t N = c_g_n_k_wos_lengths[1]; const index_t N = c_g_n_k_wos_lengths[1];
const index_t K = c_g_n_k_wos_lengths[2]; const index_t K = c_g_n_k_wos_lengths[2];
const index_t NHoWo = N * std::accumulate(c_g_n_k_wos_lengths.begin() + 3, const index_t NHoWo =
c_g_n_k_wos_lengths.begin() + 3 + NDimSpatial, N * ck::accumulate_n<index_t>(
index_t{1}, c_g_n_k_wos_lengths.begin() + 3, NDimSpatial, 1, std::multiplies<>());
std::multiplies<index_t>());
const auto out_gemmm_gemmn_desc = const auto out_gemmm_gemmn_desc =
make_naive_tensor_descriptor(make_tuple(NHoWo, K), make_tuple(I0, I1)); make_naive_tensor_descriptor(make_tuple(NHoWo, K), make_tuple(I0, I1));
......
...@@ -10,6 +10,8 @@ ...@@ -10,6 +10,8 @@
#include "ck/ck.hpp" #include "ck/ck.hpp"
#include "ck/library/utility/numeric.hpp"
namespace ck { namespace ck {
namespace utils { namespace utils {
namespace conv { namespace conv {
...@@ -55,10 +57,8 @@ struct ConvParam ...@@ -55,10 +57,8 @@ struct ConvParam
// sizeof(InDataType) * (G * N * C * <input spatial lengths product>) + // sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
return sizeof(InDataType) * return sizeof(InDataType) *
(G_ * N_ * C_ * (G_ * N_ * C_ *
std::accumulate(std::begin(input_spatial_lengths_), ck::accumulate_n<std::size_t>(
std::begin(input_spatial_lengths_) + num_dim_spatial_, std::begin(input_spatial_lengths_), num_dim_spatial_, 1, std::multiplies<>()));
static_cast<std::size_t>(1),
std::multiplies<std::size_t>()));
} }
template <typename WeiDataType> template <typename WeiDataType>
...@@ -67,10 +67,8 @@ struct ConvParam ...@@ -67,10 +67,8 @@ struct ConvParam
// sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) + // sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
return sizeof(WeiDataType) * return sizeof(WeiDataType) *
(G_ * K_ * C_ * (G_ * K_ * C_ *
std::accumulate(std::begin(filter_spatial_lengths_), ck::accumulate_n<std::size_t>(
std::begin(filter_spatial_lengths_) + num_dim_spatial_, std::begin(filter_spatial_lengths_), num_dim_spatial_, 1, std::multiplies<>()));
static_cast<std::size_t>(1),
std::multiplies<std::size_t>()));
} }
template <typename OutDataType> template <typename OutDataType>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iterator>
#include <numeric>
namespace ck {
template <typename T, typename ForwardIterator, typename Size, typename BinaryOperation>
auto accumulate_n(ForwardIterator first, Size count, T init, BinaryOperation op)
-> decltype(std::accumulate(first, std::next(first, count), init, op))
{
return std::accumulate(first, std::next(first, count), init, op);
}
} // namespace ck
...@@ -72,14 +72,10 @@ std::size_t ConvParam::GetFlops() const ...@@ -72,14 +72,10 @@ std::size_t ConvParam::GetFlops() const
{ {
// 2 * G * N * K * C * <output spatial lengths product> * <filter spatial lengths product> // 2 * G * N * K * C * <output spatial lengths product> * <filter spatial lengths product>
return static_cast<std::size_t>(2) * G_ * N_ * K_ * C_ * return static_cast<std::size_t>(2) * G_ * N_ * K_ * C_ *
std::accumulate(std::begin(output_spatial_lengths_), ck::accumulate_n<std::size_t>(
std::begin(output_spatial_lengths_) + num_dim_spatial_, std::begin(output_spatial_lengths_), num_dim_spatial_, 1, std::multiplies<>()) *
static_cast<std::size_t>(1), ck::accumulate_n<std::size_t>(
std::multiplies<std::size_t>()) * std::begin(filter_spatial_lengths_), num_dim_spatial_, 1, std::multiplies<>());
std::accumulate(std::begin(filter_spatial_lengths_),
std::begin(filter_spatial_lengths_) + num_dim_spatial_,
static_cast<std::size_t>(1),
std::multiplies<std::size_t>());
} }
std::string get_conv_param_parser_helper_msg() std::string get_conv_param_parser_helper_msg()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment