Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
667cd6ab
Commit
667cd6ab
authored
Nov 05, 2024
by
illsilin
Browse files
merge from public repo
parents
7d50244e
365f39ae
Changes
121
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
706 additions
and
127 deletions
+706
-127
example/ck_tile/12_smoothquant/instances/smoothquant_fp16_n4096_tp_instance.cpp
...othquant/instances/smoothquant_fp16_n4096_tp_instance.cpp
+14
-0
example/ck_tile/12_smoothquant/instances/smoothquant_fp16_n512_instance.cpp
..._smoothquant/instances/smoothquant_fp16_n512_instance.cpp
+13
-0
example/ck_tile/12_smoothquant/instances/smoothquant_fp16_n64_n128_instance.cpp
...othquant/instances/smoothquant_fp16_n64_n128_instance.cpp
+12
-0
example/ck_tile/12_smoothquant/instances/smoothquant_fp16_n768_instance.cpp
..._smoothquant/instances/smoothquant_fp16_n768_instance.cpp
+12
-0
example/ck_tile/12_smoothquant/instances/smoothquant_fwd_api.cpp
.../ck_tile/12_smoothquant/instances/smoothquant_fwd_api.cpp
+143
-0
example/ck_tile/12_smoothquant/instances/smoothquant_instance_common.hpp
.../12_smoothquant/instances/smoothquant_instance_common.hpp
+62
-0
example/ck_tile/12_smoothquant/script/perf_test.sh
example/ck_tile/12_smoothquant/script/perf_test.sh
+37
-0
example/ck_tile/12_smoothquant/script/smoke_test.sh
example/ck_tile/12_smoothquant/script/smoke_test.sh
+30
-0
example/ck_tile/12_smoothquant/smoothquant.cpp
example/ck_tile/12_smoothquant/smoothquant.cpp
+218
-0
example/ck_tile/12_smoothquant/smoothquant.hpp
example/ck_tile/12_smoothquant/smoothquant.hpp
+114
-0
example/ck_tile/CMakeLists.txt
example/ck_tile/CMakeLists.txt
+1
-0
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
...vice_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
+6
-6
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_two_stage_xdl_cshuffle.hpp
...device_grouped_conv_bwd_weight_two_stage_xdl_cshuffle.hpp
+12
-12
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp
.../device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp
+6
-6
include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_wmma_cshuffle.hpp
...ation/gpu/grid/gridwise_gemm_multiple_d_wmma_cshuffle.hpp
+12
-12
include/ck/tensor_operation/gpu/grid/gridwise_tensor_rearrange.hpp
...k/tensor_operation/gpu/grid/gridwise_tensor_rearrange.hpp
+4
-4
include/ck_tile/ops/add_rmsnorm2d_rdquant.hpp
include/ck_tile/ops/add_rmsnorm2d_rdquant.hpp
+0
-1
include/ck_tile/ops/add_rmsnorm2d_rdquant/kernel/add_rmsnorm2d_rdquant_fwd_kernel.hpp
...orm2d_rdquant/kernel/add_rmsnorm2d_rdquant_fwd_kernel.hpp
+9
-8
include/ck_tile/ops/add_rmsnorm2d_rdquant/kernel/add_rmsnorm2d_rdquant_fwd_shape.hpp
...norm2d_rdquant/kernel/add_rmsnorm2d_rdquant_fwd_shape.hpp
+0
-78
include/ck_tile/ops/add_rmsnorm2d_rdquant/pipeline/add_rmsnorm2d_rdquant_fwd_pipeline_default_policy.hpp
...ine/add_rmsnorm2d_rdquant_fwd_pipeline_default_policy.hpp
+1
-0
No files found.
example/ck_tile/12_smoothquant/instances/smoothquant_fp16_n4096_tp_instance.cpp
0 → 100644
View file @
667cd6ab
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "smoothquant_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd 2p
template
float
smoothquant_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
2
,
1
,
256
,
8
,
true
,
true
>
>
(
const
S
&
,
A
);
template
float
smoothquant_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
4
,
1
,
256
,
4
,
true
,
true
>
>
(
const
S
&
,
A
);
template
float
smoothquant_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
2
,
1
,
1024
,
2
,
true
,
true
>
>
(
const
S
&
,
A
);
template
float
smoothquant_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
4
,
1
,
1024
,
1
,
true
,
true
>
>
(
const
S
&
,
A
);
// clang-format on
example/ck_tile/12_smoothquant/instances/smoothquant_fp16_n512_instance.cpp
0 → 100644
View file @
667cd6ab
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "smoothquant_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd 2p
template
float
smoothquant_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
1
,
4
,
64
,
8
,
true
,
false
>
>
(
const
S
&
,
A
);
template
float
smoothquant_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
2
,
4
,
64
,
4
,
true
,
false
>
>
(
const
S
&
,
A
);
template
float
smoothquant_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
4
,
4
,
64
,
2
,
true
,
false
>
>
(
const
S
&
,
A
);
template
float
smoothquant_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
8
,
4
,
64
,
1
,
true
,
false
>
>
(
const
S
&
,
A
);
// clang-format on
example/ck_tile/12_smoothquant/instances/smoothquant_fp16_n64_n128_instance.cpp
0 → 100644
View file @
667cd6ab
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "smoothquant_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd 2p
template
float
smoothquant_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
1
,
4
,
64
,
1
,
true
,
false
>
>
(
const
S
&
,
A
);
template
float
smoothquant_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
1
,
4
,
64
,
2
,
true
,
false
>
>
(
const
S
&
,
A
);
template
float
smoothquant_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
2
,
4
,
64
,
1
,
true
,
false
>
>
(
const
S
&
,
A
);
// clang-format on
example/ck_tile/12_smoothquant/instances/smoothquant_fp16_n768_instance.cpp
0 → 100644
View file @
667cd6ab
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "smoothquant_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd 2p
template
float
smoothquant_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
3
,
4
,
64
,
4
,
true
,
false
>
>
(
const
S
&
,
A
);
template
float
smoothquant_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
6
,
4
,
64
,
2
,
true
,
false
>
>
(
const
S
&
,
A
);
template
float
smoothquant_
<
trait_
<
ck_tile
::
fp16_t
,
1
,
12
,
4
,
64
,
1
,
true
,
false
>
>
(
const
S
&
,
A
);
// clang-format on
example/ck_tile/12_smoothquant/instances/smoothquant_fwd_api.cpp
0 → 100644
View file @
667cd6ab
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <ck_tile/core.hpp>
#include "smoothquant.hpp"
template
<
typename
DataType_
,
ck_tile
::
index_t
Repeat_M_
,
// each thread repeat along M
ck_tile
::
index_t
Repeat_N_
,
// each thread repeat along N
ck_tile
::
index_t
ThreadPerBlock_M_
,
// num threads along M
ck_tile
::
index_t
ThreadPerBlock_N_
,
// num threads along N
ck_tile
::
index_t
Vector_N_
,
// vector size along N
bool
kPadN_
,
bool
kTwoPass_
>
using
trait_
=
smoothquant_traits_
<
DataType_
,
Repeat_M_
,
Repeat_N_
,
ThreadPerBlock_M_
,
ThreadPerBlock_N_
,
Vector_N_
,
kPadN_
,
kTwoPass_
>
;
template
<
typename
data_type
>
float
smoothquant_dispatch
(
smoothquant_traits
/*t*/
,
smoothquant_args
a
,
const
ck_tile
::
stream_config
&
s
)
{
float
r
=
-
1
;
// clang-format off
// rm rn tm tn vn pd 2p
if
(
a
.
n
<=
64
)
{
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
1
,
4
,
64
,
1
,
true
,
false
>>
(
s
,
a
);
}
else
if
(
a
.
n
<=
128
)
{
if
(
a
.
n
%
2
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
1
,
4
,
64
,
2
,
true
,
false
>>
(
s
,
a
);
else
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
2
,
4
,
64
,
1
,
true
,
false
>>
(
s
,
a
);
}
else
if
(
a
.
n
<=
256
)
{
if
(
a
.
n
%
4
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
1
,
4
,
64
,
4
,
true
,
false
>>
(
s
,
a
);
else
if
(
a
.
n
%
2
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
2
,
4
,
64
,
2
,
true
,
false
>>
(
s
,
a
);
else
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
4
,
4
,
64
,
1
,
true
,
false
>>
(
s
,
a
);
}
else
if
(
a
.
n
<=
512
)
{
if
(
a
.
n
%
8
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
1
,
4
,
64
,
8
,
true
,
false
>>
(
s
,
a
);
else
if
(
a
.
n
%
4
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
2
,
4
,
64
,
4
,
true
,
false
>>
(
s
,
a
);
else
if
(
a
.
n
%
2
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
4
,
4
,
64
,
2
,
true
,
false
>>
(
s
,
a
);
else
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
8
,
4
,
64
,
1
,
true
,
false
>>
(
s
,
a
);
}
else
if
(
a
.
n
<=
768
)
{
if
(
a
.
n
%
4
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
3
,
4
,
64
,
4
,
true
,
false
>>
(
s
,
a
);
else
if
(
a
.
n
%
2
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
6
,
4
,
64
,
2
,
true
,
false
>>
(
s
,
a
);
else
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
12
,
4
,
64
,
1
,
true
,
false
>>
(
s
,
a
);
}
else
if
(
a
.
n
<=
1024
)
{
if
(
a
.
n
%
8
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
1
,
2
,
128
,
8
,
true
,
false
>>
(
s
,
a
);
else
if
(
a
.
n
%
4
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
2
,
2
,
128
,
4
,
true
,
false
>>
(
s
,
a
);
else
if
(
a
.
n
%
2
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
4
,
2
,
128
,
2
,
true
,
false
>>
(
s
,
a
);
else
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
4
,
1
,
256
,
1
,
true
,
false
>>
(
s
,
a
);
}
else
if
(
a
.
n
<=
1536
)
{
if
(
a
.
n
%
8
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
3
,
4
,
64
,
8
,
true
,
false
>>
(
s
,
a
);
else
if
(
a
.
n
%
4
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
3
,
2
,
128
,
4
,
true
,
false
>>
(
s
,
a
);
else
if
(
a
.
n
%
2
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
3
,
1
,
256
,
2
,
true
,
false
>>
(
s
,
a
);
else
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
6
,
1
,
256
,
1
,
true
,
false
>>
(
s
,
a
);
}
else
if
(
a
.
n
<=
2048
)
{
if
(
a
.
n
%
8
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
1
,
1
,
256
,
8
,
true
,
false
>>
(
s
,
a
);
else
if
(
a
.
n
%
4
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
2
,
1
,
256
,
4
,
true
,
false
>>
(
s
,
a
);
else
if
(
a
.
n
%
2
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
4
,
1
,
256
,
2
,
true
,
false
>>
(
s
,
a
);
else
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
8
,
1
,
256
,
1
,
true
,
false
>>
(
s
,
a
);
}
else
if
(
a
.
n
<=
3072
)
{
if
(
a
.
n
%
8
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
3
,
1
,
128
,
8
,
true
,
false
>>
(
s
,
a
);
else
if
(
a
.
n
%
4
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
3
,
1
,
256
,
4
,
true
,
false
>>
(
s
,
a
);
else
if
(
a
.
n
%
2
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
6
,
1
,
256
,
2
,
true
,
false
>>
(
s
,
a
);
else
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
3
,
1
,
1024
,
1
,
true
,
false
>>
(
s
,
a
);
}
else
if
(
a
.
n
<=
4096
)
{
if
(
a
.
n
%
8
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
2
,
1
,
256
,
8
,
true
,
false
>>
(
s
,
a
);
else
if
(
a
.
n
%
4
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
4
,
1
,
256
,
4
,
true
,
false
>>
(
s
,
a
);
else
if
(
a
.
n
%
2
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
2
,
1
,
1024
,
2
,
true
,
false
>>
(
s
,
a
);
else
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
4
,
1
,
1024
,
1
,
true
,
false
>>
(
s
,
a
);
}
else
if
(
a
.
n
>
4096
)
{
if
(
a
.
n
%
8
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
2
,
1
,
256
,
8
,
true
,
true
>>
(
s
,
a
);
else
if
(
a
.
n
%
4
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
4
,
1
,
256
,
4
,
true
,
true
>>
(
s
,
a
);
else
if
(
a
.
n
%
2
==
0
)
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
2
,
1
,
1024
,
2
,
true
,
true
>>
(
s
,
a
);
else
r
=
smoothquant_
<
trait_
<
data_type
,
1
,
4
,
1
,
1024
,
1
,
true
,
true
>>
(
s
,
a
);
}
return
r
;
// clang-format on
}
float
smoothquant
(
smoothquant_traits
t
,
smoothquant_args
a
,
const
ck_tile
::
stream_config
&
s
)
{
if
(
t
.
data_type
.
compare
(
"fp16"
)
==
0
)
{
return
smoothquant_dispatch
<
ck_tile
::
fp16_t
>
(
t
,
a
,
s
);
}
else
if
(
t
.
data_type
.
compare
(
"bf16"
)
==
0
)
{
return
smoothquant_dispatch
<
ck_tile
::
bf16_t
>
(
t
,
a
,
s
);
}
else
throw
std
::
runtime_error
(
"Without supported instances!"
);
}
example/ck_tile/12_smoothquant/instances/smoothquant_instance_common.hpp
0 → 100644
View file @
667cd6ab
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <ck_tile/core.hpp>
#include "smoothquant.hpp"
#include <iostream>
#pragma once
using
S
=
ck_tile
::
stream_config
;
using
A
=
smoothquant_args
;
template
<
typename
DataType_
,
ck_tile
::
index_t
Repeat_M_
,
// each thread repeat along M
ck_tile
::
index_t
Repeat_N_
,
// each thread repeat along N
ck_tile
::
index_t
ThreadPerBlock_M_
,
// num threads along M
ck_tile
::
index_t
ThreadPerBlock_N_
,
// num threads along N
ck_tile
::
index_t
Vector_N_
,
// vector size along N
bool
kPadN_
,
bool
kTwoPass_
>
using
trait_
=
smoothquant_traits_
<
DataType_
,
Repeat_M_
,
Repeat_N_
,
ThreadPerBlock_M_
,
ThreadPerBlock_N_
,
Vector_N_
,
kPadN_
,
kTwoPass_
>
;
template
<
typename
Traits_
>
float
smoothquant_
(
const
S
&
s
,
A
a
)
{
using
DataType
=
typename
Traits_
::
DataType
;
using
PipelineProblem
=
ck_tile
::
SmoothquantPipelineProblem
<
typename
SmoothquantTypeConfig
<
DataType
>::
XDataType
,
typename
SmoothquantTypeConfig
<
DataType
>::
XScaleDataType
,
typename
SmoothquantTypeConfig
<
DataType
>::
ComputeDataType
,
typename
SmoothquantTypeConfig
<
DataType
>::
YScaleDataType
,
typename
SmoothquantTypeConfig
<
DataType
>::
QYDataType
,
typename
Traits_
::
Shape
,
Traits_
::
kPadN
,
Traits_
::
kTwoPass
>
;
using
OnePassPipeline
=
ck_tile
::
SmoothquantPipelineOnePass
<
PipelineProblem
>
;
using
TwoPassPipeline
=
ck_tile
::
SmoothquantPipelineTwoPass
<
PipelineProblem
>
;
using
Pipeline
=
std
::
conditional_t
<
Traits_
::
kTwoPass
,
TwoPassPipeline
,
OnePassPipeline
>
;
using
Kernel
=
ck_tile
::
Smoothquant
<
Pipeline
>
;
const
dim3
grids
=
Kernel
::
GridSize
(
a
);
constexpr
dim3
blocks
=
Kernel
::
BlockSize
();
constexpr
ck_tile
::
index_t
kBlockPerCu
=
1
;
auto
kargs
=
Kernel
::
MakeKargs
(
a
);
if
(
s
.
log_level_
>
0
)
std
::
cout
<<
", "
<<
Kernel
::
GetName
()
<<
std
::
flush
;
return
ck_tile
::
launch_kernel
(
s
,
ck_tile
::
make_kernel
<
blocks
.
x
,
kBlockPerCu
>
(
Kernel
{},
grids
,
blocks
,
0
,
kargs
));
}
example/ck_tile/12_smoothquant/script/perf_test.sh
0 → 100755
View file @
667cd6ab
EXE
=
"
$(
find
.
-name
tile_smoothquant
-type
f |
head
-n
1
)
"
$EXE
-m
=
1
-n
=
1
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
80
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
128
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
144
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
168
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
184
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
256
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
288
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
344
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
376
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
448
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
512
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
924
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
1024
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
1078
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
1996
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
4080
-e
=
1e-12
-v
=
1
-prec
=
bf16
-repeat
=
1000
$EXE
-m
=
700
-n
=
80
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
128
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
144
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
168
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
184
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
256
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
288
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
344
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
376
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
448
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
512
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
924
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
1024
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
1078
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
1996
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
$EXE
-m
=
700
-n
=
4080
-e
=
1e-12
-v
=
1
-prec
=
fp16
-repeat
=
1000
\ No newline at end of file
example/ck_tile/12_smoothquant/script/smoke_test.sh
0 → 100755
View file @
667cd6ab
#!/bin/sh
EXE
=
"
$(
find
.
-name
tile_smoothquant
-type
f |
head
-n
1
)
"
for
pr_i
in
"fp16"
"bf16"
;
do
$EXE
-prec
=
$pr_i
-m
=
99
-n
=
13
$EXE
-prec
=
$pr_i
-m
=
17
-n
=
16
$EXE
-prec
=
$pr_i
-m
=
1
-n
=
100
$EXE
-prec
=
$pr_i
-m
=
4
-n
=
128
$EXE
-prec
=
$pr_i
-m
=
80
-n
=
127
$EXE
-prec
=
$pr_i
-m
=
22
-n
=
255
-stride
=
256
$EXE
-prec
=
$pr_i
-m
=
7
-n
=
599
$EXE
-prec
=
$pr_i
-m
=
19
-n
=
512
$EXE
-prec
=
$pr_i
-m
=
33
-n
=
313
-stride
=
1000
$EXE
-prec
=
$pr_i
-m
=
11
-n
=
510
$EXE
-prec
=
$pr_i
-m
=
171
-n
=
676
-stride
=
818
$EXE
-prec
=
$pr_i
-m
=
91
-n
=
636
$EXE
-prec
=
$pr_i
-m
=
12
-n
=
768
-stride
=
800
$EXE
-prec
=
$pr_i
-m
=
100
-n
=
766
-stride
=
812
$EXE
-prec
=
$pr_i
-m
=
31
-n
=
1024
$EXE
-prec
=
$pr_i
-m
=
64
-n
=
1000
-stride
=
1004
$EXE
-prec
=
$pr_i
-m
=
8
-n
=
1501
$EXE
-prec
=
$pr_i
-m
=
3
-n
=
1826
$EXE
-prec
=
$pr_i
-m
=
5
-n
=
2040
$EXE
-prec
=
$pr_i
-m
=
7
-n
=
2734
$EXE
-prec
=
$pr_i
-m
=
1
-n
=
3182
$EXE
-prec
=
$pr_i
-m
=
9
-n
=
4096
$EXE
-prec
=
$pr_i
-m
=
3
-n
=
8192
$EXE
-prec
=
$pr_i
-m
=
1
-n
=
10547
$EXE
-prec
=
$pr_i
-m
=
3
-n
=
17134
done
example/ck_tile/12_smoothquant/smoothquant.cpp
0 → 100644
View file @
667cd6ab
#include "ck_tile/host.hpp"
#include "smoothquant.hpp"
#include <cstring>
// different threshold for different dtype
template
<
typename
DataType
>
auto
get_elimit
()
{
double
rtol
=
1e-5
;
double
atol
=
1e-5
;
return
ck_tile
::
make_tuple
(
rtol
,
atol
);
}
template
<
>
auto
get_elimit
<
ck_tile
::
bf16_t
>
()
{
double
rtol
=
1e-5
;
double
atol
=
1e-5
;
return
ck_tile
::
make_tuple
(
rtol
,
atol
);
}
template
<
>
auto
get_elimit
<
ck_tile
::
int8_t
>
()
{
// due to rounding, int8 quantization might have 1 abs error
double
rtol
=
1
;
double
atol
=
1
;
return
ck_tile
::
make_tuple
(
rtol
,
atol
);
}
auto
create_args
(
int
argc
,
char
*
argv
[])
{
ck_tile
::
ArgParser
arg_parser
;
arg_parser
.
insert
(
"m"
,
"3328"
,
"m dimension"
)
.
insert
(
"n"
,
"4096"
,
"n dimension"
)
.
insert
(
"stride"
,
"-1"
,
"stride per row, if -1 then equal to n"
)
.
insert
(
"v"
,
"1"
,
"cpu validation or not"
)
.
insert
(
"kname"
,
"1"
,
"print kernel name or not"
)
.
insert
(
"prec"
,
"fp16"
,
"precision"
)
.
insert
(
"warmup"
,
"5"
,
"cold iter"
)
.
insert
(
"repeat"
,
"20"
,
"hot iter"
);
bool
result
=
arg_parser
.
parse
(
argc
,
argv
);
return
std
::
make_tuple
(
result
,
arg_parser
);
}
template
<
typename
DataType
>
bool
run
(
const
ck_tile
::
ArgParser
&
arg_parser
)
{
ck_tile
::
index_t
m
=
arg_parser
.
get_int
(
"m"
);
ck_tile
::
index_t
n
=
arg_parser
.
get_int
(
"n"
);
ck_tile
::
index_t
stride
=
arg_parser
.
get_int
(
"stride"
);
if
(
stride
<
0
)
stride
=
n
;
std
::
string
data_type
=
arg_parser
.
get_str
(
"prec"
);
int
kname
=
arg_parser
.
get_int
(
"kname"
);
int
do_validation
=
arg_parser
.
get_int
(
"v"
);
int
warmup
=
arg_parser
.
get_int
(
"warmup"
);
int
repeat
=
arg_parser
.
get_int
(
"repeat"
);
assert
(
stride
>=
n
);
using
TypeConfig
=
SmoothquantTypeConfig
<
DataType
>
;
using
XDataType
=
typename
TypeConfig
::
XDataType
;
using
XScaleDataType
=
typename
TypeConfig
::
XScaleDataType
;
using
YScaleDataType
=
typename
TypeConfig
::
YScaleDataType
;
using
QYDataType
=
typename
TypeConfig
::
QYDataType
;
using
ComputeDataType
=
typename
TypeConfig
::
ComputeDataType
;
// host verify
ck_tile
::
HostTensor
<
XDataType
>
x_host
({
m
,
n
},
{
stride
,
1
});
ck_tile
::
HostTensor
<
XScaleDataType
>
xscale_host
({
n
});
ck_tile
::
HostTensor
<
YScaleDataType
>
yscale_host_ref
({
m
},
{
1
});
ck_tile
::
HostTensor
<
YScaleDataType
>
yscale_host_dev
({
m
},
{
1
});
ck_tile
::
HostTensor
<
QYDataType
>
qy_host_ref
({
m
,
n
},
{
stride
,
1
});
ck_tile
::
HostTensor
<
QYDataType
>
qy_host_dev
({
m
,
n
},
{
stride
,
1
});
ck_tile
::
FillUniformDistribution
<
XDataType
>
{
-
.5
f
,
.5
f
}(
x_host
);
ck_tile
::
FillUniformDistribution
<
XScaleDataType
>
{
1e-3
,
.5
f
}(
xscale_host
);
ck_tile
::
DeviceMem
x_buf
(
x_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
xscale_buf
(
xscale_host
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
yscale_buf
(
yscale_host_dev
.
get_element_space_size_in_bytes
());
ck_tile
::
DeviceMem
qy_buf
(
qy_host_dev
.
get_element_space_size_in_bytes
());
x_buf
.
ToDevice
(
x_host
.
data
());
xscale_buf
.
ToDevice
(
xscale_host
.
data
());
std
::
cout
<<
"["
<<
data_type
<<
"]"
<<
" m:"
<<
m
<<
", n:"
<<
n
<<
", stride:"
<<
stride
<<
std
::
flush
;
smoothquant_traits
traits
{
data_type
};
smoothquant_args
args
{
x_buf
.
GetDeviceBuffer
(),
xscale_buf
.
GetDeviceBuffer
(),
yscale_buf
.
GetDeviceBuffer
(),
qy_buf
.
GetDeviceBuffer
(),
m
,
n
,
stride
};
float
ave_time
=
smoothquant
(
traits
,
args
,
ck_tile
::
stream_config
{
nullptr
,
true
,
kname
?
1
:
0
,
warmup
,
repeat
});
std
::
size_t
num_byte
=
sizeof
(
XDataType
)
*
m
*
n
+
sizeof
(
XScaleDataType
)
*
n
+
sizeof
(
YScaleDataType
)
*
m
+
sizeof
(
QYDataType
)
*
m
*
n
;
float
gb_per_sec
=
num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
", "
<<
ave_time
*
1.E3
<<
" us, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
flush
;
bool
pass
=
true
;
if
(
do_validation
)
{
using
YDataType
=
ComputeDataType
;
ck_tile
::
HostTensor
<
ComputeDataType
>
y_host
({
m
,
n
},
{
stride
,
1
});
// smooth outlier
{
auto
f
=
[
&
](
auto
n_
)
{
auto
v_xscale
=
ck_tile
::
type_convert
<
ComputeDataType
>
(
xscale_host
(
n_
));
for
(
int
m_
=
0
;
m_
<
m
;
++
m_
)
{
auto
v_x
=
ck_tile
::
type_convert
<
ComputeDataType
>
(
x_host
(
m_
,
n_
));
y_host
(
m_
,
n_
)
=
v_x
*
v_xscale
;
}
};
ck_tile
::
make_ParallelTensorFunctor
(
f
,
xscale_host
.
get_element_space_size
())(
std
::
thread
::
hardware_concurrency
());
}
// yscale
{
ck_tile
::
HostTensor
<
YDataType
>
y_rowwise_amax_host
({
m
});
using
ReduceAmax
=
ck_tile
::
ReduceOp
::
AbsMax
;
ck_tile
::
reference_reduce
<
ComputeDataType
,
ComputeDataType
,
YDataType
>
(
y_host
,
y_rowwise_amax_host
,
ReduceAmax
{});
auto
op
=
[](
const
auto
&
v0
)
{
return
v0
/
ck_tile
::
type_convert
<
ComputeDataType
>
(
ck_tile
::
numeric
<
QYDataType
>::
max
());
};
ck_tile
::
reference_unary_elementwise
<
YDataType
,
YScaleDataType
,
ComputeDataType
>
(
y_rowwise_amax_host
,
yscale_host_ref
,
op
);
yscale_buf
.
FromDevice
(
yscale_host_dev
.
mData
.
data
());
auto
[
rtol
,
atol
]
=
get_elimit
<
YScaleDataType
>
();
pass
&=
ck_tile
::
check_err
(
yscale_host_dev
,
yscale_host_ref
,
std
::
string
(
"yscale Error: Incorrect results!"
),
rtol
,
atol
);
}
// rowwise quantization
{
ck_tile
::
reference_rowwise_quantization2d
<
YDataType
,
YScaleDataType
,
QYDataType
>
(
y_host
,
yscale_host_ref
,
qy_host_ref
);
qy_buf
.
FromDevice
(
qy_host_dev
.
data
());
auto
[
rtol
,
atol
]
=
get_elimit
<
QYDataType
>
();
if
(
stride
==
n
)
{
pass
=
ck_tile
::
check_err
(
qy_host_dev
,
qy_host_ref
,
std
::
string
(
"qy Error: Incorrect results!"
),
rtol
,
atol
);
}
else
{
for
(
int
i_r
=
0
;
i_r
<
m
;
i_r
++
)
{
std
::
vector
<
QYDataType
>
qy_host_dev_row
(
qy_host_dev
.
begin
()
+
i_r
*
stride
,
qy_host_dev
.
begin
()
+
i_r
*
stride
+
n
);
std
::
vector
<
QYDataType
>
qy_host_ref_row
(
qy_host_ref
.
begin
()
+
i_r
*
stride
,
qy_host_ref
.
begin
()
+
i_r
*
stride
+
n
);
pass
&=
ck_tile
::
check_err
(
qy_host_dev_row
,
qy_host_ref_row
,
std
::
string
(
"qy["
)
+
std
::
to_string
(
i_r
)
+
std
::
string
(
"] Error: Incorrect results!"
),
rtol
,
atol
);
}
}
}
std
::
cout
<<
", valid:"
<<
(
pass
?
"y"
:
"n"
)
<<
std
::
flush
<<
std
::
endl
;
}
return
pass
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
auto
[
result
,
arg_parser
]
=
create_args
(
argc
,
argv
);
if
(
!
result
)
return
-
1
;
const
std
::
string
data_type
=
arg_parser
.
get_str
(
"prec"
);
if
(
data_type
==
"fp16"
)
{
return
run
<
ck_tile
::
half_t
>
(
arg_parser
)
?
0
:
-
2
;
}
else
if
(
data_type
==
"bf16"
)
{
return
run
<
ck_tile
::
bf16_t
>
(
arg_parser
)
?
0
:
-
2
;
}
return
-
3
;
}
example/ck_tile/12_smoothquant/smoothquant.hpp
0 → 100644
View file @
667cd6ab
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/host/kernel_launch.hpp"
#include "ck_tile/ops/smoothquant.hpp"
#include <string>
template
<
typename
DataType
>
struct
SmoothquantTypeConfig
;
template
<
>
struct
SmoothquantTypeConfig
<
ck_tile
::
half_t
>
{
using
XDataType
=
ck_tile
::
half_t
;
using
XScaleDataType
=
float
;
using
YScaleDataType
=
float
;
using
QYDataType
=
ck_tile
::
int8_t
;
using
ComputeDataType
=
float
;
};
template
<
>
struct
SmoothquantTypeConfig
<
ck_tile
::
bf16_t
>
{
using
XDataType
=
ck_tile
::
bf16_t
;
using
XScaleDataType
=
float
;
using
YScaleDataType
=
float
;
using
QYDataType
=
ck_tile
::
int8_t
;
using
ComputeDataType
=
float
;
};
// runtime args
struct
smoothquant_args
:
public
ck_tile
::
SmoothquantHostArgs
{
};
// this is used to pattern-match internl kernel implementation, not to instantiate kernel
template
<
typename
DataType_
,
ck_tile
::
index_t
Repeat_M_
,
// each thread repeat along M
ck_tile
::
index_t
Repeat_N_
,
// each thread repeat along N
ck_tile
::
index_t
ThreadPerBlock_M_
,
// num threads along M
ck_tile
::
index_t
ThreadPerBlock_N_
,
// num threads along N
ck_tile
::
index_t
Vector_N_
,
// vector size along N
bool
kPadN_
,
bool
kTwoPass_
>
struct
smoothquant_traits_
{
using
DataType
=
ck_tile
::
remove_cvref_t
<
DataType_
>
;
static
constexpr
bool
is_warp_per_row
=
ThreadPerBlock_N_
<=
warpSize
;
static_assert
((
ThreadPerBlock_M_
*
ThreadPerBlock_N_
)
%
warpSize
==
0
);
static
constexpr
ck_tile
::
index_t
total_warps
=
(
ThreadPerBlock_M_
*
ThreadPerBlock_N_
)
/
warpSize
;
// num of warps along m
static
constexpr
ck_tile
::
index_t
BlockWarps_M
=
[]()
{
if
constexpr
(
is_warp_per_row
)
{
static_assert
(
warpSize
%
ThreadPerBlock_N_
==
0
);
return
total_warps
*
(
warpSize
/
ThreadPerBlock_N_
);
}
else
{
// static_assert(warpSize % ThreadPerBlock_M_ == 0);
return
total_warps
/
(
ThreadPerBlock_N_
/
warpSize
);
}
}();
// num of warps along n
static
constexpr
ck_tile
::
index_t
BlockWarps_N
=
[]()
{
if
constexpr
(
is_warp_per_row
)
{
static_assert
(
warpSize
%
ThreadPerBlock_N_
==
0
);
return
1
;
}
else
{
static_assert
(
ThreadPerBlock_N_
%
warpSize
==
0
);
return
ThreadPerBlock_N_
/
warpSize
;
}
}();
static
constexpr
ck_tile
::
index_t
Repeat_M
=
Repeat_M_
;
static
constexpr
ck_tile
::
index_t
Repeat_N
=
Repeat_N_
;
static
constexpr
ck_tile
::
index_t
Block_M
=
Repeat_M_
*
ThreadPerBlock_M_
;
static
constexpr
ck_tile
::
index_t
Block_N
=
Repeat_N_
*
ThreadPerBlock_N_
*
Vector_N_
;
static
constexpr
ck_tile
::
index_t
Warp_M
=
ThreadPerBlock_M_
/
BlockWarps_M
;
static
constexpr
ck_tile
::
index_t
Warp_N
=
ThreadPerBlock_N_
/
BlockWarps_N
*
Vector_N_
;
using
BlockTile
=
ck_tile
::
sequence
<
Block_M
,
Block_N
>
;
using
BlockWarps
=
ck_tile
::
sequence
<
BlockWarps_M
,
BlockWarps_N
>
;
using
WarpTile
=
ck_tile
::
sequence
<
Warp_M
,
Warp_N
>
;
using
Vector
=
ck_tile
::
sequence
<
1
,
Vector_N_
>
;
using
Shape
=
ck_tile
::
Generic2dBlockShape
<
BlockTile
,
BlockWarps
,
WarpTile
,
Vector
>
;
static
constexpr
bool
kPadN
=
kPadN_
;
static
constexpr
bool
kTwoPass
=
kTwoPass_
;
};
template
<
typename
Traits_
>
float
smoothquant_
(
const
ck_tile
::
stream_config
&
s
,
smoothquant_args
a
);
// This is the public API, will be generated by script
struct
smoothquant_traits
{
std
::
string
data_type
;
};
float
smoothquant
(
smoothquant_traits
,
smoothquant_args
,
const
ck_tile
::
stream_config
&
);
example/ck_tile/CMakeLists.txt
View file @
667cd6ab
...
@@ -11,3 +11,4 @@ add_subdirectory(06_permute)
...
@@ -11,3 +11,4 @@ add_subdirectory(06_permute)
add_subdirectory
(
09_topk_softmax
)
add_subdirectory
(
09_topk_softmax
)
add_subdirectory
(
10_rmsnorm2d
)
add_subdirectory
(
10_rmsnorm2d
)
add_subdirectory
(
11_add_rmsnorm2d_rdquant
)
add_subdirectory
(
11_add_rmsnorm2d_rdquant
)
add_subdirectory
(
12_smoothquant
)
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
View file @
667cd6ab
...
@@ -93,12 +93,12 @@ __global__ void
...
@@ -93,12 +93,12 @@ __global__ void
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
const
long_index_t
a_batch_offset
=
amd_wave_read_first_lane
(
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
));
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
))
)
;
const
long_index_t
b_batch_offset
=
const
long_index_t
b_batch_offset
=
amd_wave_read_first_lane
(
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
));
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
))
)
;
const
long_index_t
e_batch_offset
=
const
long_index_t
e_batch_offset
=
amd_wave_read_first_lane
(
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
));
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
))
)
;
const
auto
ds_batch_offset
=
compute_ptr_offset_of_batch
.
GetDsPtrOffset
(
g_idx
);
const
auto
ds_batch_offset
=
compute_ptr_offset_of_batch
.
GetDsPtrOffset
(
g_idx
);
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_two_stage_xdl_cshuffle.hpp
View file @
667cd6ab
...
@@ -60,12 +60,12 @@ __global__ void
...
@@ -60,12 +60,12 @@ __global__ void
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
z
*
NumGroupsToMerge
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
z
*
NumGroupsToMerge
);
const
index_t
k_idx
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
y
*
num_k_per_block
);
const
index_t
k_idx
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
y
*
num_k_per_block
);
const
long_index_t
a_batch_offset
=
const
long_index_t
a_batch_offset
=
amd_wave_read_first_lane
(
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
));
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
))
)
;
const
long_index_t
b_batch_offset
=
const
long_index_t
b_batch_offset
=
amd_wave_read_first_lane
(
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
));
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
))
)
;
const
long_index_t
e_batch_offset
=
const
long_index_t
e_batch_offset
=
amd_wave_read_first_lane
(
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
));
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
))
)
;
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
...
@@ -117,12 +117,12 @@ __global__ void
...
@@ -117,12 +117,12 @@ __global__ void
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
z
*
NumGroupsToMerge
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
z
*
NumGroupsToMerge
);
const
index_t
k_idx
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
y
*
num_k_per_block
);
const
index_t
k_idx
=
__builtin_amdgcn_readfirstlane
(
blockIdx
.
y
*
num_k_per_block
);
const
long_index_t
a_batch_offset
=
const
long_index_t
a_batch_offset
=
amd_wave_read_first_lane
(
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
));
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
))
)
;
const
long_index_t
b_batch_offset
=
const
long_index_t
b_batch_offset
=
amd_wave_read_first_lane
(
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
));
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
))
)
;
const
long_index_t
e_batch_offset
=
const
long_index_t
e_batch_offset
=
amd_wave_read_first_lane
(
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
));
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
))
)
;
// Pass two lds pointer is the key to tell compiler that ds_read/write
// Pass two lds pointer is the key to tell compiler that ds_read/write
// operate on different lds chunk at same time without order dependecy
// operate on different lds chunk at same time without order dependecy
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp
View file @
667cd6ab
...
@@ -98,12 +98,12 @@ __global__ void
...
@@ -98,12 +98,12 @@ __global__ void
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
const
long_index_t
a_batch_offset
=
amd_wave_read_first_lane
(
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
));
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
))
)
;
const
long_index_t
b_batch_offset
=
const
long_index_t
b_batch_offset
=
amd_wave_read_first_lane
(
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
));
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
))
)
;
const
long_index_t
c_batch_offset
=
const
long_index_t
c_batch_offset
=
amd_wave_read_first_lane
(
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
));
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
))
)
;
const
auto
ds_batch_offset
=
compute_ptr_offset_of_batch
.
GetDsPtrOffset
(
g_idx
);
const
auto
ds_batch_offset
=
compute_ptr_offset_of_batch
.
GetDsPtrOffset
(
g_idx
);
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_wmma_cshuffle.hpp
View file @
667cd6ab
...
@@ -60,12 +60,12 @@ __global__ void
...
@@ -60,12 +60,12 @@ __global__ void
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
const
long_index_t
a_batch_offset
=
amd_wave_read_first_lane
(
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
));
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
))
)
;
const
long_index_t
b_batch_offset
=
const
long_index_t
b_batch_offset
=
amd_wave_read_first_lane
(
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
));
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
))
)
;
const
long_index_t
e_batch_offset
=
const
long_index_t
e_batch_offset
=
amd_wave_read_first_lane
(
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
));
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
))
)
;
const
auto
ds_batch_offset
=
compute_ptr_offset_of_batch
.
GetDsPtrOffset
(
g_idx
);
const
auto
ds_batch_offset
=
compute_ptr_offset_of_batch
.
GetDsPtrOffset
(
g_idx
);
...
@@ -155,12 +155,12 @@ __global__ void
...
@@ -155,12 +155,12 @@ __global__ void
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
const
long_index_t
a_batch_offset
=
amd_wave_read_first_lane
(
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
));
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
))
)
;
const
long_index_t
b_batch_offset
=
const
long_index_t
b_batch_offset
=
amd_wave_read_first_lane
(
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
));
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
))
)
;
const
long_index_t
e_batch_offset
=
const
long_index_t
e_batch_offset
=
amd_wave_read_first_lane
(
amd_wave_read_first_lane
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
));
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
))
)
;
const
auto
ds_batch_offset
=
compute_ptr_offset_of_batch
.
GetDsPtrOffset
(
g_idx
);
const
auto
ds_batch_offset
=
compute_ptr_offset_of_batch
.
GetDsPtrOffset
(
g_idx
);
...
...
include/ck/tensor_operation/gpu/grid/gridwise_tensor_rearrange.hpp
View file @
667cd6ab
...
@@ -121,10 +121,10 @@ struct GridwiseTensorRearrange
...
@@ -121,10 +121,10 @@ struct GridwiseTensorRearrange
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
// Global Memory
// Global Memory
const
index_t
a_batch_offset
=
const
index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
__builtin_amdgcn_readfirstlane
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
));
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
))
)
;
const
index_t
c_batch_offset
=
const
index_t
c_batch_offset
=
__builtin_amdgcn_readfirstlane
(
__builtin_amdgcn_readfirstlane
(
compute_ptr_offset_of_batch
.
GetCPtrOffset
(
g_idx
));
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetCPtrOffset
(
g_idx
))
)
;
const
auto
in_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
const
auto
in_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_in_global
+
a_batch_offset
,
in_grid_desc
.
GetElementSpaceSize
());
p_in_global
+
a_batch_offset
,
in_grid_desc
.
GetElementSpaceSize
());
...
...
include/ck_tile/ops/add_rmsnorm2d_rdquant.hpp
View file @
667cd6ab
...
@@ -4,7 +4,6 @@
...
@@ -4,7 +4,6 @@
#pragma once
#pragma once
#include "ck_tile/ops/add_rmsnorm2d_rdquant/kernel/add_rmsnorm2d_rdquant_fwd_kernel.hpp"
#include "ck_tile/ops/add_rmsnorm2d_rdquant/kernel/add_rmsnorm2d_rdquant_fwd_kernel.hpp"
#include "ck_tile/ops/add_rmsnorm2d_rdquant/kernel/add_rmsnorm2d_rdquant_fwd_shape.hpp"
#include "ck_tile/ops/add_rmsnorm2d_rdquant/pipeline/add_rmsnorm2d_rdquant_fwd_pipeline_default_policy.hpp"
#include "ck_tile/ops/add_rmsnorm2d_rdquant/pipeline/add_rmsnorm2d_rdquant_fwd_pipeline_default_policy.hpp"
#include "ck_tile/ops/add_rmsnorm2d_rdquant/pipeline/add_rmsnorm2d_rdquant_fwd_pipeline_one_pass.hpp"
#include "ck_tile/ops/add_rmsnorm2d_rdquant/pipeline/add_rmsnorm2d_rdquant_fwd_pipeline_one_pass.hpp"
#include "ck_tile/ops/add_rmsnorm2d_rdquant/pipeline/add_rmsnorm2d_rdquant_fwd_pipeline_problem.hpp"
#include "ck_tile/ops/add_rmsnorm2d_rdquant/pipeline/add_rmsnorm2d_rdquant_fwd_pipeline_problem.hpp"
...
...
include/ck_tile/ops/add_rmsnorm2d_rdquant/kernel/add_rmsnorm2d_rdquant_fwd_kernel.hpp
View file @
667cd6ab
...
@@ -9,15 +9,16 @@
...
@@ -9,15 +9,16 @@
namespace
ck_tile
{
namespace
ck_tile
{
// host side args
// host side args
// X = A + B, Y = Rmsnorm2d(X), QY = RowwiseDynamicQuant(Y) = SaturateCast(Y / YScale)
struct
AddRmsnorm2dRdquantFwdHostArgs
struct
AddRmsnorm2dRdquantFwdHostArgs
{
{
const
void
*
p_a
;
const
void
*
p_a
;
// [m ,n], input, fp16/bf16
const
void
*
p_b
;
const
void
*
p_b
;
// [m ,n], input, fp16/bf16
const
void
*
p_gamma
;
const
void
*
p_gamma
;
// [1, n], gamma, prec same as input
void
*
p_x
;
void
*
p_x
;
// [m, n], output, p_a + p_b, fp16/bf16
void
*
p_yscale
;
void
*
p_yscale
;
// [m, 1], output, rowwise quant scale (amax / 127) of reuslt of rmsnorm2d(x)
void
*
p_qy
;
void
*
p_qy
;
// [m, n], output, result of quant tensor of rmsnorm2d(x) int8
float
epsilon
;
float
epsilon
;
...
@@ -90,7 +91,7 @@ struct AddRmsnorm2dRdquantFwd
...
@@ -90,7 +91,7 @@ struct AddRmsnorm2dRdquantFwd
CK_TILE_HOST
static
constexpr
auto
GridSize
(
const
Hargs
&
hargs
)
CK_TILE_HOST
static
constexpr
auto
GridSize
(
const
Hargs
&
hargs
)
{
{
return
integer_divide_ceil
(
hargs
.
m
,
Block_M
);
return
dim3
(
integer_divide_ceil
(
hargs
.
m
,
Block_M
)
)
;
}
}
CK_TILE_HOST
static
constexpr
auto
BlockSize
()
{
return
Problem
::
BlockShape
::
BlockSize
;
}
CK_TILE_HOST
static
constexpr
auto
BlockSize
()
{
return
Problem
::
BlockShape
::
BlockSize
;
}
...
@@ -170,7 +171,7 @@ struct AddRmsnorm2dRdquantFwd
...
@@ -170,7 +171,7 @@ struct AddRmsnorm2dRdquantFwd
number
<
1
>
{});
number
<
1
>
{});
const
auto
tmp2_
=
const
auto
tmp2_
=
pad_tensor_view
(
tmp_
,
make_tuple
(
number
<
Block_N
>
{}),
sequence
<
kPad
M
>
{});
pad_tensor_view
(
tmp_
,
make_tuple
(
number
<
Block_N
>
{}),
sequence
<
kPad
N
>
{});
return
make_tile_window
(
tmp2_
,
make_tuple
(
number
<
Block_N
>
{}),
{
0
});
return
make_tile_window
(
tmp2_
,
make_tuple
(
number
<
Block_N
>
{}),
{
0
});
}();
}();
...
...
include/ck_tile/ops/add_rmsnorm2d_rdquant/kernel/add_rmsnorm2d_rdquant_fwd_shape.hpp
deleted
100644 → 0
View file @
7d50244e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace
ck_tile
{
/*
// clang-format off
4-level descriptor: BlockTile-> WarpPerBlock-> WarpTile-> Vector
Block_N (Warp_N * WarpPerBlock_N * Repeat_N )
+<----------------------< Repeat_N(2)>--------------------->+
| |
+<-- <WarpPerBlock_N(2)> -->+
Warp_N
+--------------+--------------+--------------+--------------+----+----------------+
Warp_M | wrap_0 | wrap_1 | | ^ ^
+--------------+--------------+ | <WarpPerBlock_M(2)> |
| wrap_2 | wrap_3 | | v
+--------------+--------------+--------------+--------------+----+ Block_M
| | |
+ + |
| | | v
+--------------+--------------+--------------+--------------+ +
each Warp-tile (e.g 16 thrd per row)
Vector_N (contiguous pixels each thrd holds along N, or vector size)
+-----------+-----------+-----------+-----------+-----------+
| thrd_0 | thrd_1 | thrd_2 | thrd_3 | ... Vector_M
+-----------+-----------+-----------+-----------+-----------+
| thrd_16 | thrd_17 | thrd_18 | thrd_19 | ...
+-----------+-----------+-----------+-----------+-----------+
// clang-format on
*/
template
<
typename
BlockTile_
,
// block size, seq<M, N>
typename
WarpPerBlock_
,
// num warps along seq<M, N>
typename
WarpTile_
,
// warp size, seq<M, N>
typename
Vector_
,
// contiguous pixels(vector size) along seq<M, N>
index_t
BlockSize_
=
warpSize
*
reduce_on_sequence
(
WarpPerBlock_
{}
,
multiplies
{}
,
number
<
1
>{})
>
struct
AddRmsnorm2dRdquantShape
{
// block size
static
constexpr
index_t
Block_M
=
BlockTile_
::
at
(
number
<
0
>
{});
static
constexpr
index_t
Block_N
=
BlockTile_
::
at
(
number
<
1
>
{});
// num warps along seq<M, N>, within each block
static
constexpr
index_t
WarpPerBlock_M
=
WarpPerBlock_
::
at
(
number
<
0
>
{});
static
constexpr
index_t
WarpPerBlock_N
=
WarpPerBlock_
::
at
(
number
<
1
>
{});
// warp size
static
constexpr
index_t
Warp_M
=
WarpTile_
::
at
(
number
<
0
>
{});
static
constexpr
index_t
Warp_N
=
WarpTile_
::
at
(
number
<
1
>
{});
static_assert
(
Block_M
%
(
WarpPerBlock_M
*
Warp_M
)
==
0
);
static_assert
(
Block_N
%
(
WarpPerBlock_N
*
Warp_N
)
==
0
);
// repeat of each thread along seq<M, N>
static
constexpr
index_t
Repeat_M
=
Block_M
/
(
WarpPerBlock_M
*
Warp_M
);
static
constexpr
index_t
Repeat_N
=
Block_N
/
(
WarpPerBlock_N
*
Warp_N
);
// vector size along seq<M, N>
static
constexpr
index_t
Vector_M
=
Vector_
::
at
(
number
<
0
>
{});
static
constexpr
index_t
Vector_N
=
Vector_
::
at
(
number
<
1
>
{});
static_assert
(
Warp_M
%
Vector_M
==
0
);
static_assert
(
Warp_N
%
Vector_N
==
0
);
// num of threads along seq<M, N>, within each warp
static
constexpr
index_t
ThreadPerWarp_M
=
Warp_M
/
Vector_M
;
static
constexpr
index_t
ThreadPerWarp_N
=
Warp_N
/
Vector_N
;
static
constexpr
index_t
BlockSize
=
BlockSize_
;
};
}
// namespace ck_tile
include/ck_tile/ops/add_rmsnorm2d_rdquant/pipeline/add_rmsnorm2d_rdquant_fwd_pipeline_default_policy.hpp
View file @
667cd6ab
...
@@ -26,6 +26,7 @@ struct AddRmsnorm2dRdquantFwdPipelineDefaultPolicy
...
@@ -26,6 +26,7 @@ struct AddRmsnorm2dRdquantFwdPipelineDefaultPolicy
sequence
<
1
,
1
,
2
,
2
>
,
sequence
<
1
,
1
,
2
,
2
>
,
sequence
<
0
,
3
,
0
,
3
>>
{});
sequence
<
0
,
3
,
0
,
3
>>
{});
}
}
template
<
typename
Problem
>
template
<
typename
Problem
>
CK_TILE_DEVICE
static
constexpr
auto
MakeGammaBlockTileDistribution
()
CK_TILE_DEVICE
static
constexpr
auto
MakeGammaBlockTileDistribution
()
{
{
...
...
Prev
1
2
3
4
5
6
7
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment