Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
6a25d081
Commit
6a25d081
authored
Oct 09, 2024
by
carlushuang
Browse files
Merge remote-tracking branch 'origin/develop' into ck_tile/fav2_fwd_sept
parents
02f8c487
ceaed8e0
Changes
73
Hide whitespace changes
Inline
Side-by-side
Showing
13 changed files
with
627 additions
and
217 deletions
+627
-217
include/ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_kernel.hpp
include/ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_kernel.hpp
+21
-23
include/ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_tile_partitioner.hpp
...ile/ops/fmha/kernel/fmha_fwd_splitkv_tile_partitioner.hpp
+2
-2
include/ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_combine_pipeline.hpp
...fmha/pipeline/block_fmha_fwd_splitkv_combine_pipeline.hpp
+55
-45
include/ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_combine_pipeline_default_policy.hpp
...lock_fmha_fwd_splitkv_combine_pipeline_default_policy.hpp
+15
-8
include/ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs.hpp
...mha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs.hpp
+4
-5
include/ck_tile/ops/layernorm2d/kernel/layernorm2d_fwd_kernel.hpp
...ck_tile/ops/layernorm2d/kernel/layernorm2d_fwd_kernel.hpp
+247
-86
include/ck_tile/ops/layernorm2d/pipeline/block_layernorm2d_fwd_problem.hpp
...ps/layernorm2d/pipeline/block_layernorm2d_fwd_problem.hpp
+13
-9
library/include/ck/library/reference_tensor_operation/gpu/reference_gemm.hpp
...library/reference_tensor_operation/gpu/reference_gemm.hpp
+245
-0
library/src/tensor_operation_instance/gpu/CMakeLists.txt
library/src/tensor_operation_instance/gpu/CMakeLists.txt
+7
-21
profiler/src/CMakeLists.txt
profiler/src/CMakeLists.txt
+6
-6
script/cmake-ck-dev.sh
script/cmake-ck-dev.sh
+4
-0
script/cmake-ck-release.sh
script/cmake-ck-release.sh
+4
-0
test/CMakeLists.txt
test/CMakeLists.txt
+4
-12
No files found.
include/ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_kernel.hpp
View file @
6a25d081
...
...
@@ -135,9 +135,6 @@ struct FmhaFwdSplitKVKernel
ck_tile
::
index_t
nhead_stride_lse_acc
;
ck_tile
::
index_t
nhead_stride_o_acc
;
ck_tile
::
index_t
batch_stride_lse_acc
;
ck_tile
::
index_t
batch_stride_o_acc
;
ck_tile
::
index_t
split_stride_lse_acc
;
ck_tile
::
index_t
split_stride_o_acc
;
};
...
...
@@ -201,6 +198,8 @@ struct FmhaFwdSplitKVKernel
ck_tile
::
index_t
batch_stride_q
;
ck_tile
::
index_t
batch_stride_k
;
ck_tile
::
index_t
batch_stride_v
;
ck_tile
::
index_t
batch_stride_lse_acc
;
ck_tile
::
index_t
batch_stride_o_acc
;
};
struct
GroupModeKargs
...
...
@@ -217,8 +216,8 @@ struct FmhaFwdSplitKVKernel
const
int32_t
*
seqstart_k_ptr
;
const
int32_t
*
seqlen_k_ptr
;
ck_tile
::
index_t
batch_stride_k
;
ck_tile
::
index_t
batch_stride_v
;
ck_tile
::
index_t
batch_stride_k
;
// only used for paged-kvcache
ck_tile
::
index_t
batch_stride_v
;
// only used for paged-kvcache
};
using
Kargs
=
std
::
conditional_t
<
kIsGroupMode
,
GroupModeKargs
,
BatchModeKargs
>
;
...
...
@@ -296,8 +295,6 @@ struct FmhaFwdSplitKVKernel
nhead_stride_v
,
nhead_stride_lse_acc
,
nhead_stride_o_acc
,
batch_stride_lse_acc
,
batch_stride_o_acc
,
split_stride_lse_acc
,
split_stride_o_acc
},
// args for common karg
{},
// placeholder for bias
...
...
@@ -307,7 +304,9 @@ struct FmhaFwdSplitKVKernel
reinterpret_cast
<
const
int32_t
*>
(
seqlen_k_ptr
),
batch_stride_q
,
batch_stride_k
,
batch_stride_v
};
batch_stride_v
,
batch_stride_lse_acc
,
batch_stride_o_acc
};
if
constexpr
(
BiasEnum
==
BlockAttentionBiasEnum
::
ELEMENTWISE_BIAS
)
{
...
...
@@ -375,10 +374,8 @@ struct FmhaFwdSplitKVKernel
ck_tile
::
index_t
nhead_stride_bias
,
ck_tile
::
index_t
nhead_stride_lse_acc
,
ck_tile
::
index_t
nhead_stride_o_acc
,
ck_tile
::
index_t
batch_stride_k
,
ck_tile
::
index_t
batch_stride_v
,
ck_tile
::
index_t
batch_stride_lse_acc
,
ck_tile
::
index_t
batch_stride_o_acc
,
ck_tile
::
index_t
batch_stride_k
,
// only used for paged-kvcache
ck_tile
::
index_t
batch_stride_v
,
// only used for paged-kvcache
ck_tile
::
index_t
split_stride_lse_acc
,
ck_tile
::
index_t
split_stride_o_acc
,
ck_tile
::
index_t
window_size_left
,
...
...
@@ -412,8 +409,6 @@ struct FmhaFwdSplitKVKernel
nhead_stride_v
,
nhead_stride_lse_acc
,
nhead_stride_o_acc
,
batch_stride_lse_acc
,
batch_stride_o_acc
,
split_stride_lse_acc
,
split_stride_o_acc
},
// args for common karg
{},
// placeholder for bias
...
...
@@ -452,11 +447,11 @@ struct FmhaFwdSplitKVKernel
__host__
static
constexpr
auto
GridSize
(
ck_tile
::
index_t
batch_size
,
ck_tile
::
index_t
nhead
,
ck_tile
::
index_t
seqlen_q
,
ck_tile
::
index_t
max_
seqlen_q
,
ck_tile
::
index_t
hdim_v
,
ck_tile
::
index_t
num_splits
)
{
return
TilePartitioner
::
GridSize
(
batch_size
,
nhead
,
seqlen_q
,
hdim_v
,
num_splits
);
return
TilePartitioner
::
GridSize
(
batch_size
,
nhead
,
max_
seqlen_q
,
hdim_v
,
num_splits
);
}
__host__
static
constexpr
auto
BlockSize
()
{
return
dim3
(
kBlockSize
);
}
...
...
@@ -483,8 +478,7 @@ struct FmhaFwdSplitKVKernel
long_index_t
batch_offset_v
=
0
;
long_index_t
batch_offset_bias
=
0
;
long_index_t
batch_offset_lse_acc
=
0
;
const
long_index_t
batch_offset_o_acc
=
static_cast
<
long_index_t
>
(
i_batch
)
*
kargs
.
batch_stride_o_acc
;
long_index_t
batch_offset_o_acc
=
0
;
if
constexpr
(
kIsGroupMode
)
{
...
...
@@ -492,9 +486,9 @@ struct FmhaFwdSplitKVKernel
const
long_index_t
query_start
=
kargs
.
seqstart_q_ptr
[
i_batch
];
const
long_index_t
key_start
=
kargs
.
seqstart_k_ptr
[
i_batch
];
batch_offset_q
=
query_start
*
kargs
.
stride_q
;
batch_offset_k
=
key_start
*
kargs
.
stride_k
;
batch_offset_lse_acc
=
query_start
;
batch_offset_q
=
query_start
*
kargs
.
stride_q
;
batch_offset_k
=
key_start
*
kargs
.
stride_k
;
if
constexpr
(
std
::
is_same_v
<
VLayout
,
ck_tile
::
tensor_layout
::
gemm
::
RowMajor
>
)
{
batch_offset_v
=
key_start
*
kargs
.
stride_v
;
...
...
@@ -508,6 +502,9 @@ struct FmhaFwdSplitKVKernel
batch_offset_bias
=
query_start
*
kargs
.
stride_bias
+
key_start
;
}
batch_offset_lse_acc
=
query_start
;
batch_offset_o_acc
=
query_start
*
kargs
.
stride_o_acc
;
// get real # queries & # keys under group mode
kargs
.
seqlen_q
=
kargs
.
seqstart_q_ptr
[
i_batch
+
1
]
-
kargs
.
seqstart_q_ptr
[
i_batch
];
...
...
@@ -545,6 +542,7 @@ struct FmhaFwdSplitKVKernel
batch_offset_k
=
static_cast
<
long_index_t
>
(
i_cache_batch
)
*
kargs
.
batch_stride_k
;
batch_offset_v
=
static_cast
<
long_index_t
>
(
i_cache_batch
)
*
kargs
.
batch_stride_v
;
batch_offset_lse_acc
=
static_cast
<
long_index_t
>
(
i_batch
)
*
kargs
.
batch_stride_lse_acc
;
batch_offset_o_acc
=
static_cast
<
long_index_t
>
(
i_batch
)
*
kargs
.
batch_stride_o_acc
;
if
constexpr
(
BiasEnum
==
BlockAttentionBiasEnum
::
ELEMENTWISE_BIAS
)
{
...
...
@@ -895,8 +893,8 @@ struct FmhaFwdSplitKVKernel
const
auto
o_acc_dram_naive
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
o_acc_ptr
,
make_tuple
(
kargs
.
seqlen_q
,
kargs
.
hdim_v
),
make_tuple
(
kargs
.
hdim_v
,
1
),
number
<
FmhaPipeline
::
kAlignmentO
>
{},
make_tuple
(
kargs
.
stride_o_acc
,
1
),
number
<
1
>
{},
number
<
1
>
{});
return
pad_tensor_view
(
...
...
include/ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_tile_partitioner.hpp
View file @
6a25d081
...
...
@@ -20,12 +20,12 @@ struct FmhaFwdSplitKVTilePartitioner
__host__
static
constexpr
auto
GridSize
(
ck_tile
::
index_t
batch_size
,
ck_tile
::
index_t
nhead
,
ck_tile
::
index_t
seqlen_q
,
ck_tile
::
index_t
max_
seqlen_q
,
ck_tile
::
index_t
hdim_v
,
ck_tile
::
index_t
num_splits
)
{
// TODO: this may need tuning
return
dim3
(
ck_tile
::
integer_divide_ceil
(
seqlen_q
,
kM0
)
*
return
dim3
(
ck_tile
::
integer_divide_ceil
(
max_
seqlen_q
,
kM0
)
*
ck_tile
::
integer_divide_ceil
(
hdim_v
,
kN1
),
nhead
*
num_splits
,
batch_size
);
...
...
include/ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_combine_pipeline.hpp
View file @
6a25d081
...
...
@@ -107,7 +107,7 @@ struct BlockFmhaFwdSplitKVCombinePipeline
const
LSEElementFunction
&
lse_element_func
,
const
OaccElementFunction
&
o_acc_element_func
,
index_t
num_splits
,
index_t
max_
seqlen_q
,
index_t
seqlen_q
,
void
*
smem_ptr
)
const
{
// lse_acc tile in LDS
...
...
@@ -172,22 +172,27 @@ struct BlockFmhaFwdSplitKVCombinePipeline
lse_accum
,
sequence
<
1
>
{},
f_max
,
-
numeric
<
LSEDataType
>::
infinity
());
block_tile_reduce_sync
(
lse_max
,
f_max
,
bool_constant
<
false
>
{});
static
const
auto
get_validated_m
=
[](
LSEDataType
raw_m
)
{
return
raw_m
==
-
numeric
<
LSEDataType
>::
infinity
()
?
type_convert
<
LSEDataType
>
(
0.
f
)
:
raw_m
;
};
decltype
(
lse_accum
)
lse_exp
;
{
constexpr
auto
spans
=
decltype
(
lse_exp
)
::
get_distributed_spans
();
sweep_tile_span
(
spans
[
number
<
0
>
{}],
[
&
](
auto
idx0
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx0
);
sweep_tile_span
(
spans
[
number
<
1
>
{}],
[
&
](
auto
idx1
)
{
constexpr
auto
i_j_idx
=
make_tuple
(
idx0
,
idx1
);
if
(
lse_max
[
i_idx
]
==
-
numeric
<
LSEDataType
>::
infinity
())
{
sweep_tile_span
(
spans
[
number
<
1
>
{}],
[
&
](
auto
idx1
)
{
constexpr
auto
i_j_idx
=
make_tuple
(
idx0
,
idx1
);
lse_exp
(
i_j_idx
)
=
ck_tile
::
exp
(
lse_accum
(
i_j_idx
)
-
get_validated_m
(
lse_max
(
i_idx
)));
});
lse_exp
(
i_j_idx
)
=
ck_tile
::
type_convert
<
LSEDataType
>
(
0.0
f
);
});
}
else
{
sweep_tile_span
(
spans
[
number
<
1
>
{}],
[
&
](
auto
idx1
)
{
constexpr
auto
i_j_idx
=
make_tuple
(
idx0
,
idx1
);
lse_exp
(
i_j_idx
)
=
ck_tile
::
exp
(
lse_accum
(
i_j_idx
)
-
lse_max
(
i_idx
));
});
}
});
}
...
...
@@ -201,15 +206,10 @@ struct BlockFmhaFwdSplitKVCombinePipeline
sweep_tile_span
(
spans
[
number
<
0
>
{}],
[
&
](
auto
idx0
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx0
);
if
(
lse_sum
(
i_idx
)
==
0.
f
||
lse_sum
(
i_idx
)
!=
lse_sum
(
i_idx
))
{
lse_logsum
(
i_idx
)
=
numeric
<
LSEDataType
>::
infinity
();
}
if
(
lse_sum
[
i_idx
]
==
ck_tile
::
type_convert
<
LSEDataType
>
(
0.0
f
))
lse_logsum
(
i_idx
)
=
-
numeric
<
LSEDataType
>::
infinity
();
else
{
lse_logsum
(
i_idx
)
=
ck_tile
::
log
(
lse_sum
(
i_idx
))
+
get_validated_m
(
lse_max
(
i_idx
));
}
lse_logsum
(
i_idx
)
=
ck_tile
::
log
(
lse_sum
(
i_idx
))
+
lse_max
(
i_idx
);
});
}
...
...
@@ -218,37 +218,47 @@ struct BlockFmhaFwdSplitKVCombinePipeline
constexpr
auto
spans
=
decltype
(
lse_accum
)
::
get_distributed_spans
();
sweep_tile_span
(
spans
[
number
<
0
>
{}],
[
&
](
auto
idx0
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx0
);
sweep_tile_span
(
spans
[
number
<
1
>
{}],
[
&
](
auto
idx1
)
{
constexpr
auto
i_j_idx
=
make_tuple
(
idx0
,
idx1
);
if
(
lse_logsum
(
i_idx
)
==
-
numeric
<
LSEDataType
>::
infinity
())
{
sweep_tile_span
(
spans
[
number
<
1
>
{}],
[
&
](
auto
idx1
)
{
constexpr
auto
i_j_idx
=
make_tuple
(
idx0
,
idx1
);
const
auto
x_indices
=
get_x_indices_from_distributed_indices
(
lse_accum
.
get_tile_distribution
(),
i_j_idx
);
const
auto
x_indices
=
get_x_indices_from_distributed_indices
(
lse_accum
.
get_tile_distribution
(),
i_j_idx
);
const
auto
col
=
x_indices
.
at
(
number
<
1
>
{});
if
(
col
<
num_splits
)
{
const
auto
row
=
x_indices
.
at
(
number
<
0
>
{});
const
auto
col
=
x_indices
.
at
(
number
<
1
>
{});
if
(
col
<
num_splits
)
{
const
auto
row
=
x_indices
.
at
(
number
<
0
>
{});
lse_acc_lds
(
row
,
col
)
=
ck_tile
::
exp
(
lse_accum
(
i_j_idx
)
-
lse_logsum
(
i_idx
));
}
});
lse_acc_lds
(
row
,
col
)
=
ck_tile
::
type_convert
<
LSEDataType
>
(
0.0
f
);
}
});
}
else
{
sweep_tile_span
(
spans
[
number
<
1
>
{}],
[
&
](
auto
idx1
)
{
constexpr
auto
i_j_idx
=
make_tuple
(
idx0
,
idx1
);
const
auto
x_indices
=
get_x_indices_from_distributed_indices
(
lse_accum
.
get_tile_distribution
(),
i_j_idx
);
const
auto
col
=
x_indices
.
at
(
number
<
1
>
{});
if
(
col
<
num_splits
)
{
const
auto
row
=
x_indices
.
at
(
number
<
0
>
{});
lse_acc_lds
(
row
,
col
)
=
ck_tile
::
exp
(
lse_accum
(
i_j_idx
)
-
lse_logsum
(
i_idx
));
}
});
}
});
}
block_sync_lds
();
if
constexpr
(
kStoreLSE
)
{
constexpr
auto
spans
=
decltype
(
lse_logsum
)
::
get_distributed_spans
();
sweep_tile_span
(
spans
[
number
<
0
>
{}],
[
&
](
auto
idx0
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx0
);
if
(
lse_logsum
(
i_idx
)
==
numeric
<
LSEDataType
>::
infinity
())
{
lse_logsum
(
i_idx
)
=
-
numeric
<
LSEDataType
>::
infinity
();
}
});
store_tile
(
lse_dram_window_tmp
,
tile_elementwise_in
(
lse_element_func
,
lse_logsum
));
}
...
...
@@ -261,7 +271,7 @@ struct BlockFmhaFwdSplitKVCombinePipeline
auto
o_acc
=
make_static_distributed_tensor
<
OaccDataType
>
(
o_acc_dist
);
clear_tile
(
o_acc
);
const
index_t
padded_
max_
seqlen_q
=
integer_divide_ceil
(
max_
seqlen_q
,
kM0
)
*
kM0
;
const
index_t
padded_seqlen_q
=
integer_divide_ceil
(
seqlen_q
,
kM0
)
*
kM0
;
for
(
index_t
i_split
=
0
;
i_split
<
num_splits
;
++
i_split
)
{
...
...
@@ -282,7 +292,7 @@ struct BlockFmhaFwdSplitKVCombinePipeline
});
}
move_tile_window
(
o_acc_dram_window
,
{
padded_
max_
seqlen_q
,
0
});
move_tile_window
(
o_acc_dram_window
,
{
padded_seqlen_q
,
0
});
}
o_acc
=
tile_elementwise_in
(
o_acc_element_func
,
o_acc
);
...
...
@@ -297,7 +307,7 @@ struct BlockFmhaFwdSplitKVCombinePipeline
const
OaccDramBlockWindow
&
o_acc_dram_block_window
,
LSEDramBlockWindow
&
lse_dram_block_window
,
index_t
num_splits
,
index_t
max_
seqlen_q
,
index_t
seqlen_q
,
void
*
smem_ptr
)
const
{
return
operator
()(
lse_acc_dram_block_window
,
...
...
@@ -306,7 +316,7 @@ struct BlockFmhaFwdSplitKVCombinePipeline
identity
{},
identity
{},
num_splits
,
max_
seqlen_q
,
seqlen_q
,
smem_ptr
);
}
};
...
...
include/ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_combine_pipeline_default_policy.hpp
View file @
6a25d081
...
...
@@ -21,14 +21,23 @@ struct BlockFmhaFwdSplitKVCombinePipelineDefaultPolicy
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetAlignmentOacc
()
{
using
OaccDataType
=
remove_cvref_t
<
typename
Problem
::
OaccDataType
>
;
return
16
/
sizeof
(
OaccDataType
);
constexpr
index_t
kBlockSize
=
Problem
::
kBlockSize
;
constexpr
index_t
kMPerBlock
=
Problem
::
kM0
;
constexpr
index_t
kNPerBlock
=
Problem
::
kN1
;
constexpr
index_t
M1
=
kBlockSize
/
get_warp_size
();
constexpr
index_t
M2
=
min
(
kMPerBlock
/
M1
,
get_warp_size
());
constexpr
index_t
N0
=
get_warp_size
()
/
M2
;
constexpr
index_t
N1
=
kNPerBlock
/
N0
;
return
min
(
N1
,
static_cast
<
index_t
>
(
16
/
sizeof
(
OaccDataType
)));
}
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
GetAlignmentO
()
{
using
ODataType
=
remove_cvref_t
<
typename
Problem
::
ODataType
>
;
return
16
/
sizeof
(
ODataType
);
return
GetAlignmentOacc
<
Problem
>
();
}
template
<
typename
Problem
>
...
...
@@ -150,16 +159,14 @@ struct BlockFmhaFwdSplitKVCombinePipelineDefaultPolicy
template
<
typename
Problem
>
CK_TILE_HOST_DEVICE
static
constexpr
auto
MakeOaccDramTileDistribution
()
{
using
OaccDataType
=
remove_cvref_t
<
typename
Problem
::
OaccDataType
>
;
constexpr
index_t
kBlockSize
=
Problem
::
kBlockSize
;
constexpr
index_t
kMPerBlock
=
Problem
::
kM0
;
constexpr
index_t
kNPerBlock
=
Problem
::
kN1
;
constexpr
index_t
N1
=
16
/
sizeof
(
OaccDataType
);
constexpr
index_t
N0
=
kNPerBlock
/
N1
;
constexpr
index_t
M2
=
get_warp_size
()
/
N0
;
constexpr
index_t
M1
=
kBlockSize
/
get_warp_size
();
constexpr
index_t
M2
=
min
(
kMPerBlock
/
M1
,
get_warp_size
());
constexpr
index_t
N0
=
get_warp_size
()
/
M2
;
constexpr
index_t
N1
=
kNPerBlock
/
N0
;
constexpr
index_t
M0
=
kMPerBlock
/
(
M2
*
M1
);
return
make_static_tile_distribution
(
...
...
include/ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs.hpp
View file @
6a25d081
...
...
@@ -64,8 +64,6 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
return
kPadSeqLenK
?
1
:
Policy
::
template
GetAlignmentV
<
Problem
>();
}();
static
constexpr
index_t
kAlignmentO
=
kPadHeadDimV
?
1
:
Policy
::
template
GetAlignmentO
<
Problem
>();
static
constexpr
index_t
kAlignmentBias
=
kPadSeqLenK
?
1
:
Policy
::
template
GetAlignmentBias
<
Problem
>();
...
...
@@ -212,8 +210,8 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
const
auto
[
seqlen_k_start
,
seqlen_k_end
]
=
mask
.
GetTileRangeAlongX
(
q_origin
.
at
(
number
<
0
>
{}),
number
<
kM0
>
{},
number
<
kN0
>
{},
num_splits
,
i_split
);
// check early exit if
masked and
no work to do
.
if
constexpr
(
FmhaMask
::
IsMasking
||
kHasUnevenSplits
)
// check early exit if no work to do
if
constexpr
(
FmhaMask
::
IsMasking
||
kPadSeqLenK
||
kHasUnevenSplits
)
{
const
index_t
original_num_total_loop
=
integer_divide_ceil
(
seqlen_k_end
-
seqlen_k_start
,
kN0
);
...
...
@@ -616,7 +614,8 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
sweep_tile_span
(
o_spans
[
number
<
0
>
{}],
[
&
](
auto
idx0
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx0
);
const
auto
tmp
=
[
&
]()
{
if
constexpr
(
FmhaMask
::
IsMasking
)
if
constexpr
(
BiasEnum
==
BlockAttentionBiasEnum
::
ELEMENTWISE_BIAS
||
FmhaMask
::
IsMasking
)
{
return
l
[
i_idx
]
==
0.
f
?
0.
f
:
1
/
l
[
i_idx
];
}
...
...
include/ck_tile/ops/layernorm2d/kernel/layernorm2d_fwd_kernel.hpp
View file @
6a25d081
...
...
@@ -31,8 +31,14 @@ struct Layernorm2dFwd
static
constexpr
ck_tile
::
index_t
kMPerBlock
=
Problem
::
BlockShape
::
kMPerBlock
;
static
constexpr
ck_tile
::
index_t
kNPerBlock
=
Problem
::
BlockShape
::
kNPerBlock
;
static
constexpr
bool
kPadM
=
Problem
::
kPadM
;
static
constexpr
bool
kPadN
=
Problem
::
kPadN
;
static
constexpr
ck_tile
::
index_t
kNThreadPerWarp
=
Problem
::
BlockShape
::
kNThreadPerWarp
;
static
constexpr
ck_tile
::
index_t
kNPerThread
=
Problem
::
BlockShape
::
kNPerThread
;
static
constexpr
auto
I0
=
number
<
0
>
{};
static
constexpr
auto
I1
=
number
<
1
>
{};
struct
Kargs
{
...
...
@@ -96,19 +102,25 @@ struct Layernorm2dFwd
sequence
<
2
>>
{});
}
template
<
typename
Dstr
>
CK_TILE_DEVICE
static
constexpr
auto
GetNPerThread
(
Dstr
)
CK_TILE_DEVICE
static
int
GetWelfordMaxCount
(
int
N
)
{
constexpr
auto
nDstrSpan
=
Dstr
::
get_distributed_spans
().
template
at
<
1
>();
using
Lengths
=
decltype
(
nDstrSpan
.
impl_
);
constexpr
ck_tile
::
index_t
kNThreadPerBlock
=
kNPerBlock
/
kNPerThread
;
ck_tile
::
index_t
ret
=
1
;
int
thread_id_n
=
get_thread_id
()
%
kNThreadPerBlock
;
int
max_count
=
__builtin_amdgcn_readfirstlane
(
N
<
kNPerBlock
?
0
:
kNPerThread
*
(
N
/
kNPerBlock
));
int
n_per_block_tail_loop
=
__builtin_amdgcn_readfirstlane
(
N
-
max_count
*
kNThreadPerBlock
);
ck_tile
::
static_for
<
0
,
Lengths
::
size
(),
1
>
{}(
[
&
](
auto
idx
)
{
ret
*=
Lengths
::
template
at
(
idx
);
});
if
(
n_per_block_tail_loop
>
0
)
{
int
thread_max_n
=
(
thread_id_n
+
1
)
*
kNPerThread
;
int
delta
=
thread_max_n
-
n_per_block_tail_loop
;
delta
=
clamp
(
thread_max_n
-
n_per_block_tail_loop
,
0
,
kNPerThread
);
max_count
+=
kNPerThread
-
delta
;
}
return
re
t
;
return
max_coun
t
;
}
template
<
typename
DistributedTensor
>
...
...
@@ -129,42 +141,29 @@ struct Layernorm2dFwd
return
out_dstr_tensor
;
}
template
<
bool
Cond
=
(
kHasGamma
&&
kHasBeta
)>
CK_TILE_DEVICE
std
::
enable_if_t
<
Cond
>
TwoPassLayernorm2dFwd
(
const
XDataType
*
p_x
,
const
GammaDataType
*
p_gamma
,
const
BetaDataType
*
p_beta
,
YDataType
*
p_y
,
MeanDataType
*
p_mean
,
InvStdDataType
*
p_invStd
,
const
ComputeDataType
epsilon
,
ck_tile
::
index_t
M
,
ck_tile
::
index_t
N
)
const
template
<
typename
XBlockWindow
,
typename
GammaBlockWindow
,
typename
BetaBlockWindow
,
typename
YBlockWindow
,
typename
MeanBlockWindow
,
typename
InvStdBlockWindow
,
bool
Cond
=
(
kHasGamma
&&
kHasBeta
)>
CK_TILE_DEVICE
std
::
enable_if_t
<
Cond
>
TwoPassLayernorm2dFwd
(
XBlockWindow
&
x_block_window
,
GammaBlockWindow
&
gamma_block_window
,
BetaBlockWindow
&
beta_block_window
,
YBlockWindow
&
y_block_window
,
MeanBlockWindow
&
mean_block_window
,
InvStdBlockWindow
&
inv_std_block_window
,
ComputeDataType
epsilon
,
ck_tile
::
index_t
N
)
const
{
constexpr
auto
I0
=
number
<
0
>
{};
constexpr
auto
I1
=
number
<
1
>
{};
const
auto
x_m_n
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
p_x
,
make_tuple
(
M
,
N
),
make_tuple
(
N
,
1
),
number
<
32
>
{},
number
<
1
>
{});
const
auto
gamma_n
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
p_gamma
,
make_tuple
(
N
),
make_tuple
(
1
),
number
<
32
>
{},
number
<
1
>
{});
// TODO - Optimize tail loop to reduce move_tile_window()
index_t
num_n_tile_iteration
=
__builtin_amdgcn_readfirstlane
(
integer_divide_ceil
(
N
,
kNPerBlock
));
const
auto
beta_n
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
p_beta
,
make_tuple
(
N
),
make_tuple
(
1
),
number
<
32
>
{},
number
<
1
>
{});
const
auto
iM
=
get_block_id
()
*
kMPerBlock
;
constexpr
auto
xDstr
=
MakeXBlockTileDistribution
();
auto
x_block_window
=
make_tile_window
(
x_m_n
,
make_tuple
(
number
<
kMPerBlock
>
{},
number
<
kNPerBlock
>
{}),
{
iM
,
0
},
xDstr
);
index_t
num_n_tile_iteration
=
__builtin_amdgcn_readfirstlane
(
N
/
kNPerBlock
);
// TODO: padding - handle max_count if N % kNPerBlock != 0
constexpr
auto
NPerThread
=
GetNPerThread
(
xDstr
);
ThreadWelford
<
ComputeDataType
,
XDataType
>
thread_welford
{
type_convert
<
int
>
(
NPerThread
*
N
/
kNPerBlock
)};
int
welford_max_count
=
GetWelfordMaxCount
(
N
);
ThreadWelford
<
ComputeDataType
,
XDataType
>
thread_welford
{
welford_max_count
};
using
XTensorType
=
decltype
(
load_tile
(
x_block_window
));
auto
mean_compute_block_tensor
=
...
...
@@ -190,44 +189,14 @@ struct Layernorm2dFwd
auto
inv_std_compute_block_tensor
=
InvSqrt
(
var_compute_block_tensor
,
epsilon
);
if
constexpr
(
kSaveMean
)
{
const
auto
mean_m
=
make_naive_tensor_view_packed
<
address_space_enum
::
global
>
(
p_mean
,
make_tuple
(
M
),
number
<
32
>
{});
auto
mean_block_window
=
make_tile_window
(
mean_m
,
make_tuple
(
number
<
kMPerBlock
>
{}),
{
iM
});
store_tile
(
mean_block_window
,
cast_tile
<
MeanDataType
>
(
mean_compute_block_tensor
));
}
if
constexpr
(
kSaveInvStd
)
{
const
auto
inv_std_m
=
make_naive_tensor_view_packed
<
address_space_enum
::
global
>
(
p_invStd
,
make_tuple
(
M
),
number
<
32
>
{});
auto
inv_std_block_window
=
make_tile_window
(
inv_std_m
,
make_tuple
(
number
<
kMPerBlock
>
{}),
{
iM
});
store_tile
(
inv_std_block_window
,
cast_tile
<
MeanDataType
>
(
inv_std_compute_block_tensor
));
}
// TODO: Extract normalize pipeline
const
auto
y_m_n
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
p_y
,
make_tuple
(
M
,
N
),
make_tuple
(
N
,
1
),
number
<
32
>
{},
number
<
1
>
{});
auto
y_block_window
=
make_tile_window
(
y_m_n
,
make_tuple
(
number
<
kMPerBlock
>
{},
number
<
kNPerBlock
>
{}),
{
iM
,
0
});
constexpr
auto
gammaDstr
=
MakeGammaBetaBlockTileDistribution
();
constexpr
auto
betaDstr
=
gammaDstr
;
auto
gamma_block_window
=
make_tile_window
(
gamma_n
,
make_tuple
(
number
<
kNPerBlock
>
{}),
{
0
},
gammaDstr
);
auto
beta_block_window
=
make_tile_window
(
beta_n
,
make_tuple
(
number
<
kMPerBlock
>
{},
number
<
kNPerBlock
>
{}),
{
0
},
betaDstr
);
store_tile
(
inv_std_block_window
,
cast_tile
<
InvStdDataType
>
(
inv_std_compute_block_tensor
));
// reverse read x to reuse cache
ck_tile
::
index_t
stride_to_right_most_window
=
N
-
kNPerBlock
;
ck_tile
::
index_t
stride_to_right_most_window
=
N
%
kNPerBlock
==
0
?
N
-
kNPerBlock
:
N
-
N
%
kNPerBlock
;
move_tile_window
(
x_block_window
,
{
0
,
-
kNPerBlock
});
move_tile_window
(
gamma_block_window
,
{
stride_to_right_most_window
});
...
...
@@ -274,17 +243,209 @@ struct Layernorm2dFwd
}
}
template
<
typename
XBlockWindow
,
typename
GammaBlockWindow
,
typename
BetaBlockWindow
,
typename
YBlockWindow
,
typename
MeanBlockWindow
,
typename
InvStdBlockWindow
,
bool
Cond
=
(
kHasGamma
&&
kHasBeta
)>
CK_TILE_DEVICE
std
::
enable_if_t
<
Cond
>
OnePassLayernorm2dFwd
(
XBlockWindow
&
x_block_window
,
GammaBlockWindow
&
gamma_block_window
,
BetaBlockWindow
&
beta_block_window
,
YBlockWindow
&
y_block_window
,
MeanBlockWindow
&
mean_block_window
,
InvStdBlockWindow
&
inv_std_block_window
,
ComputeDataType
epsilon
,
ck_tile
::
index_t
N
)
const
{
int
welford_max_count
=
GetWelfordMaxCount
(
N
);
ThreadWelford
<
ComputeDataType
,
XDataType
>
thread_welford
{
welford_max_count
};
using
XTensorType
=
decltype
(
load_tile
(
x_block_window
));
auto
mean_compute_block_tensor
=
thread_welford
.
template
MakeInitialMeanVarDistributedTensor
<
XTensorType
>();
auto
var_compute_block_tensor
=
thread_welford
.
template
MakeInitialMeanVarDistributedTensor
<
XTensorType
>();
clear_tile
(
mean_compute_block_tensor
);
clear_tile
(
var_compute_block_tensor
);
const
auto
x_block_tensor
=
load_tile
(
x_block_window
);
thread_welford
(
x_block_tensor
,
mean_compute_block_tensor
,
var_compute_block_tensor
);
// TODO: support cross warp Welford
WarpMergeWelford
<
ComputeDataType
,
true
>
{}(
mean_compute_block_tensor
,
var_compute_block_tensor
,
thread_welford
.
cur_count_
);
auto
inv_std_compute_block_tensor
=
InvSqrt
(
var_compute_block_tensor
,
epsilon
);
if
constexpr
(
kSaveMean
)
store_tile
(
mean_block_window
,
cast_tile
<
MeanDataType
>
(
mean_compute_block_tensor
));
if
constexpr
(
kSaveInvStd
)
store_tile
(
inv_std_block_window
,
cast_tile
<
InvStdDataType
>
(
inv_std_compute_block_tensor
));
// normalize
const
auto
gamma_block_tensor
=
load_tile
(
gamma_block_window
);
const
auto
beta_block_tensor
=
load_tile
(
beta_block_window
);
constexpr
auto
x_spans
=
decltype
(
x_block_tensor
)
::
get_distributed_spans
();
auto
y_block_tensor
=
make_static_distributed_tensor
<
YDataType
>
(
x_block_tensor
.
get_tile_distribution
());
sweep_tile_span
(
x_spans
[
I1
],
[
&
](
auto
idx1
)
{
constexpr
auto
j_idx
=
make_tuple
(
idx1
);
const
auto
gamma
=
type_convert
<
ComputeDataType
>
(
gamma_block_tensor
[
j_idx
]);
const
auto
beta
=
type_convert
<
ComputeDataType
>
(
beta_block_tensor
[
j_idx
]);
sweep_tile_span
(
x_spans
[
I0
],
[
&
](
auto
idx0
)
{
constexpr
auto
i_idx
=
make_tuple
(
idx0
);
constexpr
auto
i_j_idx
=
make_tuple
(
idx0
,
idx1
);
const
auto
mean
=
mean_compute_block_tensor
[
i_idx
];
const
auto
inv_std
=
inv_std_compute_block_tensor
[
i_idx
];
const
auto
x
=
type_convert
<
ComputeDataType
>
(
x_block_tensor
[
i_j_idx
]);
auto
y
=
(
x
-
mean
)
*
inv_std
*
gamma
+
beta
;
y_block_tensor
(
i_j_idx
)
=
type_convert
<
YDataType
>
(
y
);
});
});
store_tile
(
y_block_window
,
y_block_tensor
);
}
CK_TILE_DEVICE
void
operator
()(
Kargs
kargs
)
const
{
TwoPassLayernorm2dFwd
(
static_cast
<
const
XDataType
*>
(
kargs
.
p_x
),
static_cast
<
const
GammaDataType
*>
(
kargs
.
p_gamma
),
static_cast
<
const
BetaDataType
*>
(
kargs
.
p_beta
),
static_cast
<
YDataType
*>
(
kargs
.
p_y
),
static_cast
<
MeanDataType
*>
(
kargs
.
p_mean
),
static_cast
<
InvStdDataType
*>
(
kargs
.
p_invStd
),
static_cast
<
const
ComputeDataType
>
(
kargs
.
epsilon
),
kargs
.
M
,
kargs
.
N
);
const
auto
x_m_n
=
[
&
]()
{
const
auto
x_dram_naive
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
const
XDataType
*>
(
kargs
.
p_x
),
make_tuple
(
kargs
.
M
,
kargs
.
N
),
make_tuple
(
kargs
.
N
,
1
),
number
<
kNPerThread
>
{},
number
<
1
>
{});
return
pad_tensor_view
(
x_dram_naive
,
make_tuple
(
number
<
kMPerBlock
>
{},
number
<
kNPerBlock
>
{}),
sequence
<
kPadM
,
kPadN
>
{});
}();
const
auto
gamma_n
=
[
&
]()
{
const
auto
gamma_dram_naive
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
const
GammaDataType
*>
(
kargs
.
p_gamma
),
make_tuple
(
kargs
.
N
),
make_tuple
(
1
),
number
<
kNPerThread
>
{},
number
<
1
>
{});
return
pad_tensor_view
(
gamma_dram_naive
,
make_tuple
(
number
<
kNPerBlock
>
{}),
sequence
<
kPadN
>
{});
}();
const
auto
beta_n
=
[
&
]()
{
const
auto
gamma_dram_naive
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
const
BetaDataType
*>
(
kargs
.
p_beta
),
make_tuple
(
kargs
.
N
),
make_tuple
(
1
),
number
<
kNPerThread
>
{},
number
<
1
>
{});
return
pad_tensor_view
(
gamma_dram_naive
,
make_tuple
(
number
<
kNPerBlock
>
{}),
sequence
<
kPadN
>
{});
}();
const
auto
iM
=
get_block_id
()
*
kMPerBlock
;
constexpr
auto
xDstr
=
MakeXBlockTileDistribution
();
auto
x_block_window
=
make_tile_window
(
x_m_n
,
make_tuple
(
number
<
kMPerBlock
>
{},
number
<
kNPerBlock
>
{}),
{
iM
,
0
},
xDstr
);
const
auto
y_m_n
=
[
&
]()
{
const
auto
y_dram_naive
=
make_naive_tensor_view
<
address_space_enum
::
global
>
(
static_cast
<
YDataType
*>
(
kargs
.
p_y
),
make_tuple
(
kargs
.
M
,
kargs
.
N
),
make_tuple
(
kargs
.
N
,
1
),
number
<
kNPerThread
>
{},
number
<
1
>
{});
return
pad_tensor_view
(
y_dram_naive
,
make_tuple
(
number
<
kMPerBlock
>
{},
number
<
kNPerBlock
>
{}),
sequence
<
kPadM
,
kPadN
>
{});
}();
auto
y_block_window
=
make_tile_window
(
y_m_n
,
make_tuple
(
number
<
kMPerBlock
>
{},
number
<
kNPerBlock
>
{}),
{
iM
,
0
});
constexpr
auto
gammaDstr
=
MakeGammaBetaBlockTileDistribution
();
constexpr
auto
betaDstr
=
gammaDstr
;
auto
gamma_block_window
=
make_tile_window
(
gamma_n
,
make_tuple
(
number
<
kNPerBlock
>
{}),
{
0
},
gammaDstr
);
auto
beta_block_window
=
make_tile_window
(
beta_n
,
make_tuple
(
number
<
kMPerBlock
>
{},
number
<
kNPerBlock
>
{}),
{
0
},
betaDstr
);
auto
mean_block_window
=
[
&
]()
{
if
constexpr
(
kSaveMean
)
{
const
auto
mean_m
=
[
&
]()
{
const
auto
mean_dram_naive
=
make_naive_tensor_view_packed
<
address_space_enum
::
global
>
(
static_cast
<
MeanDataType
*>
(
kargs
.
p_mean
),
make_tuple
(
kargs
.
M
),
number
<
1
>
{});
return
pad_tensor_view
(
mean_dram_naive
,
make_tuple
(
number
<
kMPerBlock
>
{}),
sequence
<
kPadM
>
{});
}();
return
make_tile_window
(
mean_m
,
make_tuple
(
number
<
kMPerBlock
>
{}),
{
iM
});
}
else
return
make_null_tile_window
(
make_tuple
(
number
<
kMPerBlock
>
{}));
}();
auto
inv_std_block_window
=
[
&
]()
{
if
constexpr
(
kSaveInvStd
)
{
const
auto
inv_std_m
=
[
&
]()
{
const
auto
inv_std_dram_naive
=
make_naive_tensor_view_packed
<
address_space_enum
::
global
>
(
static_cast
<
InvStdDataType
*>
(
kargs
.
p_invStd
),
make_tuple
(
kargs
.
M
),
number
<
1
>
{});
return
pad_tensor_view
(
inv_std_dram_naive
,
make_tuple
(
number
<
kMPerBlock
>
{}),
sequence
<
kPadM
>
{});
}();
return
make_tile_window
(
inv_std_m
,
make_tuple
(
number
<
kMPerBlock
>
{}),
{
iM
});
}
else
return
make_null_tile_window
(
make_tuple
(
number
<
kMPerBlock
>
{}));
}();
if
(
kargs
.
N
<=
kNPerBlock
)
OnePassLayernorm2dFwd
(
x_block_window
,
gamma_block_window
,
beta_block_window
,
y_block_window
,
mean_block_window
,
inv_std_block_window
,
static_cast
<
const
ComputeDataType
>
(
kargs
.
epsilon
),
kargs
.
N
);
else
TwoPassLayernorm2dFwd
(
x_block_window
,
gamma_block_window
,
beta_block_window
,
y_block_window
,
mean_block_window
,
inv_std_block_window
,
static_cast
<
const
ComputeDataType
>
(
kargs
.
epsilon
),
kargs
.
N
);
}
};
...
...
include/ck_tile/ops/layernorm2d/pipeline/block_layernorm2d_fwd_problem.hpp
View file @
6a25d081
...
...
@@ -14,17 +14,21 @@ template <typename XDataType_,
typename
YDataType_
,
typename
MeanDataType_
,
typename
InvStdDataType_
,
typename
BlockShape_
>
typename
BlockShape_
,
bool
kPadM_
,
bool
kPadN_
>
struct
BlockLayernorm2dFwdProblem
{
using
XDataType
=
remove_cvref_t
<
XDataType_
>
;
using
GammaDataType
=
remove_cvref_t
<
GammaDataType_
>
;
using
BetaDataType
=
remove_cvref_t
<
BetaDataType_
>
;
using
ComputeDataType
=
remove_cvref_t
<
ComputeDataType_
>
;
using
YDataType
=
remove_cvref_t
<
YDataType_
>
;
using
MeanDataType
=
remove_cvref_t
<
MeanDataType_
>
;
using
InvStdDataType
=
remove_cvref_t
<
InvStdDataType_
>
;
using
BlockShape
=
remove_cvref_t
<
BlockShape_
>
;
using
XDataType
=
remove_cvref_t
<
XDataType_
>
;
using
GammaDataType
=
remove_cvref_t
<
GammaDataType_
>
;
using
BetaDataType
=
remove_cvref_t
<
BetaDataType_
>
;
using
ComputeDataType
=
remove_cvref_t
<
ComputeDataType_
>
;
using
YDataType
=
remove_cvref_t
<
YDataType_
>
;
using
MeanDataType
=
remove_cvref_t
<
MeanDataType_
>
;
using
InvStdDataType
=
remove_cvref_t
<
InvStdDataType_
>
;
using
BlockShape
=
remove_cvref_t
<
BlockShape_
>
;
static
constexpr
bool
kPadM
=
kPadM_
;
static
constexpr
bool
kPadN
=
kPadN_
;
};
}
// namespace ck_tile
library/include/ck/library/reference_tensor_operation/gpu/reference_gemm.hpp
0 → 100644
View file @
6a25d081
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
ComputeTypeA
,
typename
ComputeTypeB
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
naive_gemm_kernel
(
const
ADataType
*
__restrict__
p_a_grid
,
const
BDataType
*
__restrict__
p_b_grid
,
CDataType
*
__restrict__
p_c_grid
,
index_t
m
,
index_t
n
,
index_t
k
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
c_element_op
)
{
using
RowMajor
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
const
int
row_idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
const
int
col_idx
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
if
(
row_idx
<
m
&&
col_idx
<
n
)
{
AccDataType
v_acc
=
static_cast
<
AccDataType
>
(
0.0
);
ComputeTypeA
v_a
=
static_cast
<
ComputeTypeA
>
(
0.0
);
ComputeTypeB
v_b
=
static_cast
<
ComputeTypeB
>
(
0.0
);
CDataType
v_c
=
static_cast
<
CDataType
>
(
0.0
);
for
(
int
k_idx
=
0
;
k_idx
<
k
;
++
k_idx
)
{
// check input matrices layout
int
element_idx_a
=
0
;
int
element_idx_b
=
0
;
if
constexpr
(
std
::
is_same_v
<
ALayout
,
RowMajor
>
)
{
element_idx_a
=
row_idx
*
k
+
k_idx
;
}
else
{
element_idx_a
=
row_idx
+
m
*
k_idx
;
}
if
constexpr
(
std
::
is_same_v
<
BLayout
,
RowMajor
>
)
{
element_idx_b
=
k_idx
*
n
+
col_idx
;
}
else
{
element_idx_b
=
k_idx
+
k
*
col_idx
;
}
// apply a_element_op
a_element_op
(
v_a
,
p_a_grid
[
element_idx_a
]);
// apply b_element_op
b_element_op
(
v_b
,
p_b_grid
[
element_idx_b
]);
// multiply and accumulate
v_acc
+=
static_cast
<
AccDataType
>
(
v_a
)
*
static_cast
<
AccDataType
>
(
v_b
);
}
// apply c_element_op
c_element_op
(
v_c
,
v_acc
);
// check output matrix layout
int
element_idx_c
=
0
;
if
constexpr
(
std
::
is_same_v
<
CLayout
,
RowMajor
>
)
{
element_idx_c
=
row_idx
*
n
+
col_idx
;
}
else
{
element_idx_c
=
row_idx
+
m
*
col_idx
;
}
// prepare output
p_c_grid
[
element_idx_c
]
=
v_c
;
}
}
}
// namespace ck
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
typename
ComputeTypeA
=
CDataType
,
typename
ComputeTypeB
=
ComputeTypeA
>
struct
ReferenceGemm
:
public
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
device
::
BaseArgument
{
Argument
(
const
void
*
p_a_grid
,
const
void
*
p_b_grid
,
void
*
p_c_grid
,
index_t
m
,
index_t
n
,
index_t
k
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
:
p_a_grid_
{
static_cast
<
const
ADataType
*>
(
p_a_grid
)},
p_b_grid_
{
static_cast
<
const
BDataType
*>
(
p_b_grid
)},
p_c_grid_
{
static_cast
<
CDataType
*>
(
p_c_grid
)},
m_
{
m
},
n_
{
n
},
k_
{
k
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
{
}
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
CDataType
*
p_c_grid_
;
index_t
m_
;
index_t
n_
;
index_t
k_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
};
// Invoker
struct
Invoker
:
public
device
::
BaseInvoker
{
using
Argument
=
ReferenceGemm
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
int
block_size
=
16
;
dim3
block_dim
(
block_size
,
block_size
,
1
);
dim3
grid_dim
(
(
arg
.
m_
+
block_size
-
1
)
/
block_size
,
(
arg
.
n_
+
block_size
-
1
)
/
block_size
,
1
);
auto
launch_kernel
=
[
&
]()
{
const
auto
kernel
=
naive_gemm_kernel
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
ComputeTypeA
,
ComputeTypeB
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
grid_dim
,
block_dim
,
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
m_
,
arg
.
n_
,
arg
.
k_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
);
};
return
launch_kernel
();
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
bool
IsSupportedArgument
(
const
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
void
*
p_a_grid
,
const
void
*
p_b_grid
,
void
*
p_c_grid
,
index_t
m
,
index_t
n
,
index_t
k
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
p_a_grid
,
p_b_grid
,
p_c_grid
,
m
,
n
,
k
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"Device Reference Gemm"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/CMakeLists.txt
View file @
6a25d081
...
...
@@ -37,11 +37,7 @@ function(add_instance_library INSTANCE_NAME)
endforeach
()
endif
()
if
(
INSTANCES_ONLY
)
set
(
INST_TARGETS
${
DEFAULT_GPU_TARGETS
}
)
else
()
set
(
INST_TARGETS
${
GPU_TARGETS
}
)
endif
()
set
(
INST_TARGETS
${
SUPPORTED_GPU_TARGETS
}
)
# Do not build DL instances if DL_KERNELS macro is not set
foreach
(
source IN LISTS ARGN
)
...
...
@@ -64,9 +60,9 @@ function(add_instance_library INSTANCE_NAME)
list
(
REMOVE_ITEM ARGN
"
${
source
}
"
)
endif
()
endforeach
()
# Do not build mha instances if gfx94 targets are not on the target list
# Do not build mha instances if gfx94
or gfx90a
targets are not on the target list
foreach
(
source IN LISTS ARGN
)
if
(
NOT INST_TARGETS MATCHES
"gfx94"
AND source MATCHES
"mha"
)
if
(
NOT INST_TARGETS MATCHES
"gfx94"
AND
NOT INST_TARGETS MATCHES
"gfx90a"
AND
source MATCHES
"mha"
)
message
(
"removing mha instance
${
source
}
"
)
list
(
REMOVE_ITEM ARGN
"
${
source
}
"
)
endif
()
...
...
@@ -75,17 +71,13 @@ function(add_instance_library INSTANCE_NAME)
if
(
ARGN
)
set
(
INST_OBJ
)
foreach
(
source IN LISTS ARGN
)
if
(
INSTANCES_ONLY
)
set
(
INST_TARGETS
${
DEFAULT_GPU_TARGETS
}
)
else
()
set
(
INST_TARGETS
${
GPU_TARGETS
}
)
endif
()
set
(
INST_TARGETS
${
SUPPORTED_GPU_TARGETS
}
)
if
(
source MATCHES
"_xdl"
)
list
(
REMOVE_ITEM INST_TARGETS gfx900 gfx906 gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201
)
elseif
(
ARGN MATCHES
"_wmma"
)
list
(
REMOVE_ITEM INST_TARGETS gfx900 gfx906 gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030
)
elseif
(
ARGN MATCHES
"mha"
)
list
(
REMOVE_ITEM INST_TARGETS gfx900 gfx906 gfx908
gfx90a
gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201
)
list
(
REMOVE_ITEM INST_TARGETS gfx900 gfx906 gfx908 gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201
)
endif
()
set
(
offload_targets
)
foreach
(
target IN LISTS INST_TARGETS
)
...
...
@@ -191,12 +183,7 @@ FOREACH(subdir_path ${dir_list})
set
(
add_inst 1
)
endif
()
if
(
INSTANCES_ONLY
)
set
(
INST_TARGETS
${
DEFAULT_GPU_TARGETS
}
)
else
()
set
(
INST_TARGETS
${
GPU_TARGETS
}
)
endif
()
set
(
INST_TARGETS
${
SUPPORTED_GPU_TARGETS
}
)
if
((
"
${
cmake_instance
}
"
MATCHES
"quantization"
)
AND
(
DEFINED DTYPES
)
AND
(
NOT DTYPES MATCHES
"int8"
))
message
(
"quantization instances will not be built!"
)
...
...
@@ -320,8 +307,7 @@ if(CK_DEVICE_CONV_INSTANCES)
endif
()
if
(
CK_DEVICE_MHA_INSTANCES
)
set
(
gpu_list
${
INST_TARGETS
}
)
list
(
FILTER gpu_list INCLUDE REGEX
"^gfx94"
)
if
(
gpu_list
)
if
(
gpu_list MATCHES
"gfx94"
OR gpu_list MATCHES
"gfx90a"
)
add_library
(
device_mha_operations STATIC
${
CK_DEVICE_MHA_INSTANCES
}
)
add_library
(
composablekernels::device_mha_operations ALIAS device_mha_operations
)
target_compile_features
(
device_mha_operations PUBLIC
)
...
...
profiler/src/CMakeLists.txt
View file @
6a25d081
...
...
@@ -24,7 +24,7 @@ set(PROFILER_SOURCES
profile_permute_scale.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx9"
)
if
(
SUPPORTED_
GPU_TARGETS MATCHES
"gfx9"
)
if
(
DTYPES MATCHES
"fp32"
OR DTYPES MATCHES
"fp64"
OR NOT DEFINED DTYPES
)
list
(
APPEND PROFILER_SOURCES profile_contraction_bilinear.cpp
)
list
(
APPEND PROFILER_SOURCES profile_contraction_scale.cpp
)
...
...
@@ -49,7 +49,7 @@ if(GPU_TARGETS MATCHES "gfx9")
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm_multiply_tile_loop.cpp
)
endif
()
list
(
APPEND PROFILER_SOURCES profile_gemm_multiply_add.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx94"
)
if
(
SUPPORTED_
GPU_TARGETS MATCHES
"gfx94"
)
list
(
APPEND PROFILER_SOURCES profile_gemm_multiply_multiply.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_ab_scale.cpp
)
endif
()
...
...
@@ -69,7 +69,7 @@ if(GPU_TARGETS MATCHES "gfx9")
endif
()
if
(
GPU_TARGETS MATCHES
"gfx11"
OR GPU_TARGETS MATCHES
"gfx12"
OR GPU_TARGETS MATCHES
"gfx9"
)
if
(
SUPPORTED_
GPU_TARGETS MATCHES
"gfx11"
OR
SUPPORTED_
GPU_TARGETS MATCHES
"gfx12"
OR
SUPPORTED_
GPU_TARGETS MATCHES
"gfx9"
)
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
list
(
APPEND PROFILER_SOURCES profile_gemm_bilinear.cpp
)
endif
()
...
...
@@ -111,7 +111,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_column_to_image_inst
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_transpose_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_permute_scale_instance
)
if
(
GPU_TARGETS MATCHES
"gfx9"
)
if
(
SUPPORTED_
GPU_TARGETS MATCHES
"gfx9"
)
if
(
DTYPES MATCHES
"fp32"
OR DTYPES MATCHES
"fp64"
OR NOT DEFINED DTYPES
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_contraction_bilinear_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_contraction_scale_instance
)
...
...
@@ -135,7 +135,7 @@ if(GPU_TARGETS MATCHES "gfx9")
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_reduce_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_multiply_add_instance
)
if
(
GPU_TARGETS MATCHES
"gfx94"
)
if
(
SUPPORTED_
GPU_TARGETS MATCHES
"gfx94"
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_multiply_multiply_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_ab_scale_instance
)
endif
()
...
...
@@ -159,7 +159,7 @@ if(GPU_TARGETS MATCHES "gfx9")
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv3d_fwd_convinvscale_instance
)
endif
()
if
(
GPU_TARGETS MATCHES
"gfx9"
OR GPU_TARGETS MATCHES
"gfx11"
OR GPU_TARGETS MATCHES
"gfx12"
)
if
(
SUPPORTED_
GPU_TARGETS MATCHES
"gfx9"
OR
SUPPORTED_
GPU_TARGETS MATCHES
"gfx11"
OR
SUPPORTED_
GPU_TARGETS MATCHES
"gfx12"
)
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_bilinear_instance
)
endif
()
...
...
script/cmake-ck-dev.sh
View file @
6a25d081
...
...
@@ -7,8 +7,11 @@ MY_PROJECT_SOURCE=$1
if
[
$#
-ge
2
]
;
then
GPU_TARGETS
=
$2
shift
2
REST_ARGS
=
$@
else
GPU_TARGETS
=
"gfx908;gfx90a;gfx940"
REST_ARGS
=
fi
cmake
\
...
...
@@ -20,4 +23,5 @@ cmake
-D
GPU_TARGETS
=
$GPU_TARGETS
\
-D
CMAKE_VERBOSE_MAKEFILE:BOOL
=
ON
\
-D
USE_BITINT_EXTENSION_INT4
=
OFF
\
$REST_ARGS
\
${
MY_PROJECT_SOURCE
}
script/cmake-ck-release.sh
View file @
6a25d081
...
...
@@ -7,8 +7,11 @@ MY_PROJECT_SOURCE=$1
if
[
$#
-ge
2
]
;
then
GPU_TARGETS
=
$2
shift
2
REST_ARGS
=
$@
else
GPU_TARGETS
=
"gfx908;gfx90a;gfx940"
REST_ARGS
=
fi
cmake
\
...
...
@@ -20,5 +23,6 @@ cmake
-D
GPU_TARGETS
=
$GPU_TARGETS
\
-D
CMAKE_VERBOSE_MAKEFILE:BOOL
=
ON
\
-D
USE_BITINT_EXTENSION_INT4
=
OFF
\
$REST_ARGS
\
${
MY_PROJECT_SOURCE
}
test/CMakeLists.txt
View file @
6a25d081
...
...
@@ -41,11 +41,7 @@ function(add_test_executable TEST_NAME)
endforeach
()
endif
()
if
(
INSTANCES_ONLY
)
set
(
TEST_TARGETS
${
DEFAULT_GPU_TARGETS
}
)
else
()
set
(
TEST_TARGETS
${
GPU_TARGETS
}
)
endif
()
set
(
TEST_TARGETS
${
SUPPORTED_GPU_TARGETS
}
)
foreach
(
source IN LISTS ARGN
)
if
(
NOT DEFINED DL_KERNELS AND source MATCHES
"_dl"
)
...
...
@@ -122,11 +118,7 @@ function(add_gtest_executable TEST_NAME)
endforeach
()
endif
()
if
(
INSTANCES_ONLY
)
set
(
TEST_TARGETS
${
DEFAULT_GPU_TARGETS
}
)
else
()
set
(
TEST_TARGETS
${
GPU_TARGETS
}
)
endif
()
set
(
TEST_TARGETS
${
SUPPORTED_GPU_TARGETS
}
)
foreach
(
source IN LISTS ARGN
)
if
(
NOT DEFINED DL_KERNELS AND source MATCHES
"_dl"
)
...
...
@@ -211,10 +203,10 @@ add_subdirectory(conv_tensor_rearrange)
add_subdirectory
(
transpose
)
add_subdirectory
(
permute_scale
)
add_subdirectory
(
wrapper
)
if
(
GPU_TARGETS MATCHES
"gfx11"
)
if
(
SUPPORTED_
GPU_TARGETS MATCHES
"gfx11"
)
add_subdirectory
(
wmma_op
)
endif
()
if
(
GPU_TARGETS MATCHES
"gfx942"
AND CK_HIP_VERSION_MAJOR GREATER_EQUAL 6 AND CK_HIP_VERSION_MINOR GREATER_EQUAL 2
)
# smfmac needs ROCm6.2
if
(
SUPPORTED_
GPU_TARGETS MATCHES
"gfx942"
AND CK_HIP_VERSION_MAJOR GREATER_EQUAL 6 AND CK_HIP_VERSION_MINOR GREATER_EQUAL 2
)
# smfmac needs ROCm6.2
add_subdirectory
(
smfmac_op
)
endif
()
add_subdirectory
(
position_embedding
)
...
...
Prev
1
2
3
4
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment