Unverified Commit 70456328 authored by guangzlu's avatar guangzlu Committed by GitHub
Browse files

add client example for elementwise_normalization (#501)

* add client example for elementwise_normalization

* clang format elementwise_layernorm2d.cpp

* changed some naming to make it more understandable

* changed naming of input into ab_input

* fixed bug for threadwise_x_store

* add elementwise operation to reference
parent f4980310
add_executable(client_elementwise_layernorm2d elementwise_layernorm2d.cpp)
target_link_libraries(client_elementwise_layernorm2d PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_normalization_impl.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/elementwise_normalization.hpp"
using ADataType = ck::half_t; // Input 1
using BDataType = ck::half_t; // Input 2
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using AccDataType = float;
using XElementwiseOperation = ck::tensor_operation::element_wise::Add;
using YElementwiseOperation = ck::tensor_operation::element_wise::PassThrough;
constexpr int Rank = 2;
constexpr int NumReduceDim = 1;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main()
{
bool time_kernel = true;
ck::index_t M = 48 * 256;
ck::index_t N = 1024;
ck::index_t Stride = N;
auto mn_size = (M - 1) * Stride + N;
SimpleDeviceMem a_dev_buf(sizeof(ADataType) * mn_size);
SimpleDeviceMem b_dev_buf(sizeof(BDataType) * mn_size);
SimpleDeviceMem gamma_dev_buf(sizeof(GammaDataType) * N);
SimpleDeviceMem beta_dev_buf(sizeof(BetaDataType) * N);
SimpleDeviceMem y_dev_buf(sizeof(YDataType) * mn_size);
std::array<const void*, 2> ab_input = {a_dev_buf.GetDeviceBuffer(),
b_dev_buf.GetDeviceBuffer()};
std::vector<ck::index_t> abStride = {Stride, 1};
std::array<std::vector<ck::index_t>, 2> abStrides = {abStride, abStride};
using DeviceOp = ck::tensor_operation::device::DeviceElementwiseNormalization<
ck::Tuple<ADataType, BDataType>,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
XElementwiseOperation,
YElementwiseOperation,
Rank,
NumReduceDim>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer({M, N}, // lengths
abStrides,
{0, 1}, // gammaStrides
{0, 1}, // betaStrides
{Stride, 1}, // yStrides
{1}, // reduceDims
1e-4,
ab_input,
gamma_dev_buf.GetDeviceBuffer(),
beta_dev_buf.GetDeviceBuffer(),
y_dev_buf.GetDeviceBuffer(),
XElementwiseOperation{},
YElementwiseOperation{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t num_byte = sizeof(ADataType) * M * N + sizeof(BDataType) * M * N +
sizeof(GammaDataType) * N + sizeof(BetaDataType) * N +
sizeof(YDataType) * M * N;
float gb_per_sec = num_byte / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, "
<< op_name << std::endl;
if(ave_time < best_ave_time)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer({M, N}, // lengths
abStrides,
{1}, // gammaStrides
{1}, // betaStrides
{Stride, 1}, // yStrides
{1}, // reduceDims
1e-4,
ab_input,
gamma_dev_buf.GetDeviceBuffer(),
beta_dev_buf.GetDeviceBuffer(),
y_dev_buf.GetDeviceBuffer(),
XElementwiseOperation{},
YElementwiseOperation{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
...@@ -289,7 +289,7 @@ struct GridwiseElementwiseLayernormWelfordVariance_mk_to_mk ...@@ -289,7 +289,7 @@ struct GridwiseElementwiseLayernormWelfordVariance_mk_to_mk
XDataType, XDataType,
decltype(thread_buffer_desc_m_k), decltype(thread_buffer_desc_m_k),
GridDesc_M_K, GridDesc_M_K,
YElementwiseOperation, PassThrough,
ThreadBufferLengths_M_K, ThreadBufferLengths_M_K,
ThreadBufferDimAccessOrder, ThreadBufferDimAccessOrder,
XSrcVectorDim, XSrcVectorDim,
......
...@@ -92,9 +92,10 @@ struct ReferenceLayernorm : public device::BaseOperator ...@@ -92,9 +92,10 @@ struct ReferenceLayernorm : public device::BaseOperator
{ {
for(int n = 0; n < N; ++n) for(int n = 0; n < N; ++n)
{ {
auto x_val = ck::type_convert<AccDataType>(arg.x_m_n_(m, n)); auto x_val = ck::type_convert<AccDataType>(arg.x_m_n_(m, n));
auto y_val = (x_val - mean(m)) / sqrt(var(m) + arg.epsilon_); auto y_val = (x_val - mean(m)) / sqrt(var(m) + arg.epsilon_);
y_val = (y_val * arg.gamma_n_(n)) + arg.beta_n_(n); y_val = (y_val * arg.gamma_n_(n)) + arg.beta_n_(n);
arg.acc_elementwise_op_(y_val, y_val);
arg.y_m_n_(m, n) = ck::type_convert<YDataType>(y_val); arg.y_m_n_(m, n) = ck::type_convert<YDataType>(y_val);
} }
} }
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment