"vscode:/vscode.git/clone" did not exist on "0acd3ebe8d8bc0c6d36ae771082f6819a422a243"
Commit 6f210155 authored by root's avatar root
Browse files

Merge branch 'gemm_bf16_sk_muozturk' of...

Merge branch 'gemm_bf16_sk_muozturk' of https://github.com/ROCm/composable_kernel into gemm_bf16_sk_muozturk
parents 41b54611 78394194
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp" #include "common.hpp"
...@@ -44,6 +44,17 @@ using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataTyp ...@@ -44,6 +44,17 @@ using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataTyp
ComputeTypeA, ComputeTypeA,
ComputeTypeB>; ComputeTypeB>;
using ReferenceGemmInstanceGPU = ck::tensor_operation::device::ReferenceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
#include "run_gemm_example.inc" #include "run_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); } int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp" #include "common.hpp"
...@@ -33,6 +33,17 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle ...@@ -33,6 +33,17 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
using ReferenceGemmInstance = ck::tensor_operation::host:: using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>; ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
using ReferenceGemmInstanceGPU = ck::tensor_operation::device::ReferenceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
#include "run_gemm_example.inc" #include "run_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); } int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream> #include <iostream>
...@@ -53,6 +53,17 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle ...@@ -53,6 +53,17 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
using ReferenceGemmInstance = ck::tensor_operation::host:: using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>; ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
using ReferenceGemmInstanceGPU = ck::tensor_operation::device::ReferenceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
#include "run_gemm_example.inc" #include "run_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); } int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream> #include <iostream>
...@@ -52,6 +52,17 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle ...@@ -52,6 +52,17 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
using ReferenceGemmInstance = ck::tensor_operation::host:: using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>; ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
using ReferenceGemmInstanceGPU = ck::tensor_operation::device::ReferenceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
#include "run_gemm_example.inc" #include "run_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); } int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp" #include "common.hpp"
...@@ -14,8 +14,8 @@ using CDataType = ck::half_t; ...@@ -14,8 +14,8 @@ using CDataType = ck::half_t;
using F16 = ck::half_t; using F16 = ck::half_t;
using ALayout = Row; using ALayout = Row;
using BLayout = Row; // using BLayout = Row;
// using BLayout = Col; using BLayout = Col;
using CLayout = Row; using CLayout = Row;
using AElementOp = PassThrough; using AElementOp = PassThrough;
...@@ -44,6 +44,17 @@ using DeviceGemmInstance = DeviceGemmStreamK; ...@@ -44,6 +44,17 @@ using DeviceGemmInstance = DeviceGemmStreamK;
using ReferenceGemmInstance = ck::tensor_operation::host:: using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>; ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
using ReferenceGemmInstanceGPU = ck::tensor_operation::device::ReferenceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
#include "run_gemm_example.inc" #include "run_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_streamk_example(argc, argv); } int main(int argc, char* argv[]) { return !run_gemm_streamk_example(argc, argv); }
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp" #include "common.hpp"
...@@ -37,6 +37,17 @@ using DeviceGemmInstance = DeviceGemmInstance; ...@@ -37,6 +37,17 @@ using DeviceGemmInstance = DeviceGemmInstance;
using ReferenceGemmInstance = ck::tensor_operation::host:: using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>; ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
using ReferenceGemmInstanceGPU = ck::tensor_operation::device::ReferenceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
#include "run_gemm_example.inc" #include "run_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); } int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
...@@ -173,6 +173,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config) ...@@ -173,6 +173,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{})); Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{})); Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_ref_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl; std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl; std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
...@@ -193,6 +194,8 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config) ...@@ -193,6 +194,8 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize()); DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize()); DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize()); DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
DeviceMem c_m_n_device_ref_buf(sizeof(CDataType) *
c_m_n_device_ref_result.mDesc.GetElementSpaceSize());
a_m_k_device_buf.ToDevice(a_m_k.mData.data()); a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data()); b_k_n_device_buf.ToDevice(b_k_n.mData.data());
...@@ -325,14 +328,18 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config) ...@@ -325,14 +328,18 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, " std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl; << gemm.GetTypeString() << std::endl;
bool pass = true;
if(config.do_verification) if(config.do_verification)
{ {
// CPU verification
auto ref_gemm = ReferenceGemmInstance{}; auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker(); auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument( auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op); a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
std::cout << "Running verification on CPU." << std::endl;
ref_invoker.Run(ref_argument); ref_invoker.Run(ref_argument);
#ifdef BUILD_INT4_EXAMPLE #ifdef BUILD_INT4_EXAMPLE
...@@ -346,15 +353,42 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config) ...@@ -346,15 +353,42 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
#else #else
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data()); c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
return ck::utils::check_err(c_m_n_device_result, pass &= !ck::utils::check_err(c_m_n_device_result,
c_m_n_host_result, c_m_n_host_result,
"Error: Incorrect results!", "Error: Incorrect results!",
get_rtol<CDataType>(), get_rtol<CDataType>(),
get_atol<CDataType>()); get_atol<CDataType>());
#endif #endif
// GPU verification
auto ref_gemm_gpu = ReferenceGemmInstanceGPU{};
auto ref_invoker_gpu = ref_gemm_gpu.MakeInvoker();
auto ref_argument_gpu = ref_gemm_gpu.MakeArgument(
static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_device_ref_buf.GetDeviceBuffer()),
M,
N,
K,
a_element_op,
b_element_op,
c_element_op);
std::cout << "Running verification on GPU." << std::endl;
ref_invoker_gpu.Run(ref_argument_gpu, StreamConfig{});
c_m_n_device_ref_buf.FromDevice(c_m_n_device_ref_result.mData.data());
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass &= !ck::utils::check_err(c_m_n_device_result,
c_m_n_device_ref_result,
"Error: Incorrect results!",
get_rtol<CDataType>(),
get_atol<CDataType>());
} }
return true; return !pass;
} }
bool run_gemm_example(int argc, char* argv[]) bool run_gemm_example(int argc, char* argv[])
......
...@@ -117,9 +117,9 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config) ...@@ -117,9 +117,9 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
auto f_get_default_stride = auto f_get_default_stride =
[](std::size_t row, std::size_t col, ck::index_t stride, auto layout) { [](std::size_t row, std::size_t col, ck::index_t stride, auto layout) {
if(stride == -1) if(stride == 0)
{ {
// give a chance if stride is -1, return a default packed stride // give a chance if stride is 0, return a default packed stride
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>) if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{ {
return static_cast<std::size_t>(col); return static_cast<std::size_t>(col);
...@@ -181,6 +181,11 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config) ...@@ -181,6 +181,11 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl; std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl; std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
//Added By Emin
// Added By Emin
#ifdef BUILD_INT4_EXAMPLE #ifdef BUILD_INT4_EXAMPLE
DeviceMem a_m_k_device_buf(sizeof(KernelADataType) * a_m_k.mDesc.GetElementSpaceSize()); DeviceMem a_m_k_device_buf(sizeof(KernelADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_k_n_device_buf(sizeof(KernelBDataType) * b_k_n.mDesc.GetElementSpaceSize()); DeviceMem b_k_n_device_buf(sizeof(KernelBDataType) * b_k_n.mDesc.GetElementSpaceSize());
......
...@@ -45,11 +45,7 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME) ...@@ -45,11 +45,7 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME)
endforeach() endforeach()
endif() endif()
if(INSTANCES_ONLY) set(EX_TARGETS ${SUPPORTED_GPU_TARGETS})
set(EX_TARGETS ${DEFAULT_GPU_TARGETS})
else()
set(EX_TARGETS ${GPU_TARGETS})
endif()
#Do not build any DL examples if DL_KERNELS not set #Do not build any DL examples if DL_KERNELS not set
foreach(source IN LISTS FILE_NAME) foreach(source IN LISTS FILE_NAME)
...@@ -147,11 +143,8 @@ function(add_example_executable_no_testing EXAMPLE_NAME FILE_NAME) ...@@ -147,11 +143,8 @@ function(add_example_executable_no_testing EXAMPLE_NAME FILE_NAME)
endforeach() endforeach()
endif() endif()
if(INSTANCES_ONLY) set(EX_TARGETS ${SUPPORTED_GPU_TARGETS})
set(EX_TARGETS ${DEFAULT_GPU_TARGETS})
else()
set(EX_TARGETS ${GPU_TARGETS})
endif()
#Do not build any DL examples if DL_KERNELS not set #Do not build any DL examples if DL_KERNELS not set
foreach(source IN LISTS FILE_NAME) foreach(source IN LISTS FILE_NAME)
if(NOT DEFINED DL_KERNELS AND source MATCHES "_dl") if(NOT DEFINED DL_KERNELS AND source MATCHES "_dl")
......
...@@ -6,7 +6,8 @@ This folder contains example for fmha(fused multi-head attention) using ck_tile ...@@ -6,7 +6,8 @@ This folder contains example for fmha(fused multi-head attention) using ck_tile
``` ```
# in the root of ck_tile # in the root of ck_tile
mkdir build && cd build mkdir build && cd build
sh ../script/cmake-ck-dev.sh ../ <arch> # you can replace this <arch> to gfx90a, gfx942... # you can replace <arch> with the appropriate architecture (for example gfx90a or gfx942) or leave it blank
sh ../script/cmake-ck-dev.sh ../ <arch>
make tile_example_fmha_fwd -j make tile_example_fmha_fwd -j
``` ```
This will result in an executable `build/bin/tile_example_fmha_fwd` This will result in an executable `build/bin/tile_example_fmha_fwd`
...@@ -23,7 +24,7 @@ There are 3 template parameters for this kernel template. ...@@ -23,7 +24,7 @@ There are 3 template parameters for this kernel template.
To speed up compile time, we instantiate the kernels into separate file. In this way we can benefit from parallel building from CMake/Make system. This is achieved by `generate.py` script. Besides, you can look into this script to learn how to instantiate a kernel instance step by step, which is described in `FMHA_FWD_KERNEL_BODY` variable. To speed up compile time, we instantiate the kernels into separate file. In this way we can benefit from parallel building from CMake/Make system. This is achieved by `generate.py` script. Besides, you can look into this script to learn how to instantiate a kernel instance step by step, which is described in `FMHA_FWD_KERNEL_BODY` variable.
## executable ## executable
`tile_example_fmha_fwd` is the example executable, implemented in `fmha_fwd.cpp`. You can type `./bin/tile_example_fmha_fwd -?` to list all supported args. Below is an example of the output (may subject to change) `tile_example_fmha_fwd` is the example executable, implemented in `fmha_fwd.cpp`. You can type `./bin/tile_example_fmha_fwd -?` to list all the arguments. Below is an example of the output (may subject to change)
``` ```
args: args:
-v weather do CPU validation or not (default:1) -v weather do CPU validation or not (default:1)
...@@ -31,47 +32,52 @@ args: ...@@ -31,47 +32,52 @@ args:
-b batch size (default:2) -b batch size (default:2)
-h num of head, for q (default:8) -h num of head, for q (default:8)
-h_k num of head, for k/v, -1 means equal to h (default:-1) -h_k num of head, for k/v, -1 means equal to h (default:-1)
if not equal to h, then this is GQA/MQA case if not equal to h, then this is GQA/MQA case
-s seqlen_q. if group-mode, means the average value of seqlen_q (default:3328) -s seqlen_q. if group-mode, means the average value of seqlen_q (default:3328)
total_seqlen_q = seqlen_q * batch, and seqlen_q per batch may vary total_seqlen_q = seqlen_q * batch, and seqlen_q per batch may vary
also with "-s=s0,s1,s2..." comma seperated int to set per batch seqlen(group-mode) also with "-s=s0,s1,s2..." comma seperated int to set per batch seqlen(group-mode)
-s_k seqlen_k, -1 means equal to s (default:-1) -s_k seqlen_k (including new key/value), -1 means equal to s (default:-1)
-d head dim for q, k (default:128) -d head dim for q, k (default:128)
-d_v head dim for v, -1 means equal to d (default:-1) -d_v head dim for v, -1 means equal to d (default:-1)
-scale_s scale factor of S. 0 means equal to 1/sqrt(hdim). (default:0) -scale_s scale factor of S. 0 means equal to 1/sqrt(hdim). (default:0)
note when squant=1, this value will be modified by range_q/k note when squant=1, this value will be modified by range_q/k
-range_q per-tensor quantization range of q. used if squant=1. (default:16) -range_q per-tensor quantization range of q. used if squant=1. (default:16)
-range_k per-tensor quantization range of k. used if squant=1. (default:16) -range_k per-tensor quantization range of k. used if squant=1. (default:16)
-range_v per-tensor quantization range of v. used if squant=1. (default:16) -range_v per-tensor quantization range of v. used if squant=1. (default:16)
-range_p per-tensor quantization range of p [e^(s-m)]. used if squant=1. (default:1) -range_p per-tensor quantization range of p [e^(s-m)]. used if squant=1. (default:1)
-range_o per-tensor quantization range of o (p*v). used if squant=1. (default:16) -range_o per-tensor quantization range of o (p*v). used if squant=1. (default:16)
-squant if using static quantization fusion or not. auto: fp8 will default use squant, other will not (default:auto) -squant if using static quantization fusion or not. auto: fp8 will default use squant, other will not (default:auto)
0: no static quant(not implemented) 1: apply scale_p and scale_o with respect to P and O. 0: no static quant(not implemented) 1: apply scale_p and scale_o with respect to P and O.
calculate scale_s, scale_p, scale_o according to range_q, range_k, range_v, range_p, range_o calculate scale_s, scale_p, scale_o according to range_q, range_k, range_v, range_p, range_o
-iperm permute input (default:1) -iperm permute input (default:1)
if true, will be b*h*s*d, else b*s*h*d if true, will be b*h*s*d, else b*s*h*d
-operm permute output (default:1) -operm permute output (default:1)
-bias n or 0, no bias (default:n) -bias n or 0, no bias (default:n)
e(lementwise) or 1, elementwise bias with 1*1*s*s. e:1, 1*h*s*s. e:2, b*h*s*s e(lementwise) or 1, elementwise bias with 1*1*s*s. e:1, 1*h*s*s. e:2, b*h*s*s
a(libi) or 2, alibi with 1*h. a:1, b*h a(libi) or 2, alibi with 1*h. a:1, b*h
-prec data type. fp16/bf16/fp8/bf8 (default:fp16) -prec data type. fp16/bf16/fp8/bf8 (default:fp16)
-mask 0: no mask, 1: top-left(same as 't'), 2:bottom-right(same as 'b') (default:0) -mask 0: no mask, 1: top-left(same as 't'), 2:bottom-right(same as 'b') (default:0)
't', top-left causal mask, 'b', bottom-r causal mask 't', top-left causal mask, 'b', bottom-r causal mask
't:l,r', top-left sliding window attn(swa) with FA style left right size 't:l,r', top-left sliding window attn(swa) with FA style left right size
'b:l,r', bottom-r sliding window attn(swa) with FA style left right size 'b:l,r', bottom-r sliding window attn(swa) with FA style left right size
'xt:window_size', xformer style masking from top-left, window_size negative is causal, positive is swa 'xt:window_size', xformer style masking from top-left, window_size negative is causal, positive is swa
'xb:window_size', xformer style masking from bottom-r, window_size negative is causal, positive is swa 'xb:window_size', xformer style masking from bottom-r, window_size negative is causal, positive is swa
'g:y,x', generic attention mask coordinate with y/x size (only debug purpose for now) 'g:y,x', generic attention mask coordinate with y/x size (only debug purpose for now)
-vlayout r for row-major(seqlen*hdim), c for col-major(hdim*seqlen) (default:r) -vlayout r for row-major(seqlen*hdim), c for col-major(hdim*seqlen) (default:r)
-lse 0 not store lse, 1 store lse (default:0) -lse 0 not store lse, 1 store lse (default:0)
-kname if set to 1 will print kernel name (default:0) -kname if set to 1 will print kernel name (default:0)
-init init method. ui, uniform random int, ni, normalized random int (default:uf) -init init method. ui, uniform random int, ni, normalized random int (default:uf)
uf, uniform random float, nf, normalized random float, tf, trig float, uf:q, quantization uf, uniform random float, nf, normalized random float, tf, trig float, uf:q, quantization
-seed random seed used for initializing input tensors. 0 for non-deterministic seed (default:11939) -seed random seed used for initializing input tensors. 0 for non-deterministic seed (default:11939)
-drop_seed seed for random number generator (default:1)
-drop_offset offset for random number generator (default:0)
-drop_prefs seed and offset values are present on GPU; 0 - host, 1 - device/GPU (default:0)
-warmup number of iterations before benchmark the kernel (default:5) -warmup number of iterations before benchmark the kernel (default:5)
-repeat number of iterations to benchmark the kernel (default:20) -repeat number of iterations to benchmark the kernel (default:20)
``` ```
Example: `./bin/tile_example_fmha_fwd -b=1 -h=16 -s=16384 -d=128` will run a fmha case with batch=1, nhead=16, sequence length=16384, hdim=128, fp16 case. Example 1: `./bin/tile_example_fmha_fwd -b=1 -h=16 -s=16384 -d=128` will run a fmha case with batch=1, nhead=16, sequence length=16384, hdim=128, fp16 case.
Example 2: `./bin/tile_example_fmha_fwd -b=1 -h=8 -s=16384 -d=64 -drop_prefs=1 -drop_seed=10 -drop_offset=1234` will run a fmha case with
batch=1, nhead=8, sequence length=16384, hdim=64, drop_seed=0 (in GPU memory), drop_offset=1234 (in GPU memory) fp16 case
## support features ## support features
Currently we are still in rapid development stage, so more features/optimizations will be coming soon. Currently we are still in rapid development stage, so more features/optimizations will be coming soon.
......
...@@ -600,8 +600,8 @@ def get_fwd_splitkv_blobs(kernel_filter : Optional[str], receipt, mask_impl) -> ...@@ -600,8 +600,8 @@ def get_fwd_splitkv_blobs(kernel_filter : Optional[str], receipt, mask_impl) ->
# TODO: use async pipeline when compiler is more stable # TODO: use async pipeline when compiler is more stable
if hdim == 256 or hdim in [32, 64, 128]: if hdim == 256 or hdim in [32, 64, 128]:
# if True: # if True:
pipelines.append(Pipeline('qr', 'row', 'f', 'f', 'f', 'f', bias, lse, squant, pagedkv, mask)) pipelines.append(Pipeline('qr', 'row', 'f', 't', 'f', 'f', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'col', 'f', 'f', 'f', 'f', bias, lse, squant, pagedkv, mask)) pipelines.append(Pipeline('qr', 'col', 'f', 't', 'f', 'f', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'row', 't', 't', 't', 't', bias, lse, squant, pagedkv, mask)) pipelines.append(Pipeline('qr', 'row', 't', 't', 't', 't', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'col', 't', 't', 't', 't', bias, lse, squant, pagedkv, mask)) pipelines.append(Pipeline('qr', 'col', 't', 't', 't', 't', bias, lse, squant, pagedkv, mask))
......
...@@ -85,6 +85,9 @@ auto create_args(int argc, char* argv[]) ...@@ -85,6 +85,9 @@ auto create_args(int argc, char* argv[])
.insert("p_drop", "0", "0~1 probability of dropout") .insert("p_drop", "0", "0~1 probability of dropout")
.insert("drop_seed", "1", "seed for random number generator") .insert("drop_seed", "1", "seed for random number generator")
.insert("drop_offset", "0", "offset for random number generator") .insert("drop_offset", "0", "offset for random number generator")
.insert("drop_prefs",
"0",
"seed and offset values are present on GPU; 0 - host, 1 - device/GPU")
.insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer") .insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer")
.insert("warmup", "5", "number of iterations before benchmark the kernel") .insert("warmup", "5", "number of iterations before benchmark the kernel")
.insert("repeat", "20", "number of iterations to benchmark the kernel") .insert("repeat", "20", "number of iterations to benchmark the kernel")
...@@ -158,6 +161,8 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -158,6 +161,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
float p_drop = arg_parser.get_float("p_drop"); float p_drop = arg_parser.get_float("p_drop");
uint64_t drop_seed = arg_parser.get_uint64("drop_seed"); uint64_t drop_seed = arg_parser.get_uint64("drop_seed");
uint64_t drop_offset = arg_parser.get_uint64("drop_offset"); uint64_t drop_offset = arg_parser.get_uint64("drop_offset");
bool drop_prefs = arg_parser.get_bool("drop_prefs");
if(use_dbias && bias.type != bias_enum::elementwise_bias) if(use_dbias && bias.type != bias_enum::elementwise_bias)
{ {
std::cerr << "dbias only exists when bias type is elementwise" << std::endl; std::cerr << "dbias only exists when bias type is elementwise" << std::endl;
...@@ -381,6 +386,8 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -381,6 +386,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
ck_tile::DeviceMem dbias_buf(dbias_host.get_element_space_size_in_bytes()); ck_tile::DeviceMem dbias_buf(dbias_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem seqstart_q(seqstart_q_host.size() * sizeof(int32_t)); ck_tile::DeviceMem seqstart_q(seqstart_q_host.size() * sizeof(int32_t));
ck_tile::DeviceMem seqstart_k(seqstart_k_host.size() * sizeof(int32_t)); ck_tile::DeviceMem seqstart_k(seqstart_k_host.size() * sizeof(int32_t));
ck_tile::DeviceMem drop_seed_buf(drop_prefs ? sizeof(uint64_t) : 0);
ck_tile::DeviceMem drop_offset_buf(drop_prefs ? sizeof(uint64_t) : 0);
ck_tile::DeviceMem alibi_slope_buf(alibi_slope_host.get_element_space_size_in_bytes()); ck_tile::DeviceMem alibi_slope_buf(alibi_slope_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem dq_acc_buf(dq_acc_host.get_element_space_size_in_bytes()); ck_tile::DeviceMem dq_acc_buf(dq_acc_host.get_element_space_size_in_bytes());
...@@ -391,6 +398,8 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -391,6 +398,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
do_buf.ToDevice(do_host.data()); do_buf.ToDevice(do_host.data());
seqstart_q.ToDevice(seqstart_q_host.data()); seqstart_q.ToDevice(seqstart_q_host.data());
seqstart_k.ToDevice(seqstart_k_host.data()); seqstart_k.ToDevice(seqstart_k_host.data());
drop_seed_buf.ToDevice(drop_prefs ? &drop_seed : nullptr);
drop_offset_buf.ToDevice(drop_prefs ? &drop_offset : nullptr);
alibi_slope_buf.ToDevice(alibi_slope_host.data()); alibi_slope_buf.ToDevice(alibi_slope_host.data());
// clang-format off // clang-format off
...@@ -472,6 +481,18 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -472,6 +481,18 @@ bool run(const ck_tile::ArgParser& arg_parser)
const ck_tile::index_t split_stride_dq_acc = const ck_tile::index_t split_stride_dq_acc =
(shape_batch * nhead * shape_seqlen_q * hdim_q); (shape_batch * nhead * shape_seqlen_q * hdim_q);
const auto drop_seed_offset = [&]() -> decltype(fmha_bwd_args::drop_seed_offset) {
if(drop_prefs)
{
return std::make_pair(drop_seed_buf.GetDeviceBuffer(),
drop_offset_buf.GetDeviceBuffer());
}
else
{
return std::make_pair(drop_seed, drop_offset);
}
}();
return fmha_bwd_args{q_buf.GetDeviceBuffer(), return fmha_bwd_args{q_buf.GetDeviceBuffer(),
k_buf.GetDeviceBuffer(), k_buf.GetDeviceBuffer(),
v_buf.GetDeviceBuffer(), v_buf.GetDeviceBuffer(),
...@@ -545,7 +566,7 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -545,7 +566,7 @@ bool run(const ck_tile::ArgParser& arg_parser)
static_cast<ck_tile::index_t>(mask.type), static_cast<ck_tile::index_t>(mask.type),
p_drop, p_drop,
p_undrop, p_undrop,
{drop_seed, drop_offset}}; drop_seed_offset};
}(); }();
float ave_time = fmha_bwd(fmha_traits, fmha_args, stream_config); float ave_time = fmha_bwd(fmha_traits, fmha_args, stream_config);
......
...@@ -9,7 +9,10 @@ ...@@ -9,7 +9,10 @@
#include "ck_tile/ops/epilogue.hpp" #include "ck_tile/ops/epilogue.hpp"
#include "mask.hpp" #include "mask.hpp"
#include "bias.hpp" #include "bias.hpp"
#include <type_traits> #include <type_traits>
#include <utility>
#include <variant>
template <typename DataType> template <typename DataType>
struct FmhaBwdTypeConfig; struct FmhaBwdTypeConfig;
...@@ -135,7 +138,8 @@ struct fmha_bwd_args ...@@ -135,7 +138,8 @@ struct fmha_bwd_args
ck_tile::index_t mask_type; ck_tile::index_t mask_type;
float p_drop; float p_drop;
float p_undrop; float p_undrop;
std::tuple<uint64_t, uint64_t> drop_seed_offset; std::variant<std::pair<uint64_t, uint64_t>, std::pair<const void*, const void*>>
drop_seed_offset;
}; };
template <typename FmhaBwdDQDKDVKernel> template <typename FmhaBwdDQDKDVKernel>
......
...@@ -122,6 +122,9 @@ auto create_args(int argc, char* argv[]) ...@@ -122,6 +122,9 @@ auto create_args(int argc, char* argv[])
.insert("p_drop", "0", "0~1 probability of dropout") .insert("p_drop", "0", "0~1 probability of dropout")
.insert("drop_seed", "1", "seed for random number generator") .insert("drop_seed", "1", "seed for random number generator")
.insert("drop_offset", "0", "offset for random number generator") .insert("drop_offset", "0", "offset for random number generator")
.insert("drop_prefs",
"0",
"seed and offset values are present on GPU; 0 - host, 1 - device/GPU")
.insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer") .insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer")
.insert( .insert(
"rotary_dim", "0", "RoPE rotary dimension. rotary_dim <= 0 means not apply RoPE at all") "rotary_dim", "0", "RoPE rotary dimension. rotary_dim <= 0 means not apply RoPE at all")
...@@ -442,6 +445,8 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -442,6 +445,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
float p_drop = arg_parser.get_float("p_drop"); float p_drop = arg_parser.get_float("p_drop");
uint64_t drop_seed = arg_parser.get_uint64("drop_seed"); uint64_t drop_seed = arg_parser.get_uint64("drop_seed");
uint64_t drop_offset = arg_parser.get_uint64("drop_offset"); uint64_t drop_offset = arg_parser.get_uint64("drop_offset");
bool drop_prefs = arg_parser.get_bool("drop_prefs");
if(p_drop < 0.0f || p_drop > 1.0f) if(p_drop < 0.0f || p_drop > 1.0f)
{ {
std::cerr << "The value of p_drop should be 0~1" << std::endl; std::cerr << "The value of p_drop should be 0~1" << std::endl;
...@@ -756,6 +761,8 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -756,6 +761,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
need_append_kvcache ? cache_seqlen_ks.size() * sizeof(int32_t) : 0); need_append_kvcache ? cache_seqlen_ks.size() * sizeof(int32_t) : 0);
ck_tile::DeviceMem rotary_cos_buf(rotary_cos_host.get_element_space_size_in_bytes()); ck_tile::DeviceMem rotary_cos_buf(rotary_cos_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem rotary_sin_buf(rotary_sin_host.get_element_space_size_in_bytes()); ck_tile::DeviceMem rotary_sin_buf(rotary_sin_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem drop_seed_buf(drop_prefs ? sizeof(uint64_t) : 0);
ck_tile::DeviceMem drop_offset_buf(drop_prefs ? sizeof(uint64_t) : 0);
ck_tile::DeviceMem randval_buf(randval_host.get_element_space_size_in_bytes()); ck_tile::DeviceMem randval_buf(randval_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem alibi_slope_buf(alibi_slope_host.get_element_space_size_in_bytes()); ck_tile::DeviceMem alibi_slope_buf(alibi_slope_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem block_table_buf(block_table_host.get_element_space_size_in_bytes()); ck_tile::DeviceMem block_table_buf(block_table_host.get_element_space_size_in_bytes());
...@@ -774,6 +781,8 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -774,6 +781,8 @@ bool run(const ck_tile::ArgParser& arg_parser)
cache_seqlen_k_buf.ToDevice(need_append_kvcache ? cache_seqlen_ks.data() : nullptr); cache_seqlen_k_buf.ToDevice(need_append_kvcache ? cache_seqlen_ks.data() : nullptr);
rotary_cos_buf.ToDevice(rotary_cos_host.data()); rotary_cos_buf.ToDevice(rotary_cos_host.data());
rotary_sin_buf.ToDevice(rotary_sin_host.data()); rotary_sin_buf.ToDevice(rotary_sin_host.data());
drop_seed_buf.ToDevice(drop_prefs ? &drop_seed : nullptr);
drop_offset_buf.ToDevice(drop_prefs ? &drop_offset : nullptr);
alibi_slope_buf.ToDevice(alibi_slope_host.data()); alibi_slope_buf.ToDevice(alibi_slope_host.data());
block_table_buf.ToDevice(block_table_host.data()); block_table_buf.ToDevice(block_table_host.data());
cache_batch_idx_buf.ToDevice(cache_batch_idx_host.data()); cache_batch_idx_buf.ToDevice(cache_batch_idx_host.data());
...@@ -1013,9 +1022,17 @@ bool run(const ck_tile::ArgParser& arg_parser) ...@@ -1013,9 +1022,17 @@ bool run(const ck_tile::ArgParser& arg_parser)
args.nhead_stride_randval = nhead_stride_randval; args.nhead_stride_randval = nhead_stride_randval;
args.batch_stride_randval = batch_stride_randval; args.batch_stride_randval = batch_stride_randval;
args.p_drop = p_drop; args.p_drop = p_drop;
args.s_randval = s_randval; args.s_randval = s_randval;
args.drop_seed_offset = std::tie(drop_seed, drop_offset); if(drop_prefs)
{
args.drop_seed_offset = std::make_pair(drop_seed_buf.GetDeviceBuffer(),
drop_offset_buf.GetDeviceBuffer());
}
else
{
args.drop_seed_offset = std::make_pair(drop_seed, drop_offset);
}
} }
else if constexpr(std::is_same_v<fmha_fwd_splitkv_args, std::decay_t<decltype(args)>>) else if constexpr(std::is_same_v<fmha_fwd_splitkv_args, std::decay_t<decltype(args)>>)
{ {
......
...@@ -13,6 +13,8 @@ ...@@ -13,6 +13,8 @@
#include "rotary.hpp" #include "rotary.hpp"
#include <type_traits> #include <type_traits>
#include <utility>
#include <variant>
template <typename DataType> template <typename DataType>
struct FmhaFwdTypeConfig; struct FmhaFwdTypeConfig;
...@@ -144,7 +146,9 @@ struct fmha_fwd_args ...@@ -144,7 +146,9 @@ struct fmha_fwd_args
float p_drop; float p_drop;
bool s_randval; bool s_randval;
std::tuple<uint64_t, uint64_t> drop_seed_offset;
std::variant<std::pair<uint64_t, uint64_t>, std::pair<const void*, const void*>>
drop_seed_offset;
}; };
struct fmha_fwd_splitkv_args struct fmha_fwd_splitkv_args
......
...@@ -6,7 +6,8 @@ This folder contains example for Layernorm2D forward using ck_tile tile-programm ...@@ -6,7 +6,8 @@ This folder contains example for Layernorm2D forward using ck_tile tile-programm
``` ```
# in the root of ck_tile # in the root of ck_tile
mkdir build && cd build mkdir build && cd build
sh ../script/cmake-ck-dev.sh ../ <arch> # you can replace this <arch> to gfx90a, gfx942... # you can replace <arch> with the appropriate architecture (for example gfx90a or gfx942) or leave it blank
sh ../script/cmake-ck-dev.sh ../ <arch>
make tile_example_layernorm2d_fwd -j make tile_example_layernorm2d_fwd -j
``` ```
This will result in an executable `build/bin/tile_example_layernorm2d_fwd` This will result in an executable `build/bin/tile_example_layernorm2d_fwd`
......
...@@ -35,7 +35,9 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t, ...@@ -35,7 +35,9 @@ float layernorm2d_fwd(layernorm2d_fwd_traits t,
YDataType, YDataType,
MeanDataType, MeanDataType,
InvStdDataType, InvStdDataType,
Shape>; Shape,
true,
true>;
using Kernel = ck_tile::Layernorm2dFwd<PipelineProblem>; using Kernel = ck_tile::Layernorm2dFwd<PipelineProblem>;
......
...@@ -6,7 +6,8 @@ This folder contains example for GEMM using ck_tile tile-programming implementat ...@@ -6,7 +6,8 @@ This folder contains example for GEMM using ck_tile tile-programming implementat
``` ```
# in the root of ck_tile # in the root of ck_tile
mkdir build && cd build mkdir build && cd build
sh ../script/cmake-ck-dev.sh ../ <arch> # you can replace this <arch> to gfx90a, gfx942... # you can replace <arch> with the appropriate architecture (for example gfx90a or gfx942) or leave it blank
sh ../script/cmake-ck-dev.sh ../ <arch>
make tile_example_gemm_basic -j make tile_example_gemm_basic -j
``` ```
This will result in an executable `build/bin/tile_example_gemm_basic` This will result in an executable `build/bin/tile_example_gemm_basic`
...@@ -14,10 +15,17 @@ This will result in an executable `build/bin/tile_example_gemm_basic` ...@@ -14,10 +15,17 @@ This will result in an executable `build/bin/tile_example_gemm_basic`
## example ## example
``` ```
args: args:
-m m dimension (default:3328) -b batch size (default:1)
-n m dimension (default:4096) -m m dimension (default:1024)
-n n dimension (default:2048)
-k k dimension (default:64) -k k dimension (default:64)
-e epsilon (default:1e-5) -stride_a Tensor A stride (default:0)
-v cpu validation or not (default:1) -stride_b Tensor B stride (default:0)
-prec precision (default:fp16) -stride_c Tensor C stride (default:0)
-v 0. No validation, 1. Validation on CPU, 2. Validation on GPU (default:2)
-e Absolute error tolerance (default:1e-5)
-prec data type. fp16/bf16/fp8/bf8 (default:fp16)
-warmup number of iterations before benchmark the kernel (default:10)
-repeat number of iterations to benchmark the kernel (default:100)
-timer gpu:gpu timer, cpu:cpu timer (default:gpu)
``` ```
...@@ -41,18 +41,39 @@ template <typename LayoutA, ...@@ -41,18 +41,39 @@ template <typename LayoutA,
float gemm_calc(const gemm_basic_args& args, const ck_tile::stream_config& s) float gemm_calc(const gemm_basic_args& args, const ck_tile::stream_config& s)
{ {
// The kPadA, kPadB, kPadC & kBlockPerCu should also come from the Codegen part. // The kPadA, kPadB, kPadC & kBlockPerCu should also come from the Codegen part.
constexpr bool kPadA = true; constexpr bool kPadA = true;
constexpr bool kPadB = true; constexpr bool kPadB = true;
constexpr bool kTilePermute = false;
constexpr int kBlockPerCu = 1; constexpr int kBlockPerCu = 1;
using TilePartitioner = ck_tile::GemmTilePartitioner<GemmShape>; using TilePartitioner = ck_tile::GemmTilePartitioner<GemmShape>;
using GemmEpilogue = ck_tile::Default2DEpilogue<
ck_tile::Default2DEpilogueProblem<AccDataType, CDataType, kPadA, kPadB>>; // The rank and permutation will also be generate out by the CodeGen part.
constexpr ck_tile::index_t kOutputRank = 2;
// Whether doing the CShuffle (transpose before the global memory), depending on the output
// layout.
constexpr bool CShuffleEpilogue =
std::is_same_v<LayoutC, ck_tile::tensor_layout::gemm::ColumnMajor>;
using GemmEpilogue = std::conditional_t<
CShuffleEpilogue,
ck_tile::CShuffleEpilogue<ck_tile::CShuffleEpilogueProblem<AccDataType,
CDataType,
kPadA,
kPadB,
kTilePermute,
kOutputRank,
1,
0,
TilePartitioner::kM,
TilePartitioner::kN>>,
ck_tile::Default2DEpilogue<
ck_tile::Default2DEpilogueProblem<AccDataType, CDataType, kPadA, kPadB>>>;
// ToDo: Will add the codegen part to test different pipeline policies in GEMM. // ToDo: Will add the codegen part to test different pipeline policies in GEMM.
// Now we only use the BlockGemmASmemBSmemCRegV1DefaultPolicy. // Now we only use the BlockGemmASmemBSmemCRegV1DefaultPolicy.
using Kernel = using Kernel = ck_tile::GemmKernel<TilePartitioner, GemmPipeline, GemmEpilogue>;
ck_tile::GemmKernel<TilePartitioner, GemmPipeline, GemmEpilogue, LayoutA, LayoutB, LayoutC>;
auto kargs = Kernel::MakeKargs(args.p_a, auto kargs = Kernel::MakeKargs(args.p_a,
args.p_b, args.p_b,
...@@ -255,15 +276,13 @@ int main(int argc, char* argv[]) ...@@ -255,15 +276,13 @@ int main(int argc, char* argv[])
ck_tile::sequence<M_Warp, N_Warp, K_Warp>, ck_tile::sequence<M_Warp, N_Warp, K_Warp>,
ck_tile::sequence<M_Warp_Tile, N_Warp_Tile, K_Warp_Tile>>; ck_tile::sequence<M_Warp_Tile, N_Warp_Tile, K_Warp_Tile>>;
using CodegenPipelineProblem = ck_tile::BlockGemmPipelineProblem<ADataType, using CodegenGemmTraits = ck_tile::
BDataType, TileGemmTraits<kPadA, kPadB, kPadC, matrix_a_layout, matrix_b_layout, matrix_c_layout>;
AccDataType,
CodegenGemmShape, using CodegenPipelineProblem = ck_tile::
kPadA, GemmPipelineProblem<ADataType, BDataType, AccDataType, CodegenGemmShape, CodegenGemmTraits>;
kPadB,
kPadC>;
using CodegenGemmPipeline = ck_tile::BlockGemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem>; using CodegenGemmPipeline = ck_tile::GemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem>;
invoke_gemm<ck_tile::half_t, invoke_gemm<ck_tile::half_t,
matrix_a_layout, matrix_a_layout,
...@@ -341,7 +360,13 @@ int main(int argc, char* argv[]) ...@@ -341,7 +360,13 @@ int main(int argc, char* argv[])
ck_tile::HostTensor<CDataType> c_host_gpu_ref(c_dimensions); ck_tile::HostTensor<CDataType> c_host_gpu_ref(c_dimensions);
ck_tile::DeviceMem c_gpu_buf(c_host_gpu_ref.get_element_space_size_in_bytes()); ck_tile::DeviceMem c_gpu_buf(c_host_gpu_ref.get_element_space_size_in_bytes());
ck_tile::reference_gemm_gpu<ADataType, BDataType, AccDataType, CDataType>( ck_tile::reference_gemm_gpu<ADataType,
BDataType,
AccDataType,
CDataType,
matrix_a_layout,
matrix_b_layout,
matrix_c_layout>(
a_buf, b_buf, c_gpu_buf, M, N, K, stride_a, stride_b, stride_c); a_buf, b_buf, c_gpu_buf, M, N, K, stride_a, stride_b, stride_c);
c_buf.FromDevice(c_host_gpu_ref.data()); c_buf.FromDevice(c_host_gpu_ref.data());
......
...@@ -6,7 +6,8 @@ This folder contains example for Image to Column using ck_tile tile-programming ...@@ -6,7 +6,8 @@ This folder contains example for Image to Column using ck_tile tile-programming
``` ```
# in the root of ck_tile # in the root of ck_tile
mkdir build && cd build mkdir build && cd build
sh ../script/cmake-ck-dev.sh ../ <arch> # you can replace this <arch> to gfx90a, gfx942... # you can replace <arch> with the appropriate architecture (for example gfx90a or gfx942) or leave it blank
sh ../script/cmake-ck-dev.sh ../ <arch>
make tile_example_img2col -j make tile_example_img2col -j
``` ```
This will result in an executable `build/bin/tile_example_img2col` This will result in an executable `build/bin/tile_example_img2col`
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment