Commit 6a25d081 authored by carlushuang's avatar carlushuang
Browse files

Merge remote-tracking branch 'origin/develop' into ck_tile/fav2_fwd_sept

parents 02f8c487 ceaed8e0
......@@ -135,9 +135,6 @@ struct FmhaFwdSplitKVKernel
ck_tile::index_t nhead_stride_lse_acc;
ck_tile::index_t nhead_stride_o_acc;
ck_tile::index_t batch_stride_lse_acc;
ck_tile::index_t batch_stride_o_acc;
ck_tile::index_t split_stride_lse_acc;
ck_tile::index_t split_stride_o_acc;
};
......@@ -201,6 +198,8 @@ struct FmhaFwdSplitKVKernel
ck_tile::index_t batch_stride_q;
ck_tile::index_t batch_stride_k;
ck_tile::index_t batch_stride_v;
ck_tile::index_t batch_stride_lse_acc;
ck_tile::index_t batch_stride_o_acc;
};
struct GroupModeKargs
......@@ -217,8 +216,8 @@ struct FmhaFwdSplitKVKernel
const int32_t* seqstart_k_ptr;
const int32_t* seqlen_k_ptr;
ck_tile::index_t batch_stride_k;
ck_tile::index_t batch_stride_v;
ck_tile::index_t batch_stride_k; // only used for paged-kvcache
ck_tile::index_t batch_stride_v; // only used for paged-kvcache
};
using Kargs = std::conditional_t<kIsGroupMode, GroupModeKargs, BatchModeKargs>;
......@@ -296,8 +295,6 @@ struct FmhaFwdSplitKVKernel
nhead_stride_v,
nhead_stride_lse_acc,
nhead_stride_o_acc,
batch_stride_lse_acc,
batch_stride_o_acc,
split_stride_lse_acc,
split_stride_o_acc}, // args for common karg
{}, // placeholder for bias
......@@ -307,7 +304,9 @@ struct FmhaFwdSplitKVKernel
reinterpret_cast<const int32_t*>(seqlen_k_ptr),
batch_stride_q,
batch_stride_k,
batch_stride_v};
batch_stride_v,
batch_stride_lse_acc,
batch_stride_o_acc};
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
{
......@@ -375,10 +374,8 @@ struct FmhaFwdSplitKVKernel
ck_tile::index_t nhead_stride_bias,
ck_tile::index_t nhead_stride_lse_acc,
ck_tile::index_t nhead_stride_o_acc,
ck_tile::index_t batch_stride_k,
ck_tile::index_t batch_stride_v,
ck_tile::index_t batch_stride_lse_acc,
ck_tile::index_t batch_stride_o_acc,
ck_tile::index_t batch_stride_k, // only used for paged-kvcache
ck_tile::index_t batch_stride_v, // only used for paged-kvcache
ck_tile::index_t split_stride_lse_acc,
ck_tile::index_t split_stride_o_acc,
ck_tile::index_t window_size_left,
......@@ -412,8 +409,6 @@ struct FmhaFwdSplitKVKernel
nhead_stride_v,
nhead_stride_lse_acc,
nhead_stride_o_acc,
batch_stride_lse_acc,
batch_stride_o_acc,
split_stride_lse_acc,
split_stride_o_acc}, // args for common karg
{}, // placeholder for bias
......@@ -452,11 +447,11 @@ struct FmhaFwdSplitKVKernel
__host__ static constexpr auto GridSize(ck_tile::index_t batch_size,
ck_tile::index_t nhead,
ck_tile::index_t seqlen_q,
ck_tile::index_t max_seqlen_q,
ck_tile::index_t hdim_v,
ck_tile::index_t num_splits)
{
return TilePartitioner::GridSize(batch_size, nhead, seqlen_q, hdim_v, num_splits);
return TilePartitioner::GridSize(batch_size, nhead, max_seqlen_q, hdim_v, num_splits);
}
__host__ static constexpr auto BlockSize() { return dim3(kBlockSize); }
......@@ -483,8 +478,7 @@ struct FmhaFwdSplitKVKernel
long_index_t batch_offset_v = 0;
long_index_t batch_offset_bias = 0;
long_index_t batch_offset_lse_acc = 0;
const long_index_t batch_offset_o_acc =
static_cast<long_index_t>(i_batch) * kargs.batch_stride_o_acc;
long_index_t batch_offset_o_acc = 0;
if constexpr(kIsGroupMode)
{
......@@ -492,9 +486,9 @@ struct FmhaFwdSplitKVKernel
const long_index_t query_start = kargs.seqstart_q_ptr[i_batch];
const long_index_t key_start = kargs.seqstart_k_ptr[i_batch];
batch_offset_q = query_start * kargs.stride_q;
batch_offset_k = key_start * kargs.stride_k;
batch_offset_lse_acc = query_start;
batch_offset_q = query_start * kargs.stride_q;
batch_offset_k = key_start * kargs.stride_k;
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
batch_offset_v = key_start * kargs.stride_v;
......@@ -508,6 +502,9 @@ struct FmhaFwdSplitKVKernel
batch_offset_bias = query_start * kargs.stride_bias + key_start;
}
batch_offset_lse_acc = query_start;
batch_offset_o_acc = query_start * kargs.stride_o_acc;
// get real # queries & # keys under group mode
kargs.seqlen_q = kargs.seqstart_q_ptr[i_batch + 1] - kargs.seqstart_q_ptr[i_batch];
......@@ -545,6 +542,7 @@ struct FmhaFwdSplitKVKernel
batch_offset_k = static_cast<long_index_t>(i_cache_batch) * kargs.batch_stride_k;
batch_offset_v = static_cast<long_index_t>(i_cache_batch) * kargs.batch_stride_v;
batch_offset_lse_acc = static_cast<long_index_t>(i_batch) * kargs.batch_stride_lse_acc;
batch_offset_o_acc = static_cast<long_index_t>(i_batch) * kargs.batch_stride_o_acc;
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
{
......@@ -895,8 +893,8 @@ struct FmhaFwdSplitKVKernel
const auto o_acc_dram_naive = make_naive_tensor_view<address_space_enum::global>(
o_acc_ptr,
make_tuple(kargs.seqlen_q, kargs.hdim_v),
make_tuple(kargs.hdim_v, 1),
number<FmhaPipeline::kAlignmentO>{},
make_tuple(kargs.stride_o_acc, 1),
number<1>{},
number<1>{});
return pad_tensor_view(
......
......@@ -20,12 +20,12 @@ struct FmhaFwdSplitKVTilePartitioner
__host__ static constexpr auto GridSize(ck_tile::index_t batch_size,
ck_tile::index_t nhead,
ck_tile::index_t seqlen_q,
ck_tile::index_t max_seqlen_q,
ck_tile::index_t hdim_v,
ck_tile::index_t num_splits)
{
// TODO: this may need tuning
return dim3(ck_tile::integer_divide_ceil(seqlen_q, kM0) *
return dim3(ck_tile::integer_divide_ceil(max_seqlen_q, kM0) *
ck_tile::integer_divide_ceil(hdim_v, kN1),
nhead * num_splits,
batch_size);
......
......@@ -107,7 +107,7 @@ struct BlockFmhaFwdSplitKVCombinePipeline
const LSEElementFunction& lse_element_func,
const OaccElementFunction& o_acc_element_func,
index_t num_splits,
index_t max_seqlen_q,
index_t seqlen_q,
void* smem_ptr) const
{
// lse_acc tile in LDS
......@@ -172,22 +172,27 @@ struct BlockFmhaFwdSplitKVCombinePipeline
lse_accum, sequence<1>{}, f_max, -numeric<LSEDataType>::infinity());
block_tile_reduce_sync(lse_max, f_max, bool_constant<false>{});
static const auto get_validated_m = [](LSEDataType raw_m) {
return raw_m == -numeric<LSEDataType>::infinity() ? type_convert<LSEDataType>(0.f)
: raw_m;
};
decltype(lse_accum) lse_exp;
{
constexpr auto spans = decltype(lse_exp)::get_distributed_spans();
sweep_tile_span(spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
sweep_tile_span(spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
if(lse_max[i_idx] == -numeric<LSEDataType>::infinity())
{
sweep_tile_span(spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
lse_exp(i_j_idx) =
ck_tile::exp(lse_accum(i_j_idx) - get_validated_m(lse_max(i_idx)));
});
lse_exp(i_j_idx) = ck_tile::type_convert<LSEDataType>(0.0f);
});
}
else
{
sweep_tile_span(spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
lse_exp(i_j_idx) = ck_tile::exp(lse_accum(i_j_idx) - lse_max(i_idx));
});
}
});
}
......@@ -201,15 +206,10 @@ struct BlockFmhaFwdSplitKVCombinePipeline
sweep_tile_span(spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
if(lse_sum(i_idx) == 0.f || lse_sum(i_idx) != lse_sum(i_idx))
{
lse_logsum(i_idx) = numeric<LSEDataType>::infinity();
}
if(lse_sum[i_idx] == ck_tile::type_convert<LSEDataType>(0.0f))
lse_logsum(i_idx) = -numeric<LSEDataType>::infinity();
else
{
lse_logsum(i_idx) =
ck_tile::log(lse_sum(i_idx)) + get_validated_m(lse_max(i_idx));
}
lse_logsum(i_idx) = ck_tile::log(lse_sum(i_idx)) + lse_max(i_idx);
});
}
......@@ -218,37 +218,47 @@ struct BlockFmhaFwdSplitKVCombinePipeline
constexpr auto spans = decltype(lse_accum)::get_distributed_spans();
sweep_tile_span(spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
sweep_tile_span(spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
if(lse_logsum(i_idx) == -numeric<LSEDataType>::infinity())
{
sweep_tile_span(spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
const auto x_indices = get_x_indices_from_distributed_indices(
lse_accum.get_tile_distribution(), i_j_idx);
const auto x_indices = get_x_indices_from_distributed_indices(
lse_accum.get_tile_distribution(), i_j_idx);
const auto col = x_indices.at(number<1>{});
if(col < num_splits)
{
const auto row = x_indices.at(number<0>{});
const auto col = x_indices.at(number<1>{});
if(col < num_splits)
{
const auto row = x_indices.at(number<0>{});
lse_acc_lds(row, col) =
ck_tile::exp(lse_accum(i_j_idx) - lse_logsum(i_idx));
}
});
lse_acc_lds(row, col) = ck_tile::type_convert<LSEDataType>(0.0f);
}
});
}
else
{
sweep_tile_span(spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
const auto x_indices = get_x_indices_from_distributed_indices(
lse_accum.get_tile_distribution(), i_j_idx);
const auto col = x_indices.at(number<1>{});
if(col < num_splits)
{
const auto row = x_indices.at(number<0>{});
lse_acc_lds(row, col) =
ck_tile::exp(lse_accum(i_j_idx) - lse_logsum(i_idx));
}
});
}
});
}
block_sync_lds();
if constexpr(kStoreLSE)
{
constexpr auto spans = decltype(lse_logsum)::get_distributed_spans();
sweep_tile_span(spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
if(lse_logsum(i_idx) == numeric<LSEDataType>::infinity())
{
lse_logsum(i_idx) = -numeric<LSEDataType>::infinity();
}
});
store_tile(lse_dram_window_tmp, tile_elementwise_in(lse_element_func, lse_logsum));
}
......@@ -261,7 +271,7 @@ struct BlockFmhaFwdSplitKVCombinePipeline
auto o_acc = make_static_distributed_tensor<OaccDataType>(o_acc_dist);
clear_tile(o_acc);
const index_t padded_max_seqlen_q = integer_divide_ceil(max_seqlen_q, kM0) * kM0;
const index_t padded_seqlen_q = integer_divide_ceil(seqlen_q, kM0) * kM0;
for(index_t i_split = 0; i_split < num_splits; ++i_split)
{
......@@ -282,7 +292,7 @@ struct BlockFmhaFwdSplitKVCombinePipeline
});
}
move_tile_window(o_acc_dram_window, {padded_max_seqlen_q, 0});
move_tile_window(o_acc_dram_window, {padded_seqlen_q, 0});
}
o_acc = tile_elementwise_in(o_acc_element_func, o_acc);
......@@ -297,7 +307,7 @@ struct BlockFmhaFwdSplitKVCombinePipeline
const OaccDramBlockWindow& o_acc_dram_block_window,
LSEDramBlockWindow& lse_dram_block_window,
index_t num_splits,
index_t max_seqlen_q,
index_t seqlen_q,
void* smem_ptr) const
{
return operator()(lse_acc_dram_block_window,
......@@ -306,7 +316,7 @@ struct BlockFmhaFwdSplitKVCombinePipeline
identity{},
identity{},
num_splits,
max_seqlen_q,
seqlen_q,
smem_ptr);
}
};
......
......@@ -21,14 +21,23 @@ struct BlockFmhaFwdSplitKVCombinePipelineDefaultPolicy
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentOacc()
{
using OaccDataType = remove_cvref_t<typename Problem::OaccDataType>;
return 16 / sizeof(OaccDataType);
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::kM0;
constexpr index_t kNPerBlock = Problem::kN1;
constexpr index_t M1 = kBlockSize / get_warp_size();
constexpr index_t M2 = min(kMPerBlock / M1, get_warp_size());
constexpr index_t N0 = get_warp_size() / M2;
constexpr index_t N1 = kNPerBlock / N0;
return min(N1, static_cast<index_t>(16 / sizeof(OaccDataType)));
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentO()
{
using ODataType = remove_cvref_t<typename Problem::ODataType>;
return 16 / sizeof(ODataType);
return GetAlignmentOacc<Problem>();
}
template <typename Problem>
......@@ -150,16 +159,14 @@ struct BlockFmhaFwdSplitKVCombinePipelineDefaultPolicy
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeOaccDramTileDistribution()
{
using OaccDataType = remove_cvref_t<typename Problem::OaccDataType>;
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::kM0;
constexpr index_t kNPerBlock = Problem::kN1;
constexpr index_t N1 = 16 / sizeof(OaccDataType);
constexpr index_t N0 = kNPerBlock / N1;
constexpr index_t M2 = get_warp_size() / N0;
constexpr index_t M1 = kBlockSize / get_warp_size();
constexpr index_t M2 = min(kMPerBlock / M1, get_warp_size());
constexpr index_t N0 = get_warp_size() / M2;
constexpr index_t N1 = kNPerBlock / N0;
constexpr index_t M0 = kMPerBlock / (M2 * M1);
return make_static_tile_distribution(
......
......@@ -64,8 +64,6 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
return kPadSeqLenK ? 1 : Policy::template GetAlignmentV<Problem>();
}();
static constexpr index_t kAlignmentO =
kPadHeadDimV ? 1 : Policy::template GetAlignmentO<Problem>();
static constexpr index_t kAlignmentBias =
kPadSeqLenK ? 1 : Policy::template GetAlignmentBias<Problem>();
......@@ -212,8 +210,8 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
const auto [seqlen_k_start, seqlen_k_end] = mask.GetTileRangeAlongX(
q_origin.at(number<0>{}), number<kM0>{}, number<kN0>{}, num_splits, i_split);
// check early exit if masked and no work to do.
if constexpr(FmhaMask::IsMasking || kHasUnevenSplits)
// check early exit if no work to do
if constexpr(FmhaMask::IsMasking || kPadSeqLenK || kHasUnevenSplits)
{
const index_t original_num_total_loop =
integer_divide_ceil(seqlen_k_end - seqlen_k_start, kN0);
......@@ -616,7 +614,8 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
sweep_tile_span(o_spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
const auto tmp = [&]() {
if constexpr(FmhaMask::IsMasking)
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS ||
FmhaMask::IsMasking)
{
return l[i_idx] == 0.f ? 0.f : 1 / l[i_idx];
}
......
......@@ -31,8 +31,14 @@ struct Layernorm2dFwd
static constexpr ck_tile::index_t kMPerBlock = Problem::BlockShape::kMPerBlock;
static constexpr ck_tile::index_t kNPerBlock = Problem::BlockShape::kNPerBlock;
static constexpr bool kPadM = Problem::kPadM;
static constexpr bool kPadN = Problem::kPadN;
static constexpr ck_tile::index_t kNThreadPerWarp = Problem::BlockShape::kNThreadPerWarp;
static constexpr ck_tile::index_t kNPerThread = Problem::BlockShape::kNPerThread;
static constexpr auto I0 = number<0>{};
static constexpr auto I1 = number<1>{};
struct Kargs
{
......@@ -96,19 +102,25 @@ struct Layernorm2dFwd
sequence<2>>{});
}
template <typename Dstr>
CK_TILE_DEVICE static constexpr auto GetNPerThread(Dstr)
CK_TILE_DEVICE static int GetWelfordMaxCount(int N)
{
constexpr auto nDstrSpan = Dstr::get_distributed_spans().template at<1>();
using Lengths = decltype(nDstrSpan.impl_);
constexpr ck_tile::index_t kNThreadPerBlock = kNPerBlock / kNPerThread;
ck_tile::index_t ret = 1;
int thread_id_n = get_thread_id() % kNThreadPerBlock;
int max_count =
__builtin_amdgcn_readfirstlane(N < kNPerBlock ? 0 : kNPerThread * (N / kNPerBlock));
int n_per_block_tail_loop =
__builtin_amdgcn_readfirstlane(N - max_count * kNThreadPerBlock);
ck_tile::static_for<0, Lengths::size(), 1>{}(
[&](auto idx) { ret *= Lengths::template at(idx); });
if(n_per_block_tail_loop > 0)
{
int thread_max_n = (thread_id_n + 1) * kNPerThread;
int delta = thread_max_n - n_per_block_tail_loop;
delta = clamp(thread_max_n - n_per_block_tail_loop, 0, kNPerThread);
max_count += kNPerThread - delta;
}
return ret;
return max_count;
}
template <typename DistributedTensor>
......@@ -129,42 +141,29 @@ struct Layernorm2dFwd
return out_dstr_tensor;
}
template <bool Cond = (kHasGamma && kHasBeta)>
CK_TILE_DEVICE std::enable_if_t<Cond> TwoPassLayernorm2dFwd(const XDataType* p_x,
const GammaDataType* p_gamma,
const BetaDataType* p_beta,
YDataType* p_y,
MeanDataType* p_mean,
InvStdDataType* p_invStd,
const ComputeDataType epsilon,
ck_tile::index_t M,
ck_tile::index_t N) const
template <typename XBlockWindow,
typename GammaBlockWindow,
typename BetaBlockWindow,
typename YBlockWindow,
typename MeanBlockWindow,
typename InvStdBlockWindow,
bool Cond = (kHasGamma && kHasBeta)>
CK_TILE_DEVICE std::enable_if_t<Cond>
TwoPassLayernorm2dFwd(XBlockWindow& x_block_window,
GammaBlockWindow& gamma_block_window,
BetaBlockWindow& beta_block_window,
YBlockWindow& y_block_window,
MeanBlockWindow& mean_block_window,
InvStdBlockWindow& inv_std_block_window,
ComputeDataType epsilon,
ck_tile::index_t N) const
{
constexpr auto I0 = number<0>{};
constexpr auto I1 = number<1>{};
const auto x_m_n = make_naive_tensor_view<address_space_enum::global>(
p_x, make_tuple(M, N), make_tuple(N, 1), number<32>{}, number<1>{});
const auto gamma_n = make_naive_tensor_view<address_space_enum::global>(
p_gamma, make_tuple(N), make_tuple(1), number<32>{}, number<1>{});
// TODO - Optimize tail loop to reduce move_tile_window()
index_t num_n_tile_iteration =
__builtin_amdgcn_readfirstlane(integer_divide_ceil(N, kNPerBlock));
const auto beta_n = make_naive_tensor_view<address_space_enum::global>(
p_beta, make_tuple(N), make_tuple(1), number<32>{}, number<1>{});
const auto iM = get_block_id() * kMPerBlock;
constexpr auto xDstr = MakeXBlockTileDistribution();
auto x_block_window = make_tile_window(
x_m_n, make_tuple(number<kMPerBlock>{}, number<kNPerBlock>{}), {iM, 0}, xDstr);
index_t num_n_tile_iteration = __builtin_amdgcn_readfirstlane(N / kNPerBlock);
// TODO: padding - handle max_count if N % kNPerBlock != 0
constexpr auto NPerThread = GetNPerThread(xDstr);
ThreadWelford<ComputeDataType, XDataType> thread_welford{
type_convert<int>(NPerThread * N / kNPerBlock)};
int welford_max_count = GetWelfordMaxCount(N);
ThreadWelford<ComputeDataType, XDataType> thread_welford{welford_max_count};
using XTensorType = decltype(load_tile(x_block_window));
auto mean_compute_block_tensor =
......@@ -190,44 +189,14 @@ struct Layernorm2dFwd
auto inv_std_compute_block_tensor = InvSqrt(var_compute_block_tensor, epsilon);
if constexpr(kSaveMean)
{
const auto mean_m = make_naive_tensor_view_packed<address_space_enum::global>(
p_mean, make_tuple(M), number<32>{});
auto mean_block_window =
make_tile_window(mean_m, make_tuple(number<kMPerBlock>{}), {iM});
store_tile(mean_block_window, cast_tile<MeanDataType>(mean_compute_block_tensor));
}
if constexpr(kSaveInvStd)
{
const auto inv_std_m = make_naive_tensor_view_packed<address_space_enum::global>(
p_invStd, make_tuple(M), number<32>{});
auto inv_std_block_window =
make_tile_window(inv_std_m, make_tuple(number<kMPerBlock>{}), {iM});
store_tile(inv_std_block_window, cast_tile<MeanDataType>(inv_std_compute_block_tensor));
}
// TODO: Extract normalize pipeline
const auto y_m_n = make_naive_tensor_view<address_space_enum::global>(
p_y, make_tuple(M, N), make_tuple(N, 1), number<32>{}, number<1>{});
auto y_block_window = make_tile_window(
y_m_n, make_tuple(number<kMPerBlock>{}, number<kNPerBlock>{}), {iM, 0});
constexpr auto gammaDstr = MakeGammaBetaBlockTileDistribution();
constexpr auto betaDstr = gammaDstr;
auto gamma_block_window =
make_tile_window(gamma_n, make_tuple(number<kNPerBlock>{}), {0}, gammaDstr);
auto beta_block_window = make_tile_window(
beta_n, make_tuple(number<kMPerBlock>{}, number<kNPerBlock>{}), {0}, betaDstr);
store_tile(inv_std_block_window,
cast_tile<InvStdDataType>(inv_std_compute_block_tensor));
// reverse read x to reuse cache
ck_tile::index_t stride_to_right_most_window = N - kNPerBlock;
ck_tile::index_t stride_to_right_most_window =
N % kNPerBlock == 0 ? N - kNPerBlock : N - N % kNPerBlock;
move_tile_window(x_block_window, {0, -kNPerBlock});
move_tile_window(gamma_block_window, {stride_to_right_most_window});
......@@ -274,17 +243,209 @@ struct Layernorm2dFwd
}
}
template <typename XBlockWindow,
typename GammaBlockWindow,
typename BetaBlockWindow,
typename YBlockWindow,
typename MeanBlockWindow,
typename InvStdBlockWindow,
bool Cond = (kHasGamma && kHasBeta)>
CK_TILE_DEVICE std::enable_if_t<Cond>
OnePassLayernorm2dFwd(XBlockWindow& x_block_window,
GammaBlockWindow& gamma_block_window,
BetaBlockWindow& beta_block_window,
YBlockWindow& y_block_window,
MeanBlockWindow& mean_block_window,
InvStdBlockWindow& inv_std_block_window,
ComputeDataType epsilon,
ck_tile::index_t N) const
{
int welford_max_count = GetWelfordMaxCount(N);
ThreadWelford<ComputeDataType, XDataType> thread_welford{welford_max_count};
using XTensorType = decltype(load_tile(x_block_window));
auto mean_compute_block_tensor =
thread_welford.template MakeInitialMeanVarDistributedTensor<XTensorType>();
auto var_compute_block_tensor =
thread_welford.template MakeInitialMeanVarDistributedTensor<XTensorType>();
clear_tile(mean_compute_block_tensor);
clear_tile(var_compute_block_tensor);
const auto x_block_tensor = load_tile(x_block_window);
thread_welford(x_block_tensor, mean_compute_block_tensor, var_compute_block_tensor);
// TODO: support cross warp Welford
WarpMergeWelford<ComputeDataType, true>{}(
mean_compute_block_tensor, var_compute_block_tensor, thread_welford.cur_count_);
auto inv_std_compute_block_tensor = InvSqrt(var_compute_block_tensor, epsilon);
if constexpr(kSaveMean)
store_tile(mean_block_window, cast_tile<MeanDataType>(mean_compute_block_tensor));
if constexpr(kSaveInvStd)
store_tile(inv_std_block_window,
cast_tile<InvStdDataType>(inv_std_compute_block_tensor));
// normalize
const auto gamma_block_tensor = load_tile(gamma_block_window);
const auto beta_block_tensor = load_tile(beta_block_window);
constexpr auto x_spans = decltype(x_block_tensor)::get_distributed_spans();
auto y_block_tensor =
make_static_distributed_tensor<YDataType>(x_block_tensor.get_tile_distribution());
sweep_tile_span(x_spans[I1], [&](auto idx1) {
constexpr auto j_idx = make_tuple(idx1);
const auto gamma = type_convert<ComputeDataType>(gamma_block_tensor[j_idx]);
const auto beta = type_convert<ComputeDataType>(beta_block_tensor[j_idx]);
sweep_tile_span(x_spans[I0], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
constexpr auto i_j_idx = make_tuple(idx0, idx1);
const auto mean = mean_compute_block_tensor[i_idx];
const auto inv_std = inv_std_compute_block_tensor[i_idx];
const auto x = type_convert<ComputeDataType>(x_block_tensor[i_j_idx]);
auto y = (x - mean) * inv_std * gamma + beta;
y_block_tensor(i_j_idx) = type_convert<YDataType>(y);
});
});
store_tile(y_block_window, y_block_tensor);
}
CK_TILE_DEVICE void operator()(Kargs kargs) const
{
TwoPassLayernorm2dFwd(static_cast<const XDataType*>(kargs.p_x),
static_cast<const GammaDataType*>(kargs.p_gamma),
static_cast<const BetaDataType*>(kargs.p_beta),
static_cast<YDataType*>(kargs.p_y),
static_cast<MeanDataType*>(kargs.p_mean),
static_cast<InvStdDataType*>(kargs.p_invStd),
static_cast<const ComputeDataType>(kargs.epsilon),
kargs.M,
kargs.N);
const auto x_m_n = [&]() {
const auto x_dram_naive = make_naive_tensor_view<address_space_enum::global>(
static_cast<const XDataType*>(kargs.p_x),
make_tuple(kargs.M, kargs.N),
make_tuple(kargs.N, 1),
number<kNPerThread>{},
number<1>{});
return pad_tensor_view(x_dram_naive,
make_tuple(number<kMPerBlock>{}, number<kNPerBlock>{}),
sequence<kPadM, kPadN>{});
}();
const auto gamma_n = [&]() {
const auto gamma_dram_naive = make_naive_tensor_view<address_space_enum::global>(
static_cast<const GammaDataType*>(kargs.p_gamma),
make_tuple(kargs.N),
make_tuple(1),
number<kNPerThread>{},
number<1>{});
return pad_tensor_view(
gamma_dram_naive, make_tuple(number<kNPerBlock>{}), sequence<kPadN>{});
}();
const auto beta_n = [&]() {
const auto gamma_dram_naive = make_naive_tensor_view<address_space_enum::global>(
static_cast<const BetaDataType*>(kargs.p_beta),
make_tuple(kargs.N),
make_tuple(1),
number<kNPerThread>{},
number<1>{});
return pad_tensor_view(
gamma_dram_naive, make_tuple(number<kNPerBlock>{}), sequence<kPadN>{});
}();
const auto iM = get_block_id() * kMPerBlock;
constexpr auto xDstr = MakeXBlockTileDistribution();
auto x_block_window = make_tile_window(
x_m_n, make_tuple(number<kMPerBlock>{}, number<kNPerBlock>{}), {iM, 0}, xDstr);
const auto y_m_n = [&]() {
const auto y_dram_naive = make_naive_tensor_view<address_space_enum::global>(
static_cast<YDataType*>(kargs.p_y),
make_tuple(kargs.M, kargs.N),
make_tuple(kargs.N, 1),
number<kNPerThread>{},
number<1>{});
return pad_tensor_view(y_dram_naive,
make_tuple(number<kMPerBlock>{}, number<kNPerBlock>{}),
sequence<kPadM, kPadN>{});
}();
auto y_block_window = make_tile_window(
y_m_n, make_tuple(number<kMPerBlock>{}, number<kNPerBlock>{}), {iM, 0});
constexpr auto gammaDstr = MakeGammaBetaBlockTileDistribution();
constexpr auto betaDstr = gammaDstr;
auto gamma_block_window =
make_tile_window(gamma_n, make_tuple(number<kNPerBlock>{}), {0}, gammaDstr);
auto beta_block_window = make_tile_window(
beta_n, make_tuple(number<kMPerBlock>{}, number<kNPerBlock>{}), {0}, betaDstr);
auto mean_block_window = [&]() {
if constexpr(kSaveMean)
{
const auto mean_m = [&]() {
const auto mean_dram_naive =
make_naive_tensor_view_packed<address_space_enum::global>(
static_cast<MeanDataType*>(kargs.p_mean),
make_tuple(kargs.M),
number<1>{});
return pad_tensor_view(
mean_dram_naive, make_tuple(number<kMPerBlock>{}), sequence<kPadM>{});
}();
return make_tile_window(mean_m, make_tuple(number<kMPerBlock>{}), {iM});
}
else
return make_null_tile_window(make_tuple(number<kMPerBlock>{}));
}();
auto inv_std_block_window = [&]() {
if constexpr(kSaveInvStd)
{
const auto inv_std_m = [&]() {
const auto inv_std_dram_naive =
make_naive_tensor_view_packed<address_space_enum::global>(
static_cast<InvStdDataType*>(kargs.p_invStd),
make_tuple(kargs.M),
number<1>{});
return pad_tensor_view(
inv_std_dram_naive, make_tuple(number<kMPerBlock>{}), sequence<kPadM>{});
}();
return make_tile_window(inv_std_m, make_tuple(number<kMPerBlock>{}), {iM});
}
else
return make_null_tile_window(make_tuple(number<kMPerBlock>{}));
}();
if(kargs.N <= kNPerBlock)
OnePassLayernorm2dFwd(x_block_window,
gamma_block_window,
beta_block_window,
y_block_window,
mean_block_window,
inv_std_block_window,
static_cast<const ComputeDataType>(kargs.epsilon),
kargs.N);
else
TwoPassLayernorm2dFwd(x_block_window,
gamma_block_window,
beta_block_window,
y_block_window,
mean_block_window,
inv_std_block_window,
static_cast<const ComputeDataType>(kargs.epsilon),
kargs.N);
}
};
......
......@@ -14,17 +14,21 @@ template <typename XDataType_,
typename YDataType_,
typename MeanDataType_,
typename InvStdDataType_,
typename BlockShape_>
typename BlockShape_,
bool kPadM_,
bool kPadN_>
struct BlockLayernorm2dFwdProblem
{
using XDataType = remove_cvref_t<XDataType_>;
using GammaDataType = remove_cvref_t<GammaDataType_>;
using BetaDataType = remove_cvref_t<BetaDataType_>;
using ComputeDataType = remove_cvref_t<ComputeDataType_>;
using YDataType = remove_cvref_t<YDataType_>;
using MeanDataType = remove_cvref_t<MeanDataType_>;
using InvStdDataType = remove_cvref_t<InvStdDataType_>;
using BlockShape = remove_cvref_t<BlockShape_>;
using XDataType = remove_cvref_t<XDataType_>;
using GammaDataType = remove_cvref_t<GammaDataType_>;
using BetaDataType = remove_cvref_t<BetaDataType_>;
using ComputeDataType = remove_cvref_t<ComputeDataType_>;
using YDataType = remove_cvref_t<YDataType_>;
using MeanDataType = remove_cvref_t<MeanDataType_>;
using InvStdDataType = remove_cvref_t<InvStdDataType_>;
using BlockShape = remove_cvref_t<BlockShape_>;
static constexpr bool kPadM = kPadM_;
static constexpr bool kPadN = kPadN_;
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace ck {
template <typename ALayout,
typename BLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
typename ComputeTypeA,
typename ComputeTypeB>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
naive_gemm_kernel(const ADataType* __restrict__ p_a_grid,
const BDataType* __restrict__ p_b_grid,
CDataType* __restrict__ p_c_grid,
index_t m,
index_t n,
index_t k,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation c_element_op)
{
using RowMajor = ck::tensor_layout::gemm::RowMajor;
const int row_idx = blockIdx.x * blockDim.x + threadIdx.x;
const int col_idx = blockIdx.y * blockDim.y + threadIdx.y;
if(row_idx < m && col_idx < n)
{
AccDataType v_acc = static_cast<AccDataType>(0.0);
ComputeTypeA v_a = static_cast<ComputeTypeA>(0.0);
ComputeTypeB v_b = static_cast<ComputeTypeB>(0.0);
CDataType v_c = static_cast<CDataType>(0.0);
for(int k_idx = 0; k_idx < k; ++k_idx)
{
// check input matrices layout
int element_idx_a = 0;
int element_idx_b = 0;
if constexpr(std::is_same_v<ALayout, RowMajor>)
{
element_idx_a = row_idx * k + k_idx;
}
else
{
element_idx_a = row_idx + m * k_idx;
}
if constexpr(std::is_same_v<BLayout, RowMajor>)
{
element_idx_b = k_idx * n + col_idx;
}
else
{
element_idx_b = k_idx + k * col_idx;
}
// apply a_element_op
a_element_op(v_a, p_a_grid[element_idx_a]);
// apply b_element_op
b_element_op(v_b, p_b_grid[element_idx_b]);
// multiply and accumulate
v_acc += static_cast<AccDataType>(v_a) * static_cast<AccDataType>(v_b);
}
// apply c_element_op
c_element_op(v_c, v_acc);
// check output matrix layout
int element_idx_c = 0;
if constexpr(std::is_same_v<CLayout, RowMajor>)
{
element_idx_c = row_idx * n + col_idx;
}
else
{
element_idx_c = row_idx + m * col_idx;
}
// prepare output
p_c_grid[element_idx_c] = v_c;
}
}
} // namespace ck
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ALayout,
typename BLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename ComputeTypeA = CDataType,
typename ComputeTypeB = ComputeTypeA>
struct ReferenceGemm : public device::BaseOperator
{
// Argument
struct Argument : public device::BaseArgument
{
Argument(const void* p_a_grid,
const void* p_b_grid,
void* p_c_grid,
index_t m,
index_t n,
index_t k,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
: p_a_grid_{static_cast<const ADataType*>(p_a_grid)},
p_b_grid_{static_cast<const BDataType*>(p_b_grid)},
p_c_grid_{static_cast<CDataType*>(p_c_grid)},
m_{m},
n_{n},
k_{k},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
c_element_op_{c_element_op}
{
}
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
index_t m_;
index_t n_;
index_t k_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_;
};
// Invoker
struct Invoker : public device::BaseInvoker
{
using Argument = ReferenceGemm::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
int block_size = 16;
dim3 block_dim(block_size, block_size, 1);
dim3 grid_dim(
(arg.m_ + block_size - 1) / block_size, (arg.n_ + block_size - 1) / block_size, 1);
auto launch_kernel = [&]() {
const auto kernel = naive_gemm_kernel<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AccDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
ComputeTypeA,
ComputeTypeB>;
return launch_and_time_kernel(stream_config,
kernel,
grid_dim,
block_dim,
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.m_,
arg.n_,
arg.k_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_);
};
return launch_kernel();
}
float Run(const device::BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
bool IsSupportedArgument(const device::BaseArgument*) override { return true; }
static auto MakeArgument(const void* p_a_grid,
const void* p_b_grid,
void* p_c_grid,
index_t m,
index_t n,
index_t k,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
return Argument{
p_a_grid, p_b_grid, p_c_grid, m, n, k, a_element_op, b_element_op, c_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "Device Reference Gemm"
<< std::endl;
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -37,11 +37,7 @@ function(add_instance_library INSTANCE_NAME)
endforeach()
endif()
if(INSTANCES_ONLY)
set(INST_TARGETS ${DEFAULT_GPU_TARGETS})
else()
set(INST_TARGETS ${GPU_TARGETS})
endif()
set(INST_TARGETS ${SUPPORTED_GPU_TARGETS})
# Do not build DL instances if DL_KERNELS macro is not set
foreach(source IN LISTS ARGN)
......@@ -64,9 +60,9 @@ function(add_instance_library INSTANCE_NAME)
list(REMOVE_ITEM ARGN "${source}")
endif()
endforeach()
# Do not build mha instances if gfx94 targets are not on the target list
# Do not build mha instances if gfx94 or gfx90a targets are not on the target list
foreach(source IN LISTS ARGN)
if(NOT INST_TARGETS MATCHES "gfx94" AND source MATCHES "mha")
if(NOT INST_TARGETS MATCHES "gfx94" AND NOT INST_TARGETS MATCHES "gfx90a" AND source MATCHES "mha")
message("removing mha instance ${source} ")
list(REMOVE_ITEM ARGN "${source}")
endif()
......@@ -75,17 +71,13 @@ function(add_instance_library INSTANCE_NAME)
if(ARGN)
set(INST_OBJ)
foreach(source IN LISTS ARGN)
if(INSTANCES_ONLY)
set(INST_TARGETS ${DEFAULT_GPU_TARGETS})
else()
set(INST_TARGETS ${GPU_TARGETS})
endif()
set(INST_TARGETS ${SUPPORTED_GPU_TARGETS})
if(source MATCHES "_xdl")
list(REMOVE_ITEM INST_TARGETS gfx900 gfx906 gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201)
elseif(ARGN MATCHES "_wmma")
list(REMOVE_ITEM INST_TARGETS gfx900 gfx906 gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030)
elseif(ARGN MATCHES "mha")
list(REMOVE_ITEM INST_TARGETS gfx900 gfx906 gfx908 gfx90a gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201)
list(REMOVE_ITEM INST_TARGETS gfx900 gfx906 gfx908 gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201)
endif()
set(offload_targets)
foreach(target IN LISTS INST_TARGETS)
......@@ -191,12 +183,7 @@ FOREACH(subdir_path ${dir_list})
set(add_inst 1)
endif()
if(INSTANCES_ONLY)
set(INST_TARGETS ${DEFAULT_GPU_TARGETS})
else()
set(INST_TARGETS ${GPU_TARGETS})
endif()
set(INST_TARGETS ${SUPPORTED_GPU_TARGETS})
if(("${cmake_instance}" MATCHES "quantization") AND (DEFINED DTYPES) AND (NOT DTYPES MATCHES "int8"))
message("quantization instances will not be built!")
......@@ -320,8 +307,7 @@ if(CK_DEVICE_CONV_INSTANCES)
endif()
if(CK_DEVICE_MHA_INSTANCES)
set(gpu_list ${INST_TARGETS})
list(FILTER gpu_list INCLUDE REGEX "^gfx94")
if(gpu_list)
if(gpu_list MATCHES "gfx94" OR gpu_list MATCHES "gfx90a")
add_library(device_mha_operations STATIC ${CK_DEVICE_MHA_INSTANCES})
add_library(composablekernels::device_mha_operations ALIAS device_mha_operations)
target_compile_features(device_mha_operations PUBLIC)
......
......@@ -24,7 +24,7 @@ set(PROFILER_SOURCES
profile_permute_scale.cpp
)
if(GPU_TARGETS MATCHES "gfx9")
if(SUPPORTED_GPU_TARGETS MATCHES "gfx9")
if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_contraction_bilinear.cpp)
list(APPEND PROFILER_SOURCES profile_contraction_scale.cpp)
......@@ -49,7 +49,7 @@ if(GPU_TARGETS MATCHES "gfx9")
list(APPEND PROFILER_SOURCES profile_grouped_gemm_multiply_tile_loop.cpp)
endif()
list(APPEND PROFILER_SOURCES profile_gemm_multiply_add.cpp)
if(GPU_TARGETS MATCHES "gfx94")
if(SUPPORTED_GPU_TARGETS MATCHES "gfx94")
list(APPEND PROFILER_SOURCES profile_gemm_multiply_multiply.cpp)
list(APPEND PROFILER_SOURCES profile_gemm_ab_scale.cpp)
endif()
......@@ -69,7 +69,7 @@ if(GPU_TARGETS MATCHES "gfx9")
endif()
if(GPU_TARGETS MATCHES "gfx11" OR GPU_TARGETS MATCHES "gfx12" OR GPU_TARGETS MATCHES "gfx9")
if(SUPPORTED_GPU_TARGETS MATCHES "gfx11" OR SUPPORTED_GPU_TARGETS MATCHES "gfx12" OR SUPPORTED_GPU_TARGETS MATCHES "gfx9")
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND PROFILER_SOURCES profile_gemm_bilinear.cpp)
endif()
......@@ -111,7 +111,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_column_to_image_inst
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_transpose_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_permute_scale_instance)
if(GPU_TARGETS MATCHES "gfx9")
if(SUPPORTED_GPU_TARGETS MATCHES "gfx9")
if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_scale_instance)
......@@ -135,7 +135,7 @@ if(GPU_TARGETS MATCHES "gfx9")
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_multiply_add_instance)
if(GPU_TARGETS MATCHES "gfx94")
if(SUPPORTED_GPU_TARGETS MATCHES "gfx94")
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_multiply_multiply_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_ab_scale_instance)
endif()
......@@ -159,7 +159,7 @@ if(GPU_TARGETS MATCHES "gfx9")
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_fwd_convinvscale_instance)
endif()
if(GPU_TARGETS MATCHES "gfx9" OR GPU_TARGETS MATCHES "gfx11" OR GPU_TARGETS MATCHES "gfx12")
if(SUPPORTED_GPU_TARGETS MATCHES "gfx9" OR SUPPORTED_GPU_TARGETS MATCHES "gfx11" OR SUPPORTED_GPU_TARGETS MATCHES "gfx12")
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bilinear_instance)
endif()
......
......@@ -7,8 +7,11 @@ MY_PROJECT_SOURCE=$1
if [ $# -ge 2 ] ; then
GPU_TARGETS=$2
shift 2
REST_ARGS=$@
else
GPU_TARGETS="gfx908;gfx90a;gfx940"
REST_ARGS=
fi
cmake \
......@@ -20,4 +23,5 @@ cmake
-D GPU_TARGETS=$GPU_TARGETS \
-D CMAKE_VERBOSE_MAKEFILE:BOOL=ON \
-D USE_BITINT_EXTENSION_INT4=OFF \
$REST_ARGS \
${MY_PROJECT_SOURCE}
......@@ -7,8 +7,11 @@ MY_PROJECT_SOURCE=$1
if [ $# -ge 2 ] ; then
GPU_TARGETS=$2
shift 2
REST_ARGS=$@
else
GPU_TARGETS="gfx908;gfx90a;gfx940"
REST_ARGS=
fi
cmake \
......@@ -20,5 +23,6 @@ cmake
-D GPU_TARGETS=$GPU_TARGETS \
-D CMAKE_VERBOSE_MAKEFILE:BOOL=ON \
-D USE_BITINT_EXTENSION_INT4=OFF \
$REST_ARGS \
${MY_PROJECT_SOURCE}
......@@ -41,11 +41,7 @@ function(add_test_executable TEST_NAME)
endforeach()
endif()
if(INSTANCES_ONLY)
set(TEST_TARGETS ${DEFAULT_GPU_TARGETS})
else()
set(TEST_TARGETS ${GPU_TARGETS})
endif()
set(TEST_TARGETS ${SUPPORTED_GPU_TARGETS})
foreach(source IN LISTS ARGN)
if(NOT DEFINED DL_KERNELS AND source MATCHES "_dl")
......@@ -122,11 +118,7 @@ function(add_gtest_executable TEST_NAME)
endforeach()
endif()
if(INSTANCES_ONLY)
set(TEST_TARGETS ${DEFAULT_GPU_TARGETS})
else()
set(TEST_TARGETS ${GPU_TARGETS})
endif()
set(TEST_TARGETS ${SUPPORTED_GPU_TARGETS})
foreach(source IN LISTS ARGN)
if(NOT DEFINED DL_KERNELS AND source MATCHES "_dl")
......@@ -211,10 +203,10 @@ add_subdirectory(conv_tensor_rearrange)
add_subdirectory(transpose)
add_subdirectory(permute_scale)
add_subdirectory(wrapper)
if(GPU_TARGETS MATCHES "gfx11")
if(SUPPORTED_GPU_TARGETS MATCHES "gfx11")
add_subdirectory(wmma_op)
endif()
if(GPU_TARGETS MATCHES "gfx942" AND CK_HIP_VERSION_MAJOR GREATER_EQUAL 6 AND CK_HIP_VERSION_MINOR GREATER_EQUAL 2) # smfmac needs ROCm6.2
if(SUPPORTED_GPU_TARGETS MATCHES "gfx942" AND CK_HIP_VERSION_MAJOR GREATER_EQUAL 6 AND CK_HIP_VERSION_MINOR GREATER_EQUAL 2) # smfmac needs ROCm6.2
add_subdirectory(smfmac_op)
endif()
add_subdirectory(position_embedding)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment